Clinical Use of Ibuprofen is Associated with Slower FEV_1 Decline in Children with

Cystic Fibrosis

Michael W. Konstan, Mark D. Schluchter, Wei Xue, and Pamela B. Davis

ONLINE DATA SUPPLEMENT

Additional Information Regarding the Longitudinal Statistical Model

Preliminary analyses found that the pattern of change in FEV₁ % predicted was not linear, and varied according to baseline age and FEV₁ % predicted. Thus, the basic model we fit allowed change in FEV₁ % predicted to be a quadratic function of time since baseline, stratified by age and level of FEV₁ % predicted into twelve strata formed by crossing 3 age strata (<8 yrs, 8-12 yrs, 13-17 yrs) with four strata of baseline FEV₁ % predicted (60-79%, 80-89%, 90-99%, ≥100%). Let $y_{ij(c)}^{(s)}$ be the change from baseline in FEV₁ % predicted at the jth follow-up time for the ith patient from center c in stratum s defined by baseline age and FEV₁ % predicted, and let $t_{ij(c)}$ be the time in years from baseline to the current year (here, an integer from 1 to 6), for i=1,...,n_c=number of patients in center c, j=1,...,n_{i(c)}=number of follow-up measurements for patient i in center c, c=1,...,C centers, and s=1,...12 strata. The basic longitudinal statistical model was a multilevel mixed model, written as:

$$y_{ij(c)}^{(s)} = (\beta_1^{(s)} + b_{1c} + b_{1i(c)})t_{ij(c)} + (\beta_2^{(s)} + b_{2c} + b_{2i(c)})t_{ij(c)}^2 + \sum_{k=1}^{p} \theta_k X_{ik}t_{ij(c)} + b_{0c} + b_{0i(c)} + e_{ij(c)} + e_{ij(c)}$$

Here, b_{0c} , b_{1c} , and b_{2c} are random intercept, slope, and quadratic terms for the cth center, assumed to be normally distributed with means of zero and 3x3 covariance matrix Σ_{c} . Similarly $b_{0i(c)}$, $b_{i1i(c)}$, and $b_{2i(c)}$, are random intercept, linear, and quadratic effects for the ith patient in the cth center, also assumed to be normally distributed with means of zero and a 3x3 covariance matrix Σ , where the center-specific and patient-specific terms are independent. The terms $\beta_{1}^{(s)}$ and $\beta_{2}^{(s)}$ are fixed effects representing linear and quadratic trends over time for the sth stratum of baseline age and FEV₁% predicted, s=1,...,12, X_{ik(c)}, k=1,...,p are measurements of p baseline covariates for the

 i^{th} patient in the i^{th} center, θ_k are fixed effects regression parameters, and the $e_{ij(c)}$ are residual random errors assumed to be independent of the other random effects with mean zero and variance σ^2 . For example, if the kth covariate X_{ik} is a binary variable coded as 1 if the patient used ibuprofen and 0 if not, then the regression coefficient θ_k represents the mean difference in yearly rates of decline in FEV₁ % predicted in units of % predicted per year for a patient who is taking ibuprofen compared to a patient not taking ibuprofen, after controlling for the other variables in the model, which is the parameter of primary interest. Positive values for θ_k indicate a beneficial effect of ibuprofen in that those taking ibuprofen have less negative slopes over time in FEV₁ % predicted.