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In previous reports, we demonstrated that the enhanced capacity of immunologi- 
cally activated macrophages to generate toxic oxygen intermediates beyond superox- 
ide anion (O~-) z and hydrogen peroxide (H202) contributes importantly to the killing 
and inhibition of growth of Toxoplasma gondii (1, 2). In contrast, unperturbed resident 
peritoneal cells from normal mice and those elicited by inflammatory agents display 
comparatively little oxidative activity and fail to restrict the replication of this 
intracellular parasite (1, 2). The ability of T. gondii to successfully parasitize resident 
and inflammatory macrophages also appears to result from two other related obser- 
vations: ingested toxoplasmas avoid effective triggering of the oxidative burst of 
nonactivated cells (2, 3), and the parasite itself is intrinsically resistant to the toxicity 
of either O~- or H2Oz alone (4). The latter finding may reflect particularly rich 
endowment of T. gondii with enzymatic scavengers of OF and HzO2 including 
superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPO) (5). 

This study extends such an analysis to an additional intracellular protozoan, 
Leishmania, which also readily parasitizes mononuclear phagocytes (6). These obser- 
vations indicate that virulent parasites such as Leishmania and T. gondii vary widely in 
their susceptibility to reactive oxygen products, and that such differences are reflected 
in the fate of these pathogens within both cell-free oxidative environments and the 
macrophage cytoplasm. 

Mater ials  and  Methods  
Parasites. Leishmania donovani (LD) and Leishmania tropica (LT) promastigotes were main- 

tained by standard culture techniques at 25°C, and were passed weekly in Schneider's 
Drosophilia medium (Grand Island Biological Co., Grand Island, N. Y.) for LD, and in 
Medium 199 (Grand Island Biological Co.) for LT. Each medium contained 20% heat- 
inactivated fetal bovine serum (HIFBS), 100 U/ml penicillin, and 100 #g/ml streptomycin. 
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The 1 S (Sudan) strain of LD (7) and LT strain 252 (from Iran), which were originally isolated 
from human infections, were generously provided by Dr. J. Keithly and Dr. A. Ebrahimzadeh, 
respectively, of The Cornell University Medical College, New York. Throughout this study, 
both LD and LT promastigotes remained virulent; LD caused fatal infections in golden 
hamsters (7), and LT produced characteristic footpad lesions accompanied by fatal viscerali- 
zation of infection in susceptible BALB/c mice (A. Ebrahimzadeh, unpublished observations). 

During the log phase of growth, promastigotes were harvested from the culture medium by 
centrifugation, washed in phosphate-buffered saline (PBS), pH 7.4, and were resuspended in 
PBS for sonication, in PBS or Krebs-Ringer phosphate buffer with 5.5 mM glucose (KRPG), 
pH 7.4, for cell-free microbicidal experiments, or in Dulbecco's modified Eagle's medium 
containing 10% HIFBS, penicillin, and streptomycin (D10HIFBS) for infection of macrophage 
monolayers (1). T. gondii trophozoites were obtained from infected mouse peritoneal exudates 
(4), and were administered to macrophages as previously reported (1, 2). 

Cells. Residen t peritoneal cells from inbred male BALB/c, DBA/2, and CBA/ca mice (The 
Jackson Laboratory, Bar Harbor, Maine) were harvested and cultivated on 12-mm round glass 
cover slips placed in 35-mm plastic tissue culture dishes (1). As classified by others (8, 9) and in 
this laboratory (10), BALB/c mice are considered susceptible to LD and LT infection, whereas 
DBA/2 are resistant to LD and CBA/ca are resistant to LT. Macrophages were also obtained 
from DBA/2 and BALB/c mice 10-14 d after an initial intraperitoneal injection of 0.2 ml (1.4 
mR) of formalin-killed Corynebacterium panmm (Coparvax; Welcome Research Laboratories, 
Beckenham, Kent, England) followed by an intraperitoneal boosting dose (0.2 ml) 3 d before 
cell harvest (2). For all experiments, macrophages were cultivated overnight before assay or 
infection in either DIoHIFBS alone or D10HIFBS plus 25% active or control concanavalin A 
(Con-A)-stimulated spleen cell supernates which were prepared as described elsewhere (2). 

Cell-free Microbicidal Assays. Washed promastigotes were suspended in either KRPG (for the 
glucose oxidase [GO] reaction [4]) or PBS (for the xanthine oxidase [XO] reaction [4]). 5 × 10 s 
promastigotes were added to the components indicated in the legends to the Tables and Figures 
in a final vol of 1 ml, and were incubated in 12- × 75-mm plastic tubes in a shaking 37°C 
water bath. After 60 min, 0.05-ml aliquots were placed on glass slides, overlayed with cover 
slips, and the motility and morphology of promastigotes were assessed using phase-contrast 
microscopy. Obvious swelling and distortion of the promastigote body readily identified lysed 
organisms. In addition, promastigote viability was also examined by pelleting control and 
treated organisms, and resuspending them in 2 ml of culture medium. After 2-3 d at 25°C, 
samples of these cultures were examined microscopically for persistence and/or multiplication 
of promastigotes. 

Leishmania Enzyme Activities. 1 × 108-3 × 10 s washed promastigotes in 1 ml of PBS 
(representing 0.8-2.4 mg of parasite protein/ml) were twice sonicated for 60 s (Cell Disruptor; 
50% duty cycle; output control 4; Heat Systems-Ultrasonics, Inc., Planview, N. Y.). Sonicates 
were cleared by centrifugation at 4°C for 15 min at 8000 g, and the supernates were assayed 
spectrophotometrically for SOD (11), eatalase (12), and GPO (13) as described (5). Examination 
of the sonicate pellet revealed only a rare intact promastigote. Supernate protein was determined 
by the method of Lowry et al. (14), and enzyme activities are expressed per milligram of 
parasite protein. Boiling the sonicate supernates for 20 rain ablated the activity of all three 
enzymes. 

Qualitative Nitroblue Tetrazolium/NBT) Reduction. Cultivated macrophages were exposed for 
60 min at 37°C to either 5 × 10 promastigotes, toxoplasmas, or opsonized zymosan particles 
suspended in 1 ml of D10HIFBS containing 0.5 mg/ml of NBT (grade III; Sigma Chemical 
Co., St. Louis, Mo.). Cover slips were washed and fixed with 1.25% glutaraldehyde. Attached 
or ingested parasites or particles were identified using phase-contrast optics, and then were 
viewed by bright-field microscopy. Macrophages were scored as positive if ingested organisms 
or zymosan were deeply stained blue-black by precipitated formazan (2). 

Assays for OF and Hz02 Generation. The production of OF by the xanthine-XO reaction was 
measured by the ferricytoehrome c reduction method (11) using the extinction coefficient 
AF-e, n0 m = 2.1 × 104 M -~ cm -1 (15). The H20~ generated by glucose-GO interaction and that 
released by macrophages during phagoeytosis of promastigotes was assayed by the fluorometric 
scopoletin technique (16). For the latter experiments, dishes containing three cover slips were 
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thoroughly washed and overlayed with 1.5 ml of KRPG containing promastigotes, 5 × 106/ml; 
scopoletin, 10 nmol/ml; and horseradish peroxidase, 0.44 purpurogallin units/ml (1, 2). After 
up to 2 h at 37°C (water bath), the reaction medium was aspirated, centrifuged at 750 g for 15 
min to pellet the organisms, and the supernate was assayed for scopoletin oxidation. Adherent 
cell protein was determined using uninfected duplicate cover slips (2). Infected cover slips were 
washed once, fixed, and the percent of macrophages which had ingested promastigotes was 
enumerated after Giemsa staining. Control preparations for H202-release experiments consisted 
of identically processed dishes containing (a) cells alone, (b) parasites alone, and (c) blank dishes 
with neither. 

Infection of Untreated, Scavenger-treated, and Glucose-deprived Macrophages. Overnight macrophage 
cultures were challenged for 2 h at 37°C in 5% CO2 with 5 × 10°promastigotes suspended in 
1 ml of D10HIFBS. More than 85% of the infecting promastigotes were motile. For experiments 
examining the effects of oxygen intermediate scavengers or glucose deprivation, cultures were 
first incubated for 3 h before infection with medium containing no glucose (2) or containing 
SOD (2 mg/ml), catalase (2 mg/ml), mannitol (50 raM), benzoate (10 raM), histidine (10 
raM), or diazabicyclooctane (DABCO, 1 raM), which were obtained and prepared as described 
elsewhere (2). For these experiments, the challenge promastigote inoculum was also suspended 
in medium free of glucose or containing the same concentration of scavenger. After the 2-h 
infection period, uningested parasites were removed by washing, and cultures were reincubated 
for up to 18 h in standard medium alone. At the indicated times, duplicate cover slips were 
removed and fixed in either glutaraldehyde or methanol, and the percent of cells infected and 
number of intraeellular Leishmania per 100 macrophages was recorded after Giemsa staining. 
For the early time points, cover slips were fixed in 1.25% glutaraldehyde which better preserved 
macrophage cytoplasmic morphology and allowed accurate counting of intracellular parasites 
using phase contrast optics. For the later examinations, absolute methanol was used because 
this fixative rendered the amastigote form (to which the promastigote transforms) more easily 
identifiable using bright-field microscopy. 

Special Reagents. GO (type V), XO (milk type, 65 mg/ml), xanthine, scopoletin, horseradish 
peroxidase, and ferricytochrome c (type VI) were obtained from the Sigma Chemical Co. 
Xanthine was prepared in 0.05 M potassium phosphate buffer (pH 7.8) with EDTA (10-* M). 
Laetoperoxidase (lyophilized, B grade) was from Calbiochem-Behring Corp., American-Hoechst 
Corp., San Diego, Calif., and was assayed by the orthodianisidine method before use (17). 

Statistical Analysis. Results were analyzed by the paired-sample t test. 

Resu l t s  

Susceptibility of Leishmania to H20~ and H2Oz-peroxidase-halide. We first examined the 
susceptibility of  promastigotes to fluxes of  H202 by exposing them to glucose and GO,  
a reaction that  generates no oxygen intermediate other than H202 (18). As shown in 
Fig. 1 A, all L T  and most LD promastigotes were readily immobilized or lysed after 
exposure for 1 h to as little as 5 nmol  H202/min .  Assuming no catabolism, the 
concentrat ion of  H20~ in the medium after this period would approximate  3 × 10 -4 
M. L T  promastigotes were considerably more susceptible than LD to H202, appre- 
ciable effects were seen with 0.5 n m o l / m i n  and almost all L T  (90%) were immobilized 
by 1 nmol /min .  For bo th  strains, killing was abolished upon the addit ion of  100 # g /  
ml of  catalase. Lack of  motili ty proved to be a reliable index of  killing because all 
promastigotes exposed to 100% lethal (LD100) fluxes of  H202 (5 n m o l / m i n  for LT;  10 
n m o l / m i n  for LD, Fig. 1 A) subsequently lysed and failed to persist in culture when 
examined 48-72 h later. Parasites incubated in K R P G  alone or with the respective 
LD100 of  H202 in the presence o f  catalase (100/ lg /ml) ,  however, remained motile, 
survived, and  readily multiplied after 48 h (data not shown). Heated catalase had no 
protective effect. 

Al though macrophages lack granular  peroxidase (17), monocytes do contain mye- 
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Fro. 1. Susceptibility of Leishrnania to HzOz. (A) 5 X tO e promastigotes in a final vol of 1 ml of 
KRPG were incubated for 1 h at 37°C with various dilutions of GO which generated 0.25-10 nmol 
HzO2/min. Data for T. gondii are from a previous report (5), and are included for comparison. At 1 
h, the 50% lethal dose (LDso) of H~O2 was 1.5 nmol/min for LD and 0.5 nmol/min for LT. (B) 5 
X 108 LD promastigotes were incubated as above with GO alone or GO plus LPO (10 toO) and KI 
(0.05 #mol). Enhanced killing was abolished by the omi~ion of either GO, LPO, or KI, or if catalase 
(100 #g/ml) was included. Results for (A) and (B) are the means of three experiments. 

loperoxidase and phagocytize Leishmania (19); thus we also investigated whether 
promastigote susceptibility to HzO2 could be further augmented by the addition of a 
peroxidase and an oxidizable halide cofactor. This potent oxidizing system has been 
shown to be highly microbicidal against virtually all classes of microorganisms (20) 
including protozoans such as T. gondii (4). As illustrated in Fig. 1 B, killing was 
markedly enhanced in the presence of lactoperoxidase (LPO) and KI, and a compa- 
rable leishmanicidal effect could be achieved with 5- to 10-fold less H202. In addition, 
100% lysis of LD by 1 nmol of H202/min was observed within 15 min in the presence 
of LPO and KI, whereas 60 min and 10-fold more H202 were required for similar 
killing by GO alone. The susceptibility of LT to H202 was also enhanced, and with 
LPO-KI,  all LT were killed by 0.1 nmol H~O2]min, the lowest flux tested (data not 
shown). 

Leishmania Susceptibility to Other Oxygen Intermediates. The effect of other oxygen 
intermediates was examined by exposing promastigotes to xanthine and XO, a 
reaction which generates O~, H202, O H . ,  and probably 102 (21). The dose-related 
killing of LD by XO is shown in Fig. 2. No appreciable effect was noted if either 
xanthine or XO was omitted, and LT were killed in a similar fashion (data not 
shown). Studies with soluble scavengers of oxygen intermediates (Table I) provided 
data indicating that H202 alone was sufficient for the leishmanicidal activity of the 
XO system. Thus, only catalase effectively inhibited killing, whereas SOD (which 
promotes the dismutation of OF to H202) and scavengers and quenchers of O H .  and 
102 (mannitol, benzoate, DABCO, and histidine) (21) all failed to do so. These 
findings also indicated that both LD and LT are resistant to up to 4.8 nmol of 0~-/ 
rain because catalase, which does not diminish O~- formation, consistently reversed 
leishmanicidal activity. In addition, there was a reasonably dose correlation between 
the extent of promastigote killing in the GO and XO models and the fluxes of H202 
generated by each of these two enzymatic systems. Under the conditions employed in 
Table I, 4.8 nmol of O~/min was formed which theoretically should yield 2.4 nmol of 
H202/min (21). 
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FIo. 2. 5 X 10 6 promastigotes were incubated with xanthine (1.5 X 10 -4 M) and increasing 
amounts of XO in a final vol of 1 ml of PBS, pH 7.4. Killing was abolished if either xanthine or XO 
was omitted (see legend to Table I). 

TAaL~ I 

Effect of Oxygen Intermediate Scavengers on Killing by XO* 

Scavenger added 
Percentage viable at 1 h 

LD LT 

None 1 8 ± 7  2 1 ± 5  
SOD, 100 #g/ml 25 ± 10 25 ± 5 
Catalase, 100 ~tg/ml 62 ± 9 72 ± 5 
Catalase, heated 26 ± 10 28 ± 7 
Mannitol, 50 mM 18 ± 6 23 ± 5 
Benzoate, 10 mM 15 ± 4 24:1:6 
DABCO, 1 mM 17 ± 6 - -  
Histidine, 10 mM 19 ± 8 - -  

* 5 × 106 promastigotes were incubated for 60 min at 37°C in a final vol of 1 
ml of PBS, pH 7.4, with xanthine (1.5 × 10-4 M) and XO (50 #g/ml) with 
or without scavengers added in the indicated concentrations. As determined 
by the reduction of ferricytochrome c (11, 15), this xanthine-XO reaction 
generated 4.8 ± 0.3 nmol of O~/min, which could be abolished by the 
addition of 25 #g/ml of SOD. Results are the means ± SEM of three to four 
experiments. The percent of viable promastigotes in the presence of PBS 
alone, PBS plus xanthine alone, or PBS plus XO alone was: 80 ± 7, 76 ± 4, 
and 74 ± 9 for LD, respectively; and 87 ± 4, 84 ± 3, and 82 ± 2 for LT, 
respectively. 

Promastigote SOD, Catalase, and GPO Activities. T h e  m a r k e d  s u s c e p t i b i l i t y  o f  Leish- 
mania to  H 2 0 2  s u g g e s t e d  t h a t  t he se  p a r a s i t e s  m a y  c o n t a i n  low levels  o f  t h e  p r o t e c t i v e  

e n d o g e n o u s  s c a v e n g e r s  c a t a l a s e  a n d  G P O  (22, 23). W e  h a v e  p r e v i o u s l y  r e p o r t e d  t h a t  

T. gondii is r i c h l y  e n d o w e d  w i t h  t he se  e n z y m e s  a n d  is r e s i s t a n t  to  H 2 0 2  (5). As s h o w n  

in  T a b l e  I I ,  b o t h  L D  a n d  L T  possess s c a n t  a m o u n t s  o f  c a t a l a s e  a n d  G P O  a t  levels  

o v e r  100-fold less t h a n  T. gondii. T h e  S O D  levels  o f  Leishmania a n d  T. gondii were ,  

h o w e v e r ,  c o m p a r a b l e  a n d ,  as d i scussed ,  b o t h  p r o t o z o a n s  a p p e a r  to  b e  r e s i s t a n t  to  O~- 

a l o n e  (5). 

Promastigote Triggering of the Macrophage Oxidative Burst. B e c a u s e  m o n o n u e l e a r  p h a g -  

ocy tes  g e n e r a t e  a n d  re lease  O ~  a n d  H 2 0 2  as wel l  as o t h e r  o x y g e n  i n t e r m e d i a t e s  in  

r e s p o n s e  to  p l a s m a  m e m b r a n e  p e r t u r b a t i o n  (1, 15, 16, 24),  we n e x t  e x p l o r e d  w h e t h e r  
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T^nLt~ II 
Endogenous Parasite Scavengers of O~ and H20~ * 

Parasite SOD Catalase GPO 
U/mg BU/mg × 10 -~ nmol/min per mg 

T. gondii 6.1±2.2(4) 4.8 3:0.4 (5) 1174-8(3) 
LD 4.1 ± 0.9 (3) 0.05 ± 0.02 (3) 0.5 4- 0.5 (3) 
LT 6.4 ± 0.5 (3) 0.03 ± 0.02 (3) 0.2 ± 0.2 (3) 

* Up to 3 × l0 s parasites were sonicated in 1 ml of PBS, and assayed for SOD 
(11), catalas¢ (Baudhuin units [BU] [12]), and GPO (15) activities as 
described (5). Results are the means 4- SEM (number of experiments is in 
parentheses), and GPO activity (nanomoles of NADPH oxidized to NADP) 
has been corrected for the spontaneous oxidation of NADPH by H202 alone 
(15). Data for T. gondii is from a previous report (5). 

promastigote ingestion effectively triggered the macrophage oxidative burst, including 
the production of the leishmanicidal agent, H~O2. During the course of these experi- 
ments, we also investigated whether macrophages from genetically susceptible and 
resistant mice could be distinguished by their oxidative response to Leishmania. As 
judged by the qualitative NBT reduction technique (2, 3), a reaction which is mostly 
O2--dependent (25), resident macrophages from both susceptible and resistant mice 
readily responded to phagocytosis of LD and LT with dense formazan precipitation 
around ingested promastigotes (Fig. 3, Table III). In some instances, it appeared that 
flagellar contact alone was sufficient to trigger NBT reduction. In contrast (Table 
III), as reported by others (3) and confirmed by us (2), T. gondii avoids triggering the 
oxidative burst of normal resident cells, which also permits its intracellular replication. 
Depriving macrophages of exogenous glucose inhibits their capacity to generate 
oxygen intermediates (2, 26), and this treatment resulted in a >80% decrease in the 
number of cells able to reduce NBT after ingestion of zymosan particles or Leishmania 
promastigotes (Fig. 3). 

Because the results of the cell-free experiments indicated that H202 alone was 
sufficient for Leishmania killing, it was important to determine ifpromastigote ingestion 
stimulated macrophage H202 generation. As shown in Fig. 4, resident cells from both 
susceptible and resistant mice promptly released H202 to a similar extent in response 
to promastigote challenge. LT  and LD were equally effective as triggers for macro- 
phage H202 production which was dependent upon both the size and the duration of 
exposure to the challenge inoculum. 

Fate of Intracellular Promastigotes and Effect of Exogenous Oxygen Intermediate Scavengers and 
Glucose Deprivation. The prior evidence indicating that promastigotes are both sus- 
ceptible to H202 and trigger its generation by resident macrophages suggested that 
these cells should be able to exert leishmanicidal activity assuming effective delivery 
of sufficient H202. Fig. 5 demonstrates the prompt killing and digestion of intracellular 
LT and LD by all cells examined. There were no appreciable differences between the 
activities of BALB/c and DBA/2 macrophages against LD nor of BALB/c and 
CBA/ca cells toward LT, and therefore, data were pooled. As illustrated, LT  were 
considerably more susceptible than LD to macrophage killing. T. gondii, however, 
readily persisted and multiplied in these same resident cells (1), and 18 h after 
infection there were 4-5 toxoplasmas/vacuole (data not shown). Macrophages from 
C. parvum-immunized mice and normal cells activated before infection by Con-A 
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Fro. 3. Brixght-field micrographs showing resident macrophage NBT reduction 1 h after challenge 
with 5 X 10°promastigotes or zymosan particles suspended in 1 ml of D10HIFBS containing NBT 
(0.5 mg/ml). (A) Ingested promastigotes are deeply stained blue-black with precipitated formazan. 
(B) Flagellar contact alone (arrow) stimulates macrophage NBT reduction. Extracellular promas- 
tigote bodies are not stained. (C) Most intracellular zymosan particles are deeply stained with 
formazan. (D) Absence of precipitated formazan around intracellutar zymosan indicates inhibition 
of macrophage NBT reduction. Cells are same as in (C), but were deprived of exogenous glucose 3 
h before and during ingestion of zymosan, x 600. 

l ymphok ine  bo th  e rad ica t ed  more  L D  than  uns t imu la t ed  resident  macrophages  (Fig. 
5). 

To provide  evidence ind ica t ing  a role for oxida t ive  metabol i tes  in the  le i shmanic ida l  
ac t iv i ty  of  no rma l  resident  cells, glucose-free m e d i u m  and  soluble scavengers of  oxygen 
in te rmedia tes  were admin i s t e red  to macrophages  3 h before a n d  dur ing  the promas-  
t igote challenge.  T h e  la t te r  agents  inc luded  S O D  (2 m g / m l ) ,  ea ta lase  (2 m g / m l ) ,  
mann i to l  (50 mM) ,  benzoa te  (10 m M ) ,  D A B C O  (1 m M ) ,  and  his t id ine  (10 mM) .  W e  
have previously repor ted  tha t  t r ea tmen t  wi th  these agents,  as well as the  absence of  
glucose, reverses the  an t i - t oxop la sma  act iv i ty  of  bo th  in vivo and  in vi tro ac t iva ted  
macrophages  (1, 2). As shown in T a b l e  IV,  bo th  exogenous ca ta lase  a n d  glucose 
depr iva t ion  s ignif icant ly  inh ib i t ed  the  des t ruc t ion  o f  in t race l lu la r  promast igotes ,  and  
resulted in a twofold (for LD) to fivefold (for LT) increase in the p ropor t ion  o f  the  
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TABLE III  

Qualitative NBT Reduction by Resident Macrophages* 

Macrophage 
source 

Percentage of cells with precipitated formazan 1 h after 
ingestion of 

LD LT Zymosan T. gondii 

BALB/c 81 ± 4 (3) 82 ± 4 (3) 78 3= 4 (3) 21 ± 4 (3) 
DBA/2 78 ± 3 (4) 81 3= 3 (3) 85 3= 2 (3) 15 ± 3 (3) 
CBA/ca - -  85 3= 2 (3) 80 3= 5 (2) 16 3= 5 (3) 

* Macrophages from BALB/c, DBA/2, and CBA/ca mice were challenged as 
in legend to Fig. 3 with 5 X 10 s promastigotes, toxoplasmas, or zymosan 
particles for 1 h. Results are the mean 3= SEM for experiments performed in 
duplicate (number of experiments is in parentheses). The addition of  SOD 
(1 mg/ml) to the promastigote-NBT reaction mixture decreased the percent 
of  cells reducing NBT by only 26 3= 3% (two experiments)~ however, glucose 
deprivation (see Fig. 3) inhibited NBT reduction by macrophages ingesting 
promastigotes and zymosan by 82 3= 6% and 86 :h 3%, respectively (three to 
four experiments). Data for T. gondii is similar to our previous results using 
cells from outbred mice (2). Neither extracellular parasites nor particles 
reduced NBT. 
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FIo. 4. (A) Resident macrophage HaOs release after challenge with 0.1 X 10s-5 X l0 s LD 
promastigotes/ml for 2 h at 37°C. Cells were from BALB/c (O) or DBA/2 (O) mice, and results are 
the means of two experiments for each cell type performed in triplicate. After 2 h of exposure to 5 
X l ( f  LD/ml,  46 ± 5% of BALB/c and 39 :l: 4% of  DBA/2 cells had ingested promastigotes. In four 
experiments, after a similar 2-h challenge with 5 X l0 s LT/ml,  BALB/e macrophages released 0.09 
± 0.02 and CBA/ca cells released 0.11 4- 0.03 nmol HzO~/Ixg protein with 50 3= 5% and 45 3= 6% of 
macrophages infected, respectively. (B) Resident CBA/ca macrophages were challenged for 15-150 
rain with 5 × 10 e LT promastigotes/ml. Results are the means (3= SEM) of three experiments in 
triplicate. Data in (A) and (B) have been corrected for the spontaneous oxidation of scopoletin in 
control dishes containing cells or promastigotes alone (Materials and Methods). 

original intracellular inoculum remaining intact and transforming to the amastigote 
stage at 18 h. Heated catalase and the other five scavengers had no effect. Fig. 6 
shows the morphologic counterpart  of these observations for catalase-treated macro- 
phages. 

Discussion 

The  results of this study indicate that macrophages exert microbicidal activity 
against the infective promastigote form of LD and LT by an oxygen-dependent 
mechanism which generates H202. These two hemoflagellates are world-wide human 
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Fro. 5. Leishmanicidal activity of normal macmphages. Resident macrophages were challenged 
for 2 h with 5 X 106 LD (0) or LT (O) promastigotes, which resulted in infection of 51 ± 4% of cells 
with 85 4- 9 Leishmania per 100 macrophages (mean + SEM). Immediately after the 2-h infection 
period (time 0) and at the indicated times, the number of Leishmania per 100 macrophages was 
determined. Data are expressed as the proportion (.percentage) of the original intracellular inoculum 
present at time 0 which was subsequently digested 4 h and 18 h after infection. Results are the 
means ± SEM of 10 experiments with LD-infected macrophages (BALB/c: 3; DBA/2: 7) and 7 
experiments for LT (BALB/c: 4; CBA/ca: 3). In three parallel experiments, the percent of the 
original LD inoculum killed at 4 h and 18 h was 67 ± 5 and 91 ± 3, respectively, for C. par0um- 
immunized DBA/2 cells and 65 ± 5 and 90 ± 1, respectively for normal DBA/2 cells activated by 
Con-A lymphokine (P < 0.05 for both cell types compared to unstimulated normal DBA/2 
macrophages). 

TABLE IV 

Effect of Exogenous Catalase and Glucose Deprivation on the Leishmaniddal Activity 
of Normal Macrophages * 

Percentage of original intracellular inoculum killed~ 

Treatment LD LT 

4 h  18h 4 h  18h 

None (control) 47 ± 4 (10) 81 4- 3 (10) 73 4- 4 (7) 95 ± 2 (7) 
Catalase 28 ± 9 (3) 42 4- 10 (3) 38 ± 2 (3) 71 4- 3 (3) 
Glucose deprivation 33 ± 4 (3)§ 49 4- 8 (3) - -  - -  

* Normal resident macrophages were exposed to catalase (2 mg/ml) or deprived of 
exogenous glucose (1, 2) 3 h before and during the 2-h challenge with 5 × 106 
promastigotes. Results are the means ± SEM (number of experiments is in paren- 
theses), and leishmanicidal activity is expressed as in the legend to Fig. 5. Heated 
catalase (2 mg/ml), SOD, mannitol, benzoate, DABCO, and histidine all had no 
effect on promastigote killing. 

~: Results for all 4 h and 18 h catalase-treated cells and 18 h glucose-deprived cells are 
significantly different from untreated control macrophages (P < 0.05). 

§ Not different from control cells (P > 0.05). 

p a t h o g e n s ,  a n d  a r e  t h e  e t io log ic  a g e n t s  o f  v i scera l  a n d  c u t a n e o u s  l e i s h m a n i a s i s ,  

r e spec t ive ly .  T h e  p r e s e n t  o b s e r v a t i o n s  w i t h  Leishmania a re  s i m i l a r  to  o u r  p r e v i o u s  

f i n d i n g s  w i t h  T. gondii (1, 2, 4, 5) in  t h a t  t h e y  p r o v i d e  f u r t h e r  e v i d e n c e  s u g g e s t i n g  t h a t  

t h e  g e n e r a t i o n  o f  tox ic  o x y g e n  i n t e r m e d i a t e s  is a p r i n c i p a l  m e c h a n i s m  u n d e r l y i n g  t h e  

a n t i p r o t o z o a l  a c t i v i t y  o f  m o n o n u c l e a r  p h a g o c y t e s .  A t  t h e  s a m e  t i m e ,  h o w e v e r ,  t he se  

s tud ie s  a lso d e m o n s t r a t e  c l ea r  d i f f e rences  b e t w e e n  the se  i n t r a c e l l u l a r  p a r a s i t e s  in  
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Fro. 6. Phase-contrast micrographs showing resident macrophages from BALB/c mice 4 h after 
challenge with LD promastigotes. (A) Approximately one-half of parasites ingested by untreated 
control cells have been degraded to intravacuolar debris (arrows). (B) In contrast, most LD ingested 
by catalase-treated macrophages appear phase-dense and intact. Giemsa stain, × 600. 

terms of susceptibility to oxidative products, triggering of the macrophage oxidative 
burst, and fate within the cytoplasm of normal, unstimulated macrophages. 

In a cell-free oxidative environment, 90-100% of LD and LT promastigotes were 
promptly killed by low fluxes (5 nmol/min) of enzymatically generated HsOz. The 
50% lethal dose (LDs0) of HsOz was 0.5 nmol/min for LT and 1.5 nmol/min for LD. 
In similar parasite models, the LDs0 of H202 for TtTpanosoma ouzi trypomastigotes was 
9.4 nmol/min (27), whereas T. gondii was not appreciably affected by either 20 nmol 
of HsO2/min or 10 -s M reagent HzO2 (4). A plausible explanation for the enhanced 
sensitivity of Leishmania promastigotes to HsOz and the contrasting resistance of 
toxoplasmas is the virtual absence of catalase and GPO in Leishmania and their 
abundance within T. gondii (5). Together, these enzymatic scavengers act as effective 
endogenous defense mechanisms against the toxicity of H202 (22, 23). We have 
previously suggested that catalase plays such a protective role for toxoplasmas because 
pretreatment with aminotriazole, a catalase inhibitor, enhances their susceptibility to 
H202 (5). 

Data derived from exposing promastigotes to the xanthine-XO system, indicated 
that H202 alone was sufficient for leishmanicidal activity. Because killing by XO was 
inhibited by catalase and was unaffected by the O~- scavenger, SOD, it appeared that 
O~ by itself was not toxic (21). The presence of SOD within promastigotes may 
explain resistance to O~- alone. In addition, OH.  and 102, potent intermediates more 
distal to H202 in the reduction pathways of molecular oxygen (21), did not appear 
necessary for leishmanicidal activity. Thus, SOD, which in most systems inhibits OH.  
formation (5, 21, 24), failed to reverse killing, and proposed scavengers and quenchers 
of OH.  and 102 (mannitol, benzoate, DABCO, histidine [21]) also afforded no 
protection. These observations contrast with the toxoplasmacidal activity of the same 
XO system which appears to be mediated by neither O~- or H202 alone, but by 
products of their interaction, presumably OH.  and 102 (4). 
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Because the intracellular survival and replication of T. gondii within normal 
macrophages may be related in part to their capacity to avoid triggering the oxidative 
burst of these cells (2, 3), it was important to ascertain if Leishmania promastigotes also 
shared this ability. As indicated by NBT reduction (25) and H202 release, however, 
normal resident macrophages readily responded to promastigote ingestion with the 
generation of oxygen intermediates. Macrophage H~D2 release after phagocytosis of 
both LD and LT was comparable to that observed after stimulation with phorbol 
myristate acetate (2). Using assumptions and calculations determined by Nathan et 
al. (27), if the H202 (8 nmol/106 cells per h) released after promastigote ingestion 
were accumulated within the macrophage cytoplasm, its concentration would theo- 
retically approach 2 × 10 -2 M, far exceeding the LD100 of both LD and LT. The 
concentration of H ~ 2  within individual phagolysosomes would presumably be even 
higher. Thus, Leishmania promastigotes are not only susceptible to H2Oz in cell-free 
systems, but readily trigger its formation by macrophages in amounts which theoret- 
ically are more than sufficient for leishmanicidal activity. It was not surprising, 
therefore, to observe as have most investigators (9, 10, 28-32), that unstimulated 
resident macrophages killed and digested the bulk of phagocytized Leishmania pro- 
mastigotes. These same cells, however, exert no activity against the intracellular 
protozoans T. gondii (1) and T. cruzi (27), both of which are considerably more resistant 
to H202 (4, 27). Macrophages first activated in vivo by C. parvum immunization or in 
vitro by lymphokine destroyed LD more efficiently than normal cells, consistent with 
the enhanced anti-microbial and oxidative capacity of immunologically activated 
macrophages (2, 16, 24, 27, 33). 

Evidence suggesting that an oxygen-dependent mechanism participates in the 
killing of Leishmania promastigotes by normal macrophages was derived from exam- 
ining the effects of soluble scavengers of oxidative metabolites and glucose deprivation. 
The latter technique markedly reduces macrophage H202 release (1, 26), and as 
demonstrated here (Fig. 3), also inhibits NBT reduction presumably by limiting 
macrophage O~- generation (25, 26). Of  the six exogenous scavengers tested using our 
technique of preinfection administration (1, 2), only catalase influenced the destruc- 
tion of intracellular Leishmania. Depriving macrophages of glucose achieved compa- 
rable effects; however, neither SOD nor scavengers and quenchers of OH- and XO2 
prevented promastigote killing. Thus, these findings, which correlated with the results 
of the cell-free XO system, suggested that H202 was a key leishmanicidal oxygen 
intermediate. It should be pointed out, however, that although catalase and glucose 
deprivation inhibited the killing of both LD and LT, neither treatment prevented 
macrophages from eradicating a considerable proportion of intracellular Leishmania 
by 18 h (Table IV). Although glucose deprivation markedly diminishes the oxidative 
response of macrophages (1, 2, 26), this technique does not totally abolish H202 
release (1) or NBT reduction. Similarly, pretreatment with exogenous catalase de- 
creases but does not ablate macrophage HzOa, release (5). Thus, the residual capacity 
of glucose-deprived or catalase-treated macrophages to generate some H2Oz may still 
permit the killing of a portion of susceptible intracellular Leishmania. Alternatively, 
these observations might also reflect the presence of synergistic but oxygen-independ- 
ent antiprotozoal mechanisms that appear to participate in the killing of T. gondii by 
human monocytes (3). 

During the course of these studies, we also investigated whether macrophages from 
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mice classified on a genetic basis as susceptible or resistant to Leishmania infection (8- 
10) differed in their response to in vitro challenge with LD or LT. As judged by NBT 
reduction, H202 release, and the capacity to digest intracellular promastigotes, it 
appears that these susceptibility patterns are not reflected at the level of the unstim- 
ulated resident macrophage (9, 10). Using similar techniques and the amastigote form 
(10), we are currently investigating whether this genetic variability is expressed in 
other macrophage populations, including those activated by exposure to products 
generated by Leishmania antigen-stimulated lymphocytes. 

Finally, it was important to initiate our studies of Leishmania-macrophage interac- 
tion using the promastigote because the hemoflagellate is the form first encountered 
by phagocytic cells. The amastigote, however, to which the promastigote rapidly 
transforms within phagolysosomes, is responsible for persistent tissue infection (6). 
Thus, although most LT and LD promastigotes can be readily eradicated in our 
model by unstimulated macrophages, there is a small proportion that resists killing 
and survive as amastigotes. These are presumably the organisms that proceed to 
replicate within and infect other mononuclear cells at local or distant sites culminating 
in cutaneous (LT) or visceral (LD) leishmaniasis, respectively (6). The mechanisms 
by which amastigotes resist the oxidative microbicidal activity of mononuclear 
phagocytes is the subject of our current investigations. 

S u m m a  W 
This study demonstrates that the promastigote form of virulent Leishmania donovani 

and Leishmania tropica are both deficient in endogenous enzymatic scavengers of H202 
(catalase, glutathione peroxidase) and susceptible to low fluxes of H~O2 in a cell-free 
model. In addition, the killing of promastigotes by H202 is markedly enhanced in the 
presence of a peroxidase and halide. Promastigotes also readily trigger the macrophage 
oxidative burst including the generation of H202, and most intracellular promastigotes 
are killed within 18 h by unstimulated normal resident cells. Catalase, but not 
scavengers or quenchers of O~', O H . ,  or tO2, protected promastigotes in a cell-free 
xanthine oxidase microbicidal system, and catalase also partially inhibited the leish- 
manicidal activity of resident macrophages. Thus, amongst various oxygen interme- 
diates, H202 alone appeared to be both necessary and sufficient for promastigote 
killing. Depriving macrophages of exogenous glucose, which inhibits the generation 
of oxygen intermediates, achieved effects similar to catalase treatment. These obser- 
vations directly contrast with the intracellular parasite, T. gondii which is richly 
endowed with catalase and glutathione peroxidase, highly resistant to H202, and 
requires products of O~--H202 interaction for effective oxidative killing. Toxoplasmas 
also fail to trigger the respiratory burst of normal macrophages, and readily multiply 
within these cells (1-5). Macrophages first activated by in vivo or in vitro immunologic 
stimuli, however, display an enhanced capacity to generate oxygen intermediates 
beyond O~- and H202, and are able to kill toxoplasmas or inhibit their intracellular 
replication (1, 2). 

These studies illustrate the wide spectrum of susceptibility to oxidative products 
which appears to exist for virulent intracellular protozoans, and indicate that such 
differences may be reflected in contrasting fates of parasites within cell-free oxidative 
environments and the cytoplasm of normal resident macrophages. In addition, these 
observations also demonstrate that nonactivated phagocytes may display effective 
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microbicidal  activity against certain intracellular pathogens utilizing an  oxygen- 
dependent  mechanism. 

The author thanks Ms. Judy Adams for photographic assistance. 
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