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1 The estimation of antagonist affinity from functional experiments in which the effect of a fixed
agonist concentration is reduced by a range of antagonist concentrations ('functional inhibition curves')
has been considered from both a theoretical and experimental viewpoint.
2 Theoretical predictions are compared with results obtained from the stimulation of [35S]-GTPyS
binding by acetylcholine to membranes of Chinese hamster ovary (CHO) cells stably transfected with
human ml-m4 muscarinic receptors, and inhibition of the stimulated binding by pirenzepine and
AQ-RA 741.
3 The usual procedure of applying the Cheng-Prusoff correction is shown to be theoretically invalid,
and predictions are made of the size and distribution of errors associated with this procedure.
4 A different procedure for estimating antagonist affinity, using the principles of dose-ratio analysis
and analogous to use of the Gaddum equation, is found to be accurate and theoretically valid.
5 A novel method of analysis allows accurate estimation of both antagonist affinity and Schild slope,
by fitting the combined data from an antagonist inhibition curve and an agonist activation curve directly
to a form of the Schild equation (derived by Waud) using non-linear regression analysis.
6 It is shown that the conventional Schild analysis can be enhanced by treating part of the data as a
family of inhibition curves and including in the Schild plot dose-ratios estimated from the inhibition
curves.
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Introduction

Antagonist affinity is frequently estimated in binding studies
by measuring the inhibition of binding of a fixed concentra-
tion of radioligand and converting the observed ICo (concen-
tration of antagonist inhibiting binding by 50%) to a Ki
(estimate of antagonist dissociation constant) with the equa-
tion of Cheng & Prusoff (1973). This equation assumes that
both agents interact in a reversible competitive fashion at a
single site according to the law of mass action, that the
reaction is at equilibrium, and that the free concentrations of
the agents are known and constant throughout the experi-
ment. The Kd of the radioligand must also be known.

In functional studies the dissociation constant of the agent
providing the signal, the agonist, is not known, and the
relationship between observed response and agonist occu-
pancy is also not known. In order to overcome these limita-
tions, null methods have been devised which involve the same
assumptions as in the binding experiments and, in addition,
the assumption that a particular response reflects a certain
level of agonist occupancy regardless of the level of antag-
onist occupancy. The central feature of these methods is the
measurement of 'dose ratios', ratios of agonist concentrations
in the presence and absence of antagonist which produce the
same response. The simplest such method uses the Gaddum
equation (Gaddum, 1957) and involves the measurement of
agonist effect over a range of concentrations in the absence
and presence of a fixed concentration of antagonist. The
method of Arunlakshana & Schild (Schild, 1957) uses dose-
ratios obtained in the presence of a number of antagonist
concentrations.
The experimental designs which are used in Gaddum and

Schild analyses typically involve the construction of two or
more agonist concentration-effect curves in the absence and
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presence of fixed antagonist concentrations, for the practical
reason that most whole tissues produce a rapid response to
agonist but do not maintain a stable response to a fixed
agonist concentration for the often long periods of time
needed for equilibration of antagonist. Some functional
responses, however, notably those measured biochemically,
readily lend themselves to designs involving an antagonist
titration in the presence of a fixed concentration of agonist,
an 'inhibition curve' design.
Although the application of inhibition curve design to

Gaddum analysis (Lazareno & Roberts, 1987) and, recently,
to Schild analysis (Poch et al., 1992) have been described,
most authors have been content to analyse functional inhibi-
tion curves with the Cheng-Prusoff equation (e.g. Ford et al.,
1992), despite the fact that the parameters and assumptions
of this analysis are not applicable to functional experiments.
The Cheng-Prusoff equation, however, is virtually identical to
the null-method equation of Lazareno & Roberts (1987) at
high agonist concentrations, so under this condition the
Cheng-Prusoff equation should yield the correct result. Eglen
& Whiting (1989) have explicitly investigated the applicability
of the Cheng-Prusoff equation to functional data and have
reached the opposite conclusion: they claimed to demon-
strate, both experimentally and theoretically, that the equa-
tion may, by chance, yield the correct result with low fixed
agonist concentrations, but results in serious errors when
used with high agonist concentrations. If this result were
correct, it would invalidate the null-method inhibition-curve
type of design of Lazareno & Roberts (1987) and Poch et al.
(1992).
Here we demonstrate (i) the validity of Gaddum analysis

as applied to inhibition curves, (ii) the direct fitting of the
Schild equation (Waud, 1975; 1976) to single inhibition
curves to yield estimates of both Schild slope and pKb, and
(iii) the possibility of enhancing the power of the normal
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Schild analysis by extracting dose-ratio values from inhibi-
tion curves as well as activation curves. We also explore the
validity of the Cheng-Prusoff equation in functional experi-
ments using a theoretical model of agonism, the Operational
Model of Black & Leff (1983). The functional measure we
have used is the agonist stimulated binding of [35S]-GTPT'S to
membranes from Chinese hamster ovary (CHO) cells stably
transfected with the ml -m4 human muscarinic receptors.
Some of these data have been presented in preliminary

form (Lazareno et al., 1993).

Methods

Cell culture and membrane preparation

CHO cells stably expressing human ml-m4 muscarinic re-

ceptors (Buckley et al., 1989) were generously provided by
Dr N. Buckley (N.I.M.R., London). These were grown in
MEM-alpha medium (GIBCO) containing 10% (v/v) new

born calf serum and harvested by scraping the cells in a

hypotonic medium (20 mM HEPES + 10 mM EDTA, pH 7.4).
Membranes were prepared at 0°C by homogenization with a

Polytron followed by centrifugation (40,000 g, 15 min), were

washed once in 20 mM HEPES + 0.1 mM EDTA, pH 7.4,
and were stored at - 70°C in the same buffer. The yields of
receptor were 3, 1, 3 and 4 pmol mg-' of total membrane
protein at ml, m2 m3 and m4 subtypes respectively.

[3sS]-GTPyS binding

Membranes were suspended in a buffer containing 20 mM
HEPES, 100 mM NaCl and 10 mM MgCl2, pH 7.4 at a pro-

tein concentration of 25 - 50 lig ml-'. Polystyrene tubes (5 ml)
containing ml of membrane suspension were incubated with
GDP, ACh and antagonist at 30°C for 20 min and then
transferred to ice for 15 min. [35S]-GTP-yS was added to a

final concentration of 100 pM and the samples incubated for
30min at 30'C. The samples were filtered over glass fibre
filters (Whatman GF/B) using a Brandel cell harvester and
washed with 5 ml water. The filter discs were extracted over-

night in 3 ml scintillant and counted by liquid scintillation
spectrometry at an efficiency of about 97%. Assays were

conducted in duplicate, with each set of replicates filtered
together.

Reagents

[35S]-GTPyS was purchased from Du Pont; acetylcholine
(ACh), pirenzepine (PRZ) and GDP were from Sigma, and
AQ-RA 741 (11 -((4-[4-(diethylamino)-butyl]- 1 -piperidinyl)
acetyl))-5,1 1-dihydro-6H-pyrido(2,3-b)(1,4)-benzodiazepine-6-
one) was a gift from Dr Karl Thomae GmbH.

Data analysis

In Experiment I the d.p.m. were not transformed. In Experi-
ment 2 there were small but consistent differences between
the 1st and 2nd replicates of the m3 and m4 assays, caused
perhaps by small differences in the incubation time or

washing procedure, so for all subtypes each set of replicates
was expressed as a % of basal activity: this transformation
resulted in a small improvement in the coefficient of varia-
tion.
The data were analysed by non-linear regression analysis

with two programmes. The direct fits to the Schild equation
and simulations were conducted with SigmaPlot (Jandel
Scientific, Germany), which was also used to produce all the
graphs. The logistic fitting utilised Allfit (De Lean et al.,
1978, a gift from Dr Munson, NIH); SigmaPlot could have
been used, but Allfit was more convenient as it is designed
specifically for the analysis of families of logistic curves, with
the option of sharing or fixing some or all of the fitted

parameters between curves, and testing the statistical validity
of such constraints. In all cases the statistical validity of
sharing parmeters, where appropriate, was assessed by the
'extra sum of squares' test (Munson & Rodbard, 1980) and a
significance level of P<0.05.

Cheng-Prusoff analysis

Agonist activation curves and antagonist inhibition curves in
the presence of a fixed agonist concentration [A] were fitted
to logistic functions to yield the parameters EC50 and IC50.
The Cheng-Prusoff estimate of dissociation constant (Kcp)
was obtained with the formula.

Kcp = IC50/([A]/EC50 + 1).

A theoretical consideration of the validity of this analysis in
functional experiments is contained in the Appendix.

Analysis of inhibition curves using Gaddum analysis

The procedure has been described by Lazareno & Roberts
(1987). Gaddum analysis involves the estimation of equiac-
tive agonist concentrations of agonist in the presence and
absence of a certain antagonist concentration, and insertion
of the ratio of the former to the latter agonist concentration
(the 'dose-ratio') in the equation

Kb= [B]/(dose-ratio - 1),

where Kb is the estimate of antagonist Kd and [B] is the
concentration of antagonist.

Both the traditional and inhibition curve designs contain a
titration of agonist alone, to which a second titration is
related. In the traditional design the antagonist concentration
is fixed by the experimenter, a second agonist titration is
performed in its presence, and analysis of the two curves
allows an estimation of the equieffective agonist concentra-
tion in the presence of antagonist (measured typically at the
50% response level). In the inhibition curve design the equi-
effective agonist concentration is fixed by the experimenter,
the antagonist concentration reducing its effect by 50% is
estimated from an antagonist titration in the presence of the
fixed agonist concentration, and the agonist concentration
causing the same effect (50% that of the fixed concentration)
is estimated from the agonist titration. As in the conventional
design, there are two titrations which provide estimates for
the analysis.
The antagonist inhibition curve and the agonist activation

curve containing agonist concentrations up to the fixed con-
centration used in the inhibition curve, were fitted simul-
taneously to a logistic model with the maxima and minima
either defined (Experiment 1) or shared (Experiment 2) (the
pKb estimates were almost identical with either type of con-
straint) to yield an IC50* for the antagonist and an EC50* for
the agonist. The IC50* is the concentration of antagonist
which produces, in the presence of the fixed agonist concent-
ration, a response level of 50% of the response obtained with
the fixed agonist concentration alone. The EC5o* is the
agonist concentration which, by itself, produces a response
level of 50% of the response obtained with the fixed agonist
concentration alone. Note that the EC50* will not be the
same as the true EC50 unless the fixed agonist concentration
itself produces the Emax response, and the IC50* is not neces-
sarily identical to the true ICSO estimated without constraints.
The necessary condition of the analysis is that the antagonist
ICW* in the presence of the fixed agonist concentration and
the agonist EC_O* correspond to the same response level.
(The analysis was done here with logistic curve fitting, but
Hill analysis, using a logit-log transformation and defined
maxima and minima, would have done just as well). The
Gaddum equation can now be expressed as

Kb = IC50*/([A]/EC5o* - 1),
where [A] is the fixed agonist concentration. Note that at
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high agonist concentrations, (ECs* t ECm <«<[A]) this equa-
tion is almost identical to the Cheng-Prusoff equation.

Schild analysis

Schild plots were constructed by plotting log (dose-ratio - 1)
agonist log([B]), where 'dose-ratio' is the ratio of equiactive
agonist concentrations in the presence and absence of anta-
gonist concentration [B]. The plots were analysed by linear
regression and, when it was established that the plots were
linear with slopes not significantly different from unity, the
intercept from the regression analysis with slope constrained
to unity was taken as the pKb estimate.

Transducer ratio = 1000
4.0- I I I .

Hill
a S Slope3.0 -

3.0 -

2.5 -

2.0

1.5 1

1.0 -
Direct fitting of data to the Schild model

It is worthwhile reviewing this powerful and underused equa-
tion which was first derived by Waud (1975, 1976). If an
agonist causes a 50% effect at a concentration of [EC°l in
the absence of antagonist, and at a concentration of [ECm] in
the presence of a fixed concentration [B] of antagonist, then
the dose ratio (dr) is [EC50]/[EC50], and

[EC50] = dr.[EC500I. (1)
The Schild model relates the dose-ratio to [B] according to
the equation log(dr-1) = s.log[B]-log(Kb), where Kb is the
antagonist dissociation constant and s is the Schild slope, so

dr = ([B]s/Kb) + 1. (2)

If the agonist curves can be described with a logistic func-
tion, then effect = (Emax-basal) / (1 + ([EC_o]/[A] )b) + basal,
where b is the slope factor of the agonist curve and [A] is the
agonist concentration. Substituting (1) and (2) we obtain the
Waud equation

[EC sl *[B]s + 1)
Effect = (Emax-basal)/(1 + KB )b) + basal (3)

[A]
A slightly different equation has been used by Waud et al.
(1978)

[B]s
[EC501 ((K + 1)

Effect = (Emax-basal)/(l + K{ )b) + basal (4)
[A]

Here the slope s represents a logistic slope factor of the
antagonist occupancy function rather than the molecularity
of the antagonist-receptor interaction. Both equations yield
identical parameter estimates when fitted to experimental
data, except for the estimate of Kb. Small variations in s can
lead to quite large variations in Kb when equation (3) is used,
but minor variations when (4) is used, and Kb is estimated
with greater precision (and less correlation with s) by (4). The
Schild slope can only be assigned molecular significance if it
is an integer, otherwise it indicates some deviation from the
underlying assumptions of the model, and the Kb estimate
can only be considered as an estimate of antagonist potency.
If the Schild slope is not significantly different from 1 then
the best estimate of Kb is obtained by constraining the Schild
slope to 1 (as with all the data reported here), but if this is
not valid then equation (4) will yield a better estimate of
antagonist potency.

Results

Theoretical

Errors caused by the use of the Cheng-Prusoff equation
Figure 1 shows the Cheng-Prusoff estimate of dissociation
constant divided by the true dissociation constant (Xcp/Ki) as
a function of log(fixed agonist concentraton/EC5o) for various
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Figure 1 Theoretical error in the use of the Cheng-Prusoff equation
to estimate antagonist affinity from IC50 values obtained from func-
tional inhibition experiments. 'Cheng-Prusoff' Ki estimates were
derived from an 'operational model' of agonist effect as described in
the Appendix. Errors (Kcp/Kl) are shown as a function of log(fixed
agonist concentration/EC50), the Hill slope factor of the logistic
function relating [agonist] to effect (see Appendix), and the trans-
ducer ratio, T, which corresponds roughly to receptor reserve.
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1.8 l l ll values of Hill (logistic) slope of the agonist curve and T

Agonist slope (transducer ratio, related to 'receptor reserve'). When the Hill
1.6 slope is 1, or when the fixed agonist concentration is 100 fold

1.5 or more greater than the EC50, the Cheng-Prusoff equation
1.4 -

provides a good estimate of the 'true' antagonist Kd. Errors
arise when lower agonist concentrations are used and the Hill

c

* 1.2 - 1.25 slope deviates from 1. The magnitude of the error increases
as the Hill slope deviates from 1, and for a particular Hill

1.0 slope, increases with decreasing receptor reserve. The limiting
.' 1.0 _ 1.0 - cases, with very large or very small [A], are as described in
o the Appendix. In addition, a range of fixed agonist concen-
a)

0.8 F 0 75 qtrations give larger deviations than when [A] is very small,
X 0. the largest deviation occurring with (EC50/10 <[A] <EC50).

0.6 0 o5l Slopes of antagonist inhibition curves If the agonist curve is
truly a logistic function with slope =# 1, then the antagonist

0.4 . - 0 inhibition curve cannot be a logistic function, though inac-
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 curacies in fitting such inhibition curves to a logistic function

log([A]/[EC50]) are likely to be trivial. Simulated inhibition curves with

Figure 2 Logistic slope factors of theoretical antagonist functional Schild slopes of 1 were generated using the Waud equation at
inhibition curves derived from simulations with the Waud equation various levels of [A]/[EC50] and agonist slope. The results in
using various agonist slope factors. The antagonist Schild slopes Figure 2 demonstrate that inhibition curves only have slope
were fixed at 1. factors of 1 if the agonist curve is itself rectangular hyper-

Table 1 Parameters for acetylcholine (ACh) and pirenzepine (PRZ) from analysis of Experiment I

ml m2 m3 m4

Fixed [PRZ] concentration (M) 3 x 10-8 3 x 10-7 3 x 10-7 10-7
10-7 3 x 10-6 10-6 10-6

3 x 10-7 3 x 10-5 3 x 10-6 10-5
Analysis
I ACh alone pEC50 (- logM) 6.10 7.39 5.59 6.91
4 ACh alone pEC50 (-logM) 6.10 7.41 5.57 6.91
1 ACh logistic slope 0.53 0.73 0.97 0.75
4 ACh logistic slope 0.55 0.72 0.97 0.75
1 Schild slope 1.14 1.03 0.84 1.03
2 Schild slope 1.12 0.96 0.83 0.90
3 Schild slope 1.13 1.01 0.84 0.97
4 Schild slope 1.15 1.00 0.84 1.03
1 pKb 8.37 6.60 6.77 7.65
2 pKb 8.37 6.64 6.85 7.73
3 pKb 8.38 6.62 6.81 7.69
4 pKb 8.39 6.66 6.74 7.66

Analysis: (1) activation curves fitted to logistic function, Schild plots from dose-ratios; (2) inhibition curves and corresponding
activation curve fitted to logistic with fixed limit parameters, Schild plots from dose-ratios; (3) dose-ratios from (1) and (2) combined in
Schild plots; (4) direct fit of dataset to Waud equation; Schild slope estimated from unconstrained analysis, pKb (and control ACh
slope and pEC50) estimated from analysis with Schild slope set to 1.

Table 2 Parameters for acetylcholine (ACh), pirenzepine (PRZ) and AQ-RA 741 from analysis of Experiment 2

ml m2 m3 m4

Fixed [ACh] (M) 3 x 10-5 3 x 10-6 10-4 3 x 10-6
Analysis
1 ACh slope 0.50 0.64 0.84 0.68
3 ACh slope 0.47 0.65 0.85 0.70
I ACh pEC50 (-log(M) 5.69 7.31 5.43 6.97
3 ACh pEC50 (-log(M) 5.66 7.31 5.43 6.97

1 PRZ logistic slope 0.71 0.72 0.84 0.74
3 PRZ Schild slope 1.08 0.96 0.95 1.00
1 PRZ pIC50 6.78 4.70 5.30 6.11
2 PRZ pKb 8.46 6.66 6.81 7.76
3 PRZ pKb 8.37 6.65 6.79 7.74
4 PRZ pKcp 7.97 6.50 6.75 7.58

1 AQ-RA logistic slope 0.56 0.78 0.86 0.77
3 AQ-RA Schild slope 0.93 1.10 1.03 1.07
1 AQ-RA pIC50 6.56 7.12 5.86 7.01
2 AQ-RA pKb 8.28 9.09 7.38 8.65
3 AQ-RA pKb 8.21 9.09 7.34 8.63
4 AQ-RA pKcp 7.76 8.92 7.31 8.47

Analysis: (1) full activation and inhibition curves fitted to logistic function; (2) inhibition curve and corresponding activation curve up
to the fixed concentration fitted to logistic with shared limit parameters, IC50* and EC50* values applied to the Gaddum equation; (3)
direct fit of inhibition curve and corresponding activation curve to the Waud equation; Schild slope estimated from unconstrained
analysis, pKb (and control ACh slope and pEC50) estimated from analysis with Schild slope set to 1; (4) parameters from analysis (1)
applied to Cheng-Prusoff equation.
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Figure 4 Schild plots of the effect of pirenzepine (PRZ) on acetyl-
choline potency in stimulating GTPyS binding via ml (0), m2 (e),
m3 (V) and m4 (V) receptors (Experiment l). (a) Dose-ratios
derived from ECm values obtained from logistic analysis of the
curves shown in Figure 3; (b) Dose-ratios derived from Gaddum
analysis of EC50* and IC5o* values obtained from the curves shown
in Figure 5, as described in Methods; (c) Combination of (a) and (b).
The lines show linear regression, with Schild slopes unconstrained
(solid) or fixed at I (dotted).

bolic, otherwise the antagonist slope will be similar to the
agonist slope but will also depend on the fixed agonist con-
centration. The logistic slopes of functional inhibition curves
by themselves therefore provide no information as to e.g. the
presence of multiple receptors, unless the agonist curve has a
slope of 1: the Schild slope factor obtained by direct fitting to
the Waud equation may be more informative.

Experimental

The presence of GDP was required to reveal an agonist
induced increase in [35S]-GPTyS binding mediated by m2 and
m4 receptors, and improved the signal mediated by ml and
m3 receptors (Hilf et al., 1989; Farries, unpublished observa-
tions). The optimal GDP concentration differed at different
subtypes (Lazareno et al., 1993; Farries, unpublished), here,
10-7 M (Experiment 1) and 3 x 10-7 (Experiment 2) was used
with ml and m3 receptors, and 10-6 M was used with m2 and
m4 receptors.

It was found necessary to pre-equilibrate the membranes
with both agonist and antagonist before initiating the ["S]-
GPTyS binding, since preincubation with pirenzepine alone
led to concentration-dependent decreases in the agonist Emax
at ml-m4 receptor subtypes (data not shown). Preincubation
with ACh at ml or m4 receptors did not reduce either the
potency of ACh or its Ema (data not shown).

Experiment 1 ACh activation curves were constructed at
ml-m4 receptors alone and in the presence of three concen-
trations of pirenzepine. The greater potency of ACh at m2
and m4 receptors allowed a wider range of pirenzepine con-
centrations than at ml and m3 receptors.

Pirenzepine did not significantly affect basal activity, Em,,
or slope. Direct fitting of the data to the Waud equation
revealed that the Schild slopes were not significantly different
from 1, and Figure 3 shows the data with fits constrained to
Schild slopes of 1. The parameter estimates are shown in
Table 1.

Figure 4a shows conventional Schild plots derived from
EC50 values obtained by logistic analyses in which the basal,
Emax and slope parameter estimates were shared between the

Figure 3 Experiment 1: effect of acetylcholine (ACh) in the presence
of various concentrations of pirenzepine on [35S]-GTPyS binding to
membranes from CHO cells transfected with ml-m4 muscarinic
receptors. The lines show the fit to the Waud equation with Schild
slope fixed at 1. Each point is the mean of duplicate observations.
The following pirenzepine concentrations were used (M):

Subtype/
Symbol
ml
m2
m3
m4

(V) (V)
0

0

0

0

3 x 10-8
3 x 10-7
3 x 10-7

10-7

(0)
10-7

3 x 10-6
10-6
10-6

(U)
3 x 10-7
3 x 10-5
3 x 10-6

10-5

in
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Figure 6 Error caused by using the Cheng-Prusoff equation to
derive pirenzepine affinity estimates from the inhibition curves shown
in Figure 5, at ml (0), m2 (e), m3 (V) and m4 (V) receptors. The
'true' affinity was taken to be that derived from the direct fit to the
Waud equation with Schild slope fixed at 1.

pKb and were not correlated with the fixed agonist concentra-
tions (data not shown). These results also show that the
dose-ratios derived from the inhibition curves complement
those obtained from activation curves to provide, in the case
of m2 and m4 receptors, more detailed Schild plots over a
wider range of antagonist concentrations (both those chosen
by the experimenter and those estimated as IC50 values from
inhibition curves).

Figure 6 shows the deviation of the Cheng-Prusoff esti-
mates of pirenzepine dissociation constant from the 'true'

250
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I7 . Y

It| I 1
_x-8 -6 -4

200 k
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[Drug] (log M)

Figure 5 Inhibition curves of pirenzepine in the presence of different
fixed acetylcholine (ACh) concentrations (0, * and V), constructed
from part of the data shown in Figure 3, together with control
acetylcholine curves (U).

curves. The Schild slopes were not significantly different from
1 and the pKb values were very similar to those obtained by
direct fitting to the Waud equation (Table 1).

Figure 5 shows inhibition curves constructed from parts of
the complete data set. Each inhibition curve was analysed
together with the portion of the control activation curve up
to the fixed agonist concentration [A], with common defined
basal and maximum parameters, to yield EC"* and IC50*
values. The dose ratios ([A]/EC5o*) and corresponding IC50*
values are shown as Schild plots in Figure 4b, and Schild
plots combining the data from the activation and inhibition
curves are shown in Figure 4c. The results (Figures 4b and
4c, Table 1) show that in all cases the Schild plots were linear
with slopes close to 1. This reflects the fact that the pKb
estimates from the inhibition curves were close to the 'true'
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Figure 7 Experiment 2: acetylcholne activation curve for stimula-
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inhibition curves for pirenzepine and AQ-RA 741 in the presence of
a fixed acetylcholine concentration (e). The data are individual
replicates expressed as % of mean basal activity. The lines show the
direct fit of each activation + inhibition curve data set to the Wsud
equation with Schild slope fixed at 1.
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values obtained from direct fitting to the Waud equation.
The deviations are quite consistent with those derived theo-
retically (see Appendix and Figure 1) being minimal at the
highest fixed agonist concentrations and at the m3 receptor,
where the ACh curves had slopes close to 1.

Experiment 2 At each muscarinic receptor subtype, a full
ACh activation curve was constructed, together with titra-
tions of pirenzepine and AQ-RA 741 alone and in the
presence of a fixed submaximal ACh concentration. In some
cases the antagonists alone seemed slightly to inhibit basal
activity (data not shown) with the largest apparent effect,
5-10% inhibition, seen with AQ-RA 741 at m4 receptors.
These effects were too small and inconsistent to quantify and
were not considered in subsequent analyses.

Figure 7 shows each inhibition curve and its corresponding
activation curve fitted directly to the Waud equation with
Schild slopes constrainted to 1. The unconstrained Schild
slopes were not significantly different from 1 (Table 2), in
marked contrast to the flat logistic slopes of the inhibition
curves which are completely in agreement with the theoretical
predictions shown in Figure 2.
Each inhibition curve was analysed together with the por-

tion of the corresponding activation curve up to the fixed
agonist concentration with basal and 'maximum' parameters
constrained to be shared, to yield EC5o* and IC50* values.
PKb estimates derived with the equation pKb= log(IC_0*/([A]/
[EC5o*I-1)) were very close to the estimates obtained from the
direct fit (Table 2).
The values obtained for pirenzepine in this experiment

using single inhibition curves were almost identical to those
obtained in Experiment 1 from full Schild analysis, and the
affinity estimates for both antagonists are consistent with
previously reported values (Lazareno et al., 1990; Dorje et
al., 1991).

Discussion

Schild analysis is among the most robust and theoretically
valid techniques in pharmacology (Colquhoun, 1987). Its
robustness derives, in part, from the fact that the analysis is
in two parts. The first part considers a family of two or more
agonist titrations and allows the assumptions of parallel
concentration-effect curves and constant Emax (both necessary
if the antagonist is acting as a simple competitive inhibitor)
to be assessed empirically. The second part considers dose-
ratios derived from the first part, and tests the assumption
that log(dose-ratio - 1) is a linear function of log antagonist
concentration with slope of unity, again necessary if the
antagonist is acting as a simple competitive inhibitor. As well
as testing some of the underlying assumptions of the analysis,
the two-stage nature of conventional Schild analysis allows
the estimation of antagonist affinities from responses with
which, for practical reasons, only a single dose-ratio estimate
can be made in each experiment.

Conventional Schild analysis does have drawbacks, how-
ever, the most obvious of which is inefficiency: the analyses
in Experiment 1 above each contained 56 data points and yet
the conventional pA2 estimate was derived from only three
points. The range of antagonist concentrations which can be
studied may also be limited by the potency of the agonist and
hence the largest dose-ratio which can be measured without
encountering nonspecific effects of high agonist concentra-
tions.

In biochemical, and some whole-tissue, experiments it is
often practically feasible to assess antagonist affinity by tit-
rating the antagonist against a fixed concentration of agonist.
Such a design allows efficient study of a large range of
antagonist concentrations and is therefore widely used. The
correct design and analysis of such experiments has, however,
received little attention.

Binding experiments often use an inhibition curve design,

and in principle the Cheng-Prusoff correction is a valid
method for obtaining affinity estimates (though there are
pitfalls in such experiments, and enhanced methods to ac-
count for them, see e.g. Munson & Rodbard, 1988). McKin-
ney et al. (1991) have shown that the Cheng-Prusoff
correction is valid in functional experiments where the
agonist curve has a slope of 1, a conclusion with which we
agree. In contrast, Eglen & Whiting (1989) claim to have
demonstrated, both empirically and theoretically, that ap-
plication of the Cheng-Prusoff equation is invalid at high
agonist concentrations. This conclusion is surprising, since at
high agonist concentrations the Cheng-Prusoff equation is
almost identical to the null method equation of Lazareno &
Roberts (1987, see Methods above). In fact, Eglen & Whiting
showed only that application of the equation to their data
yielded discrepant results, they did not demonstrate that the
error lay in the application of the equation rather than in the
data: in fact, application of a null method of analysis to their
inhibition data would have given the same discrepant results.
Leff & Dougall (1993) have recently derived a theoretically
valid form of the Cheng-Prusoff equation which takes
account of the slope of the agonist curve.
From our theoretical consideration, the following con-

clusions can be made regarding the applicability of the
Cheng-Prusoff equation to those functional preparations
which can be described by the Operational Model of Black &
Leff (1983): (1) the equation is valid for rectangular hyper-
bolic E/[A] functions; (2) the equation is not valid for other
E/[A] functions except when high fixed agonist concentrations
are used (at least 10 fold greater than EC50); (3) the equation
gives the greatest error when concentrations between EC50/10
and EC50 are used as fixed agonist concentrations; (4) the
Hill slope of the E/[A] function is the major determinant of
the size of the error - the equation gives increasing error as
the slope deviates from 1, but for slopes between 0.7 and 1.2
the error will not exceed about 4 fold; (5) for a particular
Hill slope, the error will increase with decreasing receptor
reserve. The empirical results shown in Figure 6 are consis-
tent with these conclusions, as are results obtained from a
larger population of data (Lazareno & Birdsall, 1993).
Although use of the Cheng-Prusoff correction is invalid,

there is a valid method for analysing a single inhibition
curve, together with an activation curve, to provide a dose-
ratio from which a valid pKb can be estimated (Lazareno &
Roberts, 1987, see Methods above). We found that these pKb
estimates were in excellent agreement with pA2 values mea-
sured with full Schild analysis. The logistic slope of the
inhibition curve, however, cannot be interpreted directly since
it is strongly determined by the slope of the agonist curve. It
is, nevertheless, possible to estimate the Schild slope from an
inhibition curve. In principle, each point on an inhibition
curve could be converted to a dose-ratio and the data could
be treated as a Schild plot. We have found, however, that
this treatment magnifies small errors at the top and bottom
of the curve and does not provide reliable data. The solution
is to use non-linear regression analysis to fit the combined
inhibition and activation curves directly to the Schild model
using the Waud equation. This provides reliable estimates of
both the Kb and the Schild slope, and thus this design and
analysis allows a test of one of the underlying assumptions of
Schild analysis, namely that competitive antagonists have
Schild slopes of 1. It is important to note that the slope of
the inhibition curve can only be interpreted by using this
analysis in conjunction with the activation curve.

Since a single inhibition curve can be used to provide an
accurate estimate of Kb, it follows that a family of inhibition
curves, with different fixed agonist concentrations, can be
used to construct a Schild plot. Poch et al. (1992) constructed
families of activation curves in the normal Schild design and
then extracted inhibition curves from their data, as we did in
Experiment I above. They also showed that their 'alternative
Schild plots', using dose-ratios derived from the inhibition
curves, gave essentially the same results as the 'conventional'
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Schild plots. Their analysis differs from our form of Gaddum
analysis only in that they used the parameters of the logistic
fit to the control activation curve to estimate the concentra-
tion of agonist alone giving the effect of 50% the fixed
agonist concentration. Our results are completely consistent
with those of Poch et al. (1992), and demonstrate that dose-
ratios obtained from inhibition curves have equal status with
those obtained from activation curves. It therefore makes
sense, if the design of the experiment allows, to consider the
data from a family of activation curves also as a family of
inhibition curves and to combine the dose ratios from both
types of curves into a single Schild plot. As shown above,
this can double the number of points on the Schild plot and
provide more precision and a wider range of antagonist
concentrations. Much attention has been given to the
significance and analysis of Schild plots which are not linear
or have slopes different from 1 (Kenakin, 1982). The use of

inhibition curves to obtain more detailed and extensive Schild
plots may therefore be of practical value.
A way to enhance further the power and efficiency of the

full Schild analysis is to fit the entire data set directly to the
Schild model with the Waud (1975, 1976) equation using
non-linear regression analysis. This procedure uses all the
data, rather than just a few dose-ratio values, to estimate the
pA2 and Schild slope, and it therefore provides better es-
timates of these parameters. This in turn means that fewer
data points are required for reliable results.

In conclusion, antagonist affinities can be estimated from
functional inhibition curves either by a null method of dose-
ratio analysis or by a direct fit to the Schild model with the
Waud equation. Use of the Cheng-Prusoff equation is usually
invalid and inaccurate, and always unnecessary.
We gratefully acknowledge financial support from Sankyo Co. Ltd.,
Tokyo.

Appendix

Theoretical assessment of the validity of application oj
the Cheng-Prusoff equation to functional experiments,
using the Operational Model ofagonism (Black & Lej
1983)
The operational model starts with the same basic assur
tions as the traditional null methods, that agonists and cc
petitive antagonists interact at the receptor according to
Law of Mass Action and that the response is a function
agonist receptor occupancy at equilibrium. In addition,
operational model assumes explicitly that the funct
relating occupancy to response (the 'transducer function') i
logistic function. While such a model cannot be univers.
true, it is sufficiently general to be of interest, and has b
found to generate consistent results when applied to p1
macological data (Leff, 1988).

Receptor occupancy by agonist alone is given by

[AR]= Ro . [A]
[A] + KA

where [AR] = concentration of agonist-occupied recept(
Ro = total receptor concentration, [A] = agonist concentrati
KA = agonist dissociation constant.

Receptor occupancy by agonist in the presence of cc
petitive antagonist is given by

R(. [A]
[AR] = [A] + KA .(1+(1 )

K1
where [I] = antagonist concentration, Ki = antagonist disso4
tion constant.

Response is assumed to be a logistic function of ago
occupancy

Em . [AR]n
KEn + [AR]n

where [A50]= the agonist concentration giving half its own
maximum response.
When the concentration-effect curve is rectangular hyper-

bolic, the transducer function has a slope of 1

Em . T [A]

KA + ( + T) . [A]
and

[A50]=-1+?

(6)

(7)

In the presence of competitive antagonist we substitute (2)
into (3) and obtain

iar- Em . To . [A]n

E =
([A] + KA . (1 + [I] ))n + Tn . [A]n

K1

(1) and, if the transducer function has a slope of 1,

ors- E
Em . T . [A]

[oon, E [A] .(1 + r) + KA . (1 +11] )
K1

(8)

(9)

)m- Consider first the simple case, where the slope, n, of the
transducer function is 1 (which will result in the concentration-
effect curve also having a slope of 1).

(2) If [Im] is the antagonist concentration which inhibits the
effect of a particular agonist concentration by 50%, then, from
(6) and (9),

2 . Em . T [A]

[A]. (I+T)+KA (1+[I50] )
KI

and
(3)

where E = the response, E.. = the maximum possible res-
ponse of the tissue, KE = the concentration of agonist-occupied
receptors required to produce a response of E,/2, n = the slope
factor of the logistic transducer function.
A useful quantity, t (the 'transducer ratio'), is defined as

Ro/KE, and is a function of the efficacy of the agonist.
Substituting (1) into (3) we get

Em.T". [A]"
E = ([A] + KA)n + rn. [A]n (4

and

[A50] = KA (5)
(2 + rn) 1

Em.. T. [A]

[A] . (I + T) + KA

[I50]K1-
[A] . I + T + 1

KA

(10)

Substituting the equation for [Am] (7)

(1 1)K =- [I]50
[A] + 1
[A50]

which is the Cheng-Prusoff equation. So, if the concentration-
effect curve has a slope of 1 the Cheng-Prusoff equation gives
the correct answer for any concentration of agonist (this
conclusion has recently been derived in a different way by
KcKinney et al. (1991)).



1118 S. LAZARENO & N.J.M. BIRDSALL

Consider now the more general case. From (4) and (8)
2. Em . T . [A]n = Em . t . [A]n

([A] + KA.(1 + [I50]))n + n ]n (KA+ [A])n + Tn.[A]n
K1

([A] + KA + KA. K1-o) = 2.(KA + [A])n + "n.[A]n (12)

With very large [A], ([A]>> KA)

[A] + KA. [iso] = [A]. (2 + tn)i (13)
K1

Substituting for KA in (5) gives

K1 = [ISO] (14)
[A]

[A50]
which is the same as the Cheng-Prusoff equation at large [A], so
with high agonist concentrations the Cheng-Prusoff equation
gives the correct result.
With very small [A], ([A] + 0)

(KA (1 + [ ))"n= 2.KAn (15)
K,

K1
K1 = [iso] (16)

2 f- 1

If Kcp is the estimate of Ki obtained with the Cheng-Prusoff
equation, then as [A] -* , KcP= [I50], and

= 2 n 1 (17)
K1

i.e. at very low agonist concentrations Kcp will overestimate Ki
if n < 1, and will underestimate Ki if n> 1.

In general, from (12), the antagonist [Iso] is related to the
fixed agonist [A] by

(18)
vK,[150] = KA ((2.(KA + [A])n + Tn.[A]n) n - [A] - KA)
KA

The Cheng-Prusoff estimate of Ki (Kcp) can then be cal-
culated using the formula for [A50] (5) and [150] (18).

Hill slopes of agonist E/[A] curves

The 'Hill slopes' quoted in Figure 1 are necessarily approx-
imate because, for n = 1, the E/[A] curve is not a logistic
function (Black et al., 1985). The deviation from a logistic
function is small, however, so it may reasonably be assumed
that the gradient of the midpoint on the E/[A] curve is equal
to the midpoint gradient of the logistic function best describ-
ing the E/[A] curve. The midpoint gradient of a normalised
E/log[A] curve generated by the operational model is (Black
et al., 1985)

0.576.n.(2 + T?).((2 + Tn)l/n- 1
Gopetional) = (2 + Tn)"/n.(l + Tn) (19)

and the midpoint gradient of a logistic function is

Gloogi,tic)= 0.576 . Hill slope (20)

so the Hill slope is estimated as

Hill slope - n.(2 + Tn).((2 + Tn)'-/n1) (21)
(2 + Tn)'/n.(1 + tn)

Within the range of values used in Figure 1 the deviation
between these Hill slope estimates and slope factors obtained
from logistic analysis of simulated E/[A] curves was about
0.03 or less. The value of n corresponding to a given Hill
slope was estimated from (21) with an iterative procedure.
When t is large, Hill slope z n, but when T is small the

Hill slope tends towards 1 (Black et al., 1985) so, for a given
Hill slope, n;k Hill slope when T is big, and n increasingly
deviates from 1 as T becomes smaller. The size of the devia-
tion of the Cheng-Prusoff estimate as [A] -* 0 depends only
on n and is independent of t (17), and it increases as n
deviates from 1. For a given Hill slope, however, the devia-
tion of the Cheng-Prusoff estimate is inversely related to T,
i.e. the deviation is large when receptor reserve is small and
Hill slope : 1.
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