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IgA molecules present in external secretions differ from those found in human 
serum in their molecular forms and their subclass distribution. At least 90% of serum 
IgA occurs in monomeric form; in contrast, IgA found in external secretions is almost 
exclusively polymeric (1). Whereas -90% of serum IgA molecules belong to the IgA1 
subclass, the IgA molecules found in external secretions are equally represented by 
IgA1 and IgA2 (2-4). Secretory component (SC), a glycoprotein shown to bind in 
vitro only to polymeric forms of IgA and IgM (5, 6), has been used as a probe to 
detect cells that contain polymeric IgA. SC binds to a significantly higher number of 
intestinal lamina propria IgA plasma cells than to IgA-producing cells in bone marrow 
(7, 8). 

The  cells that eventually produce IgA for external secretions may undergo a unique 
migratory pattern. From the gut- and bronchus-associated lymphoid tissues, the 
precursor cells migrate to the thoracic duct, enter the circulation, and home to distant 
mucosal tissues and secretory glands, where they differentiate into IgA-producing 
plasma cells (9-12). The demonstration of circulating cells that have a potential to 
produce polymeric IgA with a subclass distribution characteristic of that known to 
exist in external secretions would support the validity of this specialized migratory 
route. We report that the IgA produced in vitro by peripheral blood lymphocytes 
(PBL) stimulated with various mitogens is predominantly polymeric, and the cells 
that produce IgA exhibit an equal distribution of IgA1 and IgA2 subclasses. 

Mater ia ls  and  Me thods  
Immunoglobulins andJ Chain. Polymeric IgM Dau, polymeric IgA Fel, monomeric IgA Pet, IgG De, 

and J chain were isolated as described previously (13). 
Antisera. Antisera for heavy chains of IgG, IgM, and IgA, and antisera against J chain were 

prepared in goats and rabbits, and the specificity was ascertained by radioimmunoassay (RIA). 
Monoclonal hybridoma antibodies specific for IgA subclasses were prepared as previously 
described (14). 

RIA. Purified myeloma proteins were labeled with carrier free Na12SI (New England 
Nuclear, Boston, Mass,) using the chloramine T method (15). In the RIA, dilutions of purified 
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standard proteins or of unknowns were added to polypropylene tubes with 1 ng of radiolabeled 
protein and the amount of specific antibody capable of precipitating 40% of the radiolabeled 
protein (15). Staphylococcus aureus (Cowan I strain ATCC-12598) or rabbit anti-goat IgG (in the 
IgG RIA only) was added to each tube and the radioactivity of the precipitates was measured. 
For quantitation of J chain, samples were fractionated by gel filtration, then reduced with 10 
mM dithiothreitol and alkylated with 21 mM iodoaeetamide in 0.2 M Tris, pH 8.4. 

Immunofluorescence. F(ab')2 fragments of monospecific antibodies to human IgA, IgM, and 
IgG were conjugated to fluorescein isothiocyanate or tetramethylrhodamine isothiocyanate 
(13). An indirect immunofluorescence staining technique was used for IgA subclass determi- 
nation. Slides were examined for cytoplasmic immunoglobulin positive (cIg+) cells (13). 

Culture Conditions. PBL were prepared and cultured as previously described (13). One of the 
following mitogens was added to PBL cultures at the indicated final concentrations: 10 #l/ml 
pokeweed mitogen (PWM; Grand Island Biological Co., Grand Island, N. Y.); 100 pg/ml 
Escherichia coli 0111 :B4 lipopolysaccharide W (LPS; Difco Laboratories, Detroit, Mich.); or 
Epstein-Barr virus (EBV; obtained from supernates of the EBV-positive marmoset monkey cell 
line, B95-8). 

Column Chromatography. PBL supernates, colostrum, and serum were fractionated by molec- 
ular gel filtration on a column (1.6 cm × 48 cm) of Uhrogel AcA 22 (LKB Instruments, Inc., 
Rockville, Md.) equilibrated in PBS, and calibrated with lzSI-labeled polymeric IgM, polymeric 
IgA, monomeric IgA, and IgG. For chromatography in dissociating buffer (16), the columns 
were equilibrated and recalibrated in 0.1 M sodium acetate buffer, pH 4.1, and the samples 
were dialyzed against the same buffer before chromatography. 

Resul ts  

Immunoglobulin Production by PWM-Stimulated PBL. PBL from normal individuals 
were cultured with PWM and harvested every 24 h for 8 d. The cIg+ cells increased 
from <0.5% at 24 h to >16% at 192 h, with the largest increase occurring between 
days 3 and 5 of culture. A similar increase could be seen in the concentrations of 
immunoglobulins in the cell-free culture media. Large variations among individuals 
were observed both in the absolute amount  of  immunoglobulins produced (IgG, 675- 
3,125 ng/ml;  IgM, 643-1,875 ng/ml;  IgA, 142-975 ng/ml)  and in the percentage of 
cIg+ cells (8.4-33%) on day 7. 

Molecular Forms of Immunoglobulins Produced by PWM-Stimulated PBL. Supernates 
from 8-d cultures of PWM-stimulated PBL were pooled and fractionated on an 
Uhrogel AcA 22 column. The elution positions of IgM and IgG in the supernates 
corresponded to those obtained with radiolabeled standard IgM and IgG. A biphasic 
elution profile was obtained for IgA from culture supernates. The larger proportion 
eluted in a position that corresponded to the polymeric IgA standard (Fig. 1 A, vertical 
line 2). 

To  verify that the larger molecular weight supernate IgA was truly polymeric, fresh 
supernates were dialyzed against 0.1 M sodium acetate buffer, pH 4.1, and applied to 
a column that was equilibrated and recalibrated in the same buffer. Chromatography 
of supernate IgA at acid pH again revealed a predominance of the polymeric form 
(Fig. 1 B) and demonstrated that the IgA was not dissociated under conditions that 
might lead to the disaggregation of noncovalently associated monomers (16). Super- 
nate immunoglobulins were also examined for J chain, which is covalently associated 
with both polymeric IgA and IgM. Supernates were fractionated as in Fig. 1 A; 
individual fractions were then reduced, alkylated, and assayed for J chain present in 
fractions that contained IgM and polymeric IgA (Fig. 1 C). Finally, supernates were 
reduced and alkylated before molecular filtration, and the resultant fractions were 
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Fnc. 1, Elution profiles of immunoglobulins produced by mitogen-stimulated PBL. (A) Day 8 
supernate (SUP) assayed for IgM (1) ,  IgA (O), and IgG (&) by RIA. Aliquots of this supernate 
were (B) dialyzed against 0.1 M sodium acetate buffer, pH 4.1; (C) separated on Ultrogel AcA 22 
column, each fraction was then reduced, alkylated, and assayed for J chain (1-1) by RIA; or (D) 
reduced and alkylated, then fractionated and assayed for IgA. (E) depicts the elution profile of 
immunoglobulins present in normal human serum. The elution profile of IgA in diluted (1:100 in 
PBS) and defatted (centrifugation) colostrum is shown in graph (F). Compare elution positions of 
IgA in graphs (A), (E), and (F). Supernates (super) from LPS (G), EBV (H), and PWM (I) 
-stimulated PBL were taken after culturing 1 × 10 n cells/ml for 7 d. The percent figures represent 
the estimated amount of polymeric and monomeric IgA present. Small numbers on top of the 
vertical lines identify l~SI-labeled marker proteins used to standardize the Ultrogel AcA 22 column: 
(l) polymeric IgM, (2) polymeric IgA, (3) monomeric IgA, and (4) IgG. The curves depicted are 
based on the absolute content of assayed immunoglobulin. For clarity of presentation only every 
second or third point is shown. 

assayed for IgA. As expected, the IgA elution pattern had shifted toward a predomi- 
nance of monomeric IgA and smaller molecular weight components (Fig. 1 D). 
Therefore, the high molecular weight IgA in supernates was a true polymeric 
immunoglobulin, containing J chain. 

To establish whether the relative proportions of monomeric and polymeric IgA 
produced in PBL cultures varied with time in culture, supernates were collected at 
days 3, 5, and 7 after PWM stimulation. On day 3, ~60% of the total IgA was present 
in a polymeric form, on day 5, ~70%, and by day 7, ~80% of the IgA was polymeric. 

IgA Production in PBL Stimulated with LPS and EB V. LPS induced the production of 
polymeric and monomeric IgA in proportions similar to those found when PWM was 
used (Fig. 1 G and I). Approximately half of the IgA present after EBV stimulation 
of PBL was polymeric (Fig. 1 H). Despite variations in the polymer:monomer ratio of 
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TASLE I 

IgA1 and IgA2 Subclasses m PWM-Stimulated PBL* 

Day after PWM stimula- 
tion 

IgAl IgA2 

M.G. G.O. M.G. C.O. 

3 67¢ 60 29 22 
4 51 55 46 39 
5 46 ND§ 53 ND 
6 38 50 59 49 
7 36 38 60 55 

* At least 1,000 cells were counted/slide to determine percentage of positive cells. Representative 
data from two individuals (M.G. and C.O.) are shown. 

~: Numbers represent percent of total IgA+ cells that were aIso positive for IgAl (or IgA2). 
§ ND, not determined. 

IgA obtained when different mitogens were used, all three mitogens induced IgA 
production in ratios not typical of serum IgA (Fig. 1 E). 

IgA Subclass Distribution in PWM-stimulated PBL. Because the IgA subclass distri- 
bution is also distinct for secretions as compared with serum, subclass characterization 
was performed on PBL cultures at various times after PWM stimulation with the use 
of hybridoma antibodies specific for a l  or a2 chains (Table I). Initially, IgA1 positive 
cells outnumbered IgA2 positive cells by 2:1, but on day 5 the distribution of IgA 
subclasses was approximately equal (46% IgA1, 53% IgA2), and on day 7 the number 
of IgA2 positive cells exceeded those producing IgA 1. 

Discussion 

Results of the present study indicate that mitogen-stimulated B-lymphocytes from 
peripheral blood of normal individuals produce IgA predominantly in a polymeric 
form. In addition, PWM-stimulated PBL expressed IgAl:IgA2 ratios that are similar 
to those found in secretory tissues, where ~60% of cells produced IgA1 and 40% IgA2 
subclasses (17). These values contrast with values observed in peripheral lymph nodes 
and normal bone marrow where 85 and 88% produced IgA1, respectively (6, 17). 

Several attempts have been made to establish the source of polymeric and mono- 
merle IgA in serum and secretions. Analyses of the intraluminal and venous return 
fluids obtained by perfusion of explants of human large and small intestines revealed 
that ~60% of IgA in venous return perfusate was present in a polymeric form (18). 
Immunofluorescence studies of human intestinal mucosa indicated that ~50% of 
cytoplasmic IgA+ cells in these tissues bound SC intracellularly (7) and, therefore, 
probably produce polymeric IgA (6). In contrast, Radl et al. (8) observed that only 
7.3 + 5.1% of IgA plasma cells in normal human bone marrow are capable of SC 
binding. These results indicate that tissues associated with mucosal surfaces produce 
predominantly polymeric forms, whereas bone marrow rich in IgA plasma cells (19) 
produces primarily IgA monomers. Results of the present investigation are supported 
by our previous observations that indicated that after culturing normal PBL for 7 d 
with PWM, 21.8-71.4% of IgA-producing cells bound SC (13). Now we report that 
~60-70% of the IgA released by these cells occurs as a polymer. However, it is not 
clear whether an IgA-producing plasma cell has a potential to produce either polymer, 
monomer, or both forms concurrently or sequentially. If one accepts the ability of 
some IgA plasma cells to bind SC as a criterion of polymer production, it is obvious 
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that there are numerous cells, especially in the bone marrow (5), that do not bind SC 
and are, therefore, engaged in the production of IgA monomers. Low levels of 
polymeric IgA in human sera may be explained by their prompt and effective removal 
from the circulation and subsequent selective transport into external secretions by 
secretory glands and liver (20-22). 

In summary, a large proportion of peripheral blood B-lymphocytes, with a potential 
to differentiate into IgA plasma cells, produce predominantly polymeric IgA and 
display an IgA subclass distribution typical of external secretions. These findings 
suggest that precursors of IgA-synthesizing cells found in the blood may be destined 
to populate the subepithelial surfaces of mueosal tissues. This has been predicted by 
several investigators who proposed a specialized migratory cycle for IgA precursor 
cells (9-12). 

S u m m a r y  

Human peripheral blood lymphocytes (PBL) were cultured for various time periods 
(up to 8 d) in the presence of pokeweed mitogen (PWM), lipopolysaccharide, or 
Epstein-Barr virus. Cell-free supernates were fractionated on a standardized Ultrogel 
AcA 22 column and the proportion of polymeric and monomeric IgA was determined 
by radioimmunoassay. The results demonstrate that PBL stimulated with these 
mitogens produce IgM and IgG with molecular characteristics identical to those 
found in serum, but that the IgA produced is predominantly of the polymeric type. 
To prove that this IgA represented disulfide bond-linked polymers rather than 
aggregated monomers, we have demonstrated that the high molecular weight IgA (a) 
maintains its polymeric form upon treatment with acidic buffers, (b) containsJ chain, 
a glycoprotein associated only with polymeric immunoglobulins, and (c) dissociates 
to the monomeric form upon reduction of disulfide bonds. After 1 wk in culture, 
-60% of the PWM-stimulated cells that contained IgA were positive for IgA2, whereas 
40% were IgA1 positive as determined by immunofluorescence. Therefore, peripheral 
blood contains a population of lymphocytes with the potential to display, after 
appropriate stimulation and differentiation, characteristics similar to IgA cells found 
in external secretory tissues. The demonstration of the presence of such cells in the 
peripheral circulation suggests that these cells are precursors of IgA-producing plasma 
cells with the potential to populate mucosal tissues. 
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