# ANALYSIS OF T CELL HYBRIDOMAS

# IV. Characterization of Inducible Suppressor Cell Hybridomas\*

## BY MUTSUHIKO MINAMI, KENJI OKUDA, SHUICHI FURUSAWA, and MARTIN E. DORF

From the Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115

During the past several years, our laboratory has studied the mechanism of immune suppression in the 4-hydroxy-3-nitrophenyl acetyl (NP)<sup>1</sup> system. In this model system, both cell-mediated and humoral immunity (1-3) have been analyzed. The findings have permitted integration of the data into a single linear scheme of cellular interactions (3–5). Based on the results obtained in our and other laboratories that have investigated regulation by several types of suppressor T cells, we proposed that at least three distinct T cell subsets were involved in the phenomenon of immune suppression (3–5). These T cell subpopulations were termed Ts<sub>1</sub>, Ts<sub>2</sub>, and Ts<sub>3</sub>. The major criteria that are used to distinguish and identify the various cells in the suppressor cell pathway include: (a) the binding specificity of the relevant cells, i.e., do the cells bind antigen or idiotype; (b) the surface phenotype of the cells; (c) the genetic restrictions at either the H-2 or Igh gene complexes on the interactions of either the cells function in the induction or effector phase of the immune response?

 $Ts_1$  cells express the Ly-1<sup>+</sup>2<sup>-</sup> phenotype and possess NP<sup>b</sup>-related idiotypic receptors that bind antigen (1, 4).  $Ts_1$  cells only function during the afferent or induction phase of the immune response (1), in contrast to the other forms of suppressor cells that can function during the effector or efferent phase of the immune response (4–6).  $Ts_1$  cells and their factors ( $TsF_1$ ) function by stimulating a population of nonimmune T cells to become  $Ts_2$  cells that are idiotype- rather than antigen-specific (6, 7). It should be noted that these conclusions were mainly derived from experiments that used hybridoma-derived monoclonal  $TsF_1$  to generate  $Ts_2$  cells in the absence of antigen (7). Another important property of  $TsF_1$  is that it can induce  $Ts_2$  cells in any strain of mouse without genetic restrictions (7). Similar populations of  $Ts_1$ -like inducer cells have been described in several other suppressor cell systems (8–13).

 $T_{s_2}$  cells differ radically from  $T_{s_1}$  in their properties and function. In the NP system,  $T_{s_2}$  cells are antiidiotypic and can be shown to bind idiotype-coated plates (6), although they do not bind the major NP<sup>b</sup> idiotypic determinants (14).  $T_{s_2}$  cells bear

1379

J. Exp. MED. © The Rockefeller University Press • 0022-1007/83/05/1379/17 \$1.00 Volume 157 MAY 1983 1379-1395

<sup>\*</sup> Supported by grants AI-14732 and AI-16677 from the National Institutes of Health and a grant from the Cancer Research Institute.

<sup>&</sup>lt;sup>1</sup> Abbreviations used in this paper: CS, contact or cutaneous sensitivity; CY, cyclophosphamide; DMSO, dimethylsulfoxide; DNFB, 2,4-dinitro-1-fluorobenzene; HBSS, Hanks' balanced salt solution; KLH, keyhole limpet hemocyanin; MHC, major histocompatibility complex; NP, 4-hydroxy-3-nitrophenyl acetyl hapten; NP-O-Su, NP-O-succinimide; PBS, phosphate-buffered saline; pTs<sub>3</sub>, inducible TsF<sub>3</sub>-secreting hybridoma; Ts<sub>1</sub>, Ts<sub>2</sub>, Ts<sub>3</sub>, first, second, or third-order suppressor cells; TsF<sub>1</sub>, TsF<sub>2</sub>, TsF<sub>3</sub>, first, second, or third-order suppressor factors.

#### 1380 INDUCIBLE HYBRIDOMA SUPPRESSOR CELLS

Lyt-2 and I-J determinants (4, 15). These cells function in the effector phase of the immune response, i.e., they are able to suppress contact sensitivity or plaque-forming cell responses in immune animals (6, 16). Another very important difference between  $Ts_1$  and  $Ts_2$  cells concerns the genetic restrictions that govern their interactions with targets.  $Ts_2$  cells are restricted by genes in both the Igh and I-J complexes (4, 7). That is,  $Ts_2$  cells or their factors will not function unless adoptively transferred into recipients that are homologous at both the H-2 (I-J) and Igh gene complexes (15).

The efferent activity of  $T_{s_2}$  cells led us to consider that these cells might be the final effectors of suppression. However, this proved not to be the case. We observed that injection of  $T_{s_2}$  cells or  $T_sF_2$  would not suppress an immune animal if the recipient mouse had been treated with low doses of cyclophosphamide (CY) shortly after antigen immunization (4). This suggested that a highly CY-sensitive cell was the target of  $T_sF_2$ . We demonstrated that  $T_{s_3}$  cells were induced as a consequence of conventional immunization that also induced the T cells mediating contact or cutaneous sensitivity (CS) (4). In addition,  $T_{s_3}$  cells were required for the modulation of NP-specific in vitro B cell responses (5). Antigen-activated  $T_{s_3}$  cells appeared to be inactive until appropriately triggered by  $T_{s_2}$  cells or  $T_sF_2$  (4, 5, 17).

The  $T_{S_3}$  cells that modulate CS responses are antigen specific and H-2 and Igh restricted (4, 18). They express the Lyt-2<sup>+</sup> phenotype and also carry I-J determinants (4).  $T_{S_3}$  cells produce an antigen-specific  $T_SF_3$  that mediates suppression in the effector phase of the immune response (18). The suppressive activity of  $T_{S_3}$  cells and  $T_SF_3$  can be demonstrated in CY-treated recipients and, as is the case for  $T_SF_2$ , is restricted by I-J and Igh genes (18).  $T_{S_3}$  hybridomas that constitutively secrete  $T_SF_3$  have been obtained in the NP system (18).

Because the Ts<sub>3</sub> hybridomas constitutively secreted TsF, analysis of the triggering process required for release of these biologically active mediators was not possible. An understanding of how mature Ts cells are triggered is particularly important for the Ts<sub>3</sub> population since these cells may secrete the effector suppressor molecules. Ts<sub>3</sub> cells are generated by conventional antigen immunization and consequently are present concomitant with helper or delayed type hypersensitivity effector T cells (4, 5, 17). The Ts<sub>3</sub> population apparently expands and matures after immunization, but remains functionally inactive unless triggered by Ts<sub>2</sub> cells or TsF<sub>2</sub> (17, 19). This situation permits the primary immune response to proceed normally in the absence of suppression. Once Ts<sub>2</sub> cells or factors are generated, they will induce the terminal maturation of the Ts<sub>3</sub> population to secrete TsF<sub>3</sub>, which in turn rapidly modulates the immune response. Thus, both TsF<sub>2</sub> and TsF<sub>3</sub> function in previously primed animals and can mediate suppression of either T or B cell responses within 24 h (4–6, 16).

To characterize the process of  $Ts_3$  activation, we generated two hybridoma cell lines that fail to release  $TsF_3$  unless they are specifically activated by  $TsF_2$ . These inducible  $TsF_3$ -secreting hybridomas, termed  $pTs_3$ , are the subject of this report.

## Materials and Methods

*Mice.* All mice were either purchased from The Jackson Laboratory, Bar Harbor, ME, or bred in the animal facilities at Harvard Medical School. Mice used were 3–12 mo old and were maintained on laboratory chow and acidified, chlorinated water ad lib. They were maintained in accordance with the guidelines of the Committee on Animals of the Harvard Medical School and those prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (20).

Antigens. NP-O-succinimide (NP-O-Su) was purchased from Biosearch Co., San Rafael, CA. Dimethylsulfoxide (DMSO) was purchased from Fisher Scientific Co., Pittsburgh, PA. 2,4-dinitro-1-fluorobenzene (DNFB) and keyhole limpet hemocyanin (KLH) were obtained from Sigma Chemical Co., St. Louis, MO.

Antisera. Both B10.A (3R) anti-B10.A (5R) (anti-I-J<sup>k</sup>) and B10.A (5R) anti-B10.A (3R) (anti-I-J<sup>b</sup>) were produced by immunization with spleen and lymph node cells, as described elsewhere (21). Guinea pig anti-NP<sup>b</sup> antiidiotype antisera were prepared as detailed elsewhere (22). The characterization of these reagents was described previously (21).

Preparation of  $T_{s_3}$  Cells from Antigen Plates. The methods for the preparation and enrichment of NP-binding T cells were described in detail elsewhere (18). In brief,  $5 \times 10^7$  regional lymph node or spleen cells from CKB (H-2<sup>k</sup>, Igh-1<sup>b</sup>) and C57BL/6 (H-2<sup>b</sup>, Igh-1<sup>b</sup>) mice, which were immunized subcutaneously with 2 mg NP-O-Su or 100 µg NP-KLH i.p. in alum-pertussis (4), were added to purified anti-mouse immunoglobulin-coated petri dishes to remove B cells. The nonadherent T cells were incubated on NP-bovine serum albumin-coated petri dishes for 45 min at room temperature. Nonadherent cells were removed by gentle swirling and the plates were placed on ice for 20 min. The antigen-binding cells were collected from the plate by gentle pipetting and were used as the source of Ts<sub>3</sub> cells.

Hybridization and Screening of  $Ts_3$  Hybridoma Lines. Ts\_3-enriched CKB or C57BL/6 (B6) lymphocytes were hybridized with BW5147 T lymphoma cells. The polyethylene glycolmediated hybridizing method was exactly the same as previously reported (21). The hybridized Ts\_3 candidates were screened using a cytotoxicity test (18) with allele-specific anti-I-J and anti-NP<sup>b</sup> antisera. Two fusions were performed: the CKB-pTs\_3-80 line was derived from a fusion of drug-marked BW5147 thymoma cells with NP-O-Su-primed lymph node cells, whereas the B6pTs\_3-9 line was obtained from a fusion using antigen-adherent splenic T cells from a NP-KLHprimed B6 mouse. The B6-pTs\_3-9 and CKB-pTs\_3-80 hybridoma lines were cloned by limiting dilution: 10 of the 11 clones tested had the same phenotype and suppressive activity as the parental line. All of the hybridomas were cultured in RPMI 1640 containing 8% fetal calf serum and 0.01 M Hepes buffer. The two pTs\_3 hybridomas described in this report (and two others not discussed) were unstable. Even though frozen aliquots were used to regenerate the lines, activity was lost in a few months. The hybridomas characterized in this report are no longer available.

In Vitro Activation of  $pTs_3$  Hybridoma with  $TsF_2$ . B6-Ts<sub>2</sub>-28-, CKB-Ts<sub>2</sub>-59-, and B6-Ts<sub>2</sub>-14derived TsF<sub>2</sub>, which have been characterized and described elsewhere, were used for activation of pTs<sub>3</sub> hybridomas in vitro.  $5 \times 10^6$  pTs<sub>3</sub> hybridoma cells were cultured for 2 d in 10 ml RPMI 1640 with 10% fetal calf serum and 0.1 mM Hepes plus 50  $\mu$ l TsF<sub>2</sub> ascites fluid derived from B6 or CKB Ts<sub>2</sub> hybridomas or BW5147 tumor cells that were grown in (AKR  $\times$  B6)F<sub>1</sub> or (AKR  $\times$  CKB)F<sub>1</sub> mice. After culture these activated pTs<sub>3</sub> hybridomas were washed three times with Hanks' balanced salt solution (HBSS), resuspended in 10 ml RPMI 1640 with 10% fetal calf serum and 0.1 mM Hepes, and cultured for 1 d. The culture supernatant was then collected and tested for suppressive activity.

In Vitro Activation of NP-primed Lymph Node  $Ts_3$  Cells with  $TsF_2$ . Methods for the preparation and activation of NP-primed lymph node  $Ts_3$  cells were described in detail elsewhere (17). In brief,  $5 \times 10^8$  regional lymph node cells from mice that were immunized subcutaneously with 2 mg NP-O-Su were cultured with C3H.SW-Ts<sub>2</sub>-7 hybridoma-derived TsF<sub>2</sub> or BW5147 tumor cell-derived ascites fluid for 2 h, washed three times, resuspended in HBSS, and injected intravenously as activated Ts<sub>3</sub> cells.

Absorption of  $TsF_2$  with  $pTs_3$  Hybridomas. 0.5 ml of 1:20 diluted  $Ts_2$ -derived ascitic factor was incubated with  $5 \times 10^6$  pTs<sub>3</sub> hybridoma or BW5147 tumor cells for 1 h on ice with intermittent mixing. The supernatants were then centrifuged and tested for suppressor activity at a 1:200 dilution.

Adsorption and Elution of TsF. The methods of absorption and elution of TsF using proteinconjugated Sepharose 4B columns were described in detail previously (7).

Assay for Suppressive Activity of TsF on NP-mediated CS Responses. The assay for NP-specific CS responses is also described elsewhere (23). Briefly, each animal was primed subcutaneously with 2 mg of NP-O-Su in DMSO. 24 h later, the mice were treated with an intraperitoneal injection of either saline or 20 mg/kg CY in saline to eliminate  $T_{S3}$  cell generation. Unless indicated

otherwise, the hybridoma factors were tested in the effector phase, 5 or 6 d after priming. 0.4 ml of each hybridoma supernatant or BW5147 control supernatant was injected intravenously on the day before and the day of antigen challenge. 6 d after immunization, mice were challenged in the left footpad with 0.025 ml phosphate-buffered saline (PBS) solution containing 30  $\mu$ g of NP-O-Su (prepared by mixing 25  $\mu$ l of a 2% NP-O-Su/DMSO solution in 0.4 ml PBS). Footpad swelling was measured 24 h after challenge. Swelling was determined as the difference, in units of 10<sup>-3</sup> cm between the left and right footpad thicknesses.

Assay for Suppressive Activity of Activated NP-primed Lymph Node Cells. Recipient mice were primed subcutaneously with 2 mg NP-O-Su. 24 h later, they were treated with an intraperitoneal injection of 20 mg/kg CY in saline. On day 6, they were given  $1 \times 10^7$  NP-primed lymph node cells activated with C3H.SW-Ts<sub>2</sub>-7-derived TsF<sub>2</sub> or BW5147 tumor cell-derived control factor. After transfer each mouse was challenged in the footpad with NP-O-Su as described above. Footpad swelling was measured 24 h after challenge.

DNFB CS Responses. CS was induced by two daily paintings on the shaved abdomen with 25  $\mu$ l of 0.5% DNFB solution in acetone/olive oil (4:1) (4). 6 d after the last painting, 20  $\mu$ l of 0.2% DNFB in the same vehicle was applied to the left ear, and the ear swelling was measured as the difference between the left and right ear thicknesses.

Percent Suppression. The percent suppression was calculated by the following formula: percent suppression =  $100 \times [(\text{swelling of BW tumor supernatant-injected group} - \text{swelling of TsF-injected group})/(\text{swelling of BW tumor supernatant-injected group} - \text{swelling of unprimed group})].$ 

Data Analysis. Statistical analysis of the experimental data with respect to controls was calculated using the two-tailed Student's t test.

## Results

pTs<sub>3</sub> hybridoma cells were prepared by the fusion of antigen-primed Ts<sub>3</sub> cells enriched from an antigen plate with the AKR-derived BW5147 thymoma. 2-3 wk after fusion, 230 of 2,000 wells developed hybridoma colonies. Each of the colonies was screened for the presence of NP<sup>b</sup>-related idiotypic determinants and I-J determinants by microcytotoxicity testing. 60 lines were selected that bore either of these determinants but failed to constitutively secrete TsF<sub>3</sub>. The B6-derived cell lines were cultured in the presence of B6-Ts<sub>2</sub>-28 factor while the CKB lines were cultured for 2 d in the presence of CKB-Ts<sub>2</sub>-59 factor. The cells were then washed three times with HBSS, and resuspended into fresh hypoxanthine-aminopterin-thymidine media and cultured for 1 d. The culture supernatants were tested for suppressive activity during the effector phase of the CS response. The B6-pTs<sub>3</sub>-9 and CKB-pTs<sub>3</sub>-80 lines were shown to have specific suppressor activity (Table I). Each of these lines was cloned and subsequent experiments were performed with the cloned hybridoma cell lines. It should be noted that both of these  $pT_{s_3}$  cell lines initially reacted with both anti-I-J and anti-NP<sup>b</sup> antisera; however, after prolonged culture it became increasingly difficult to demonstrate the presence of these determinants on the cell lines. To ensure that we were not assaying the suppressive activity of contaminating  $T_{s}F_{2}$  that may have been carried over into the second culture, suppressive activity was assayed in CY-treated mice that are refractory to  $TsF_2$  (18) (Table I). The data in Table I emphasize that  $pTs_3$  cells must be activated to release a specific suppressor factor. The specificity of these  $pTs_3$ -derived factors is demonstrated by their inability to suppress DNFB CS responses in animals that were primed and challenged with DNFB (Table I).

Kinetics of  $pTs_3$  Hybridoma Activation. The cloned B6-pTs\_3-9 and CKB-pTs\_3-80 hybridoma cells were cultured with suppressor factor derived from B6-Ts\_2-28 or CKB-Ts\_2-59 cells, respectively, or with BW5147-derived control 'factor' for various intervals

| Recipient<br>strain   |                    |                   | TsF Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | CS response‡   |               |
|-----------------------|--------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|---------------|
|                       | Antigen<br>priming | GY treat-<br>ment | Hybridoma<br>cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TsF2 used for activation | NP-O-Su        | DNFB          |
|                       |                    |                   | $10^{-3} cm \pm 10^{-3} cm = 10^$ |                          | n ± SE         |               |
| C57BL/6               | +                  | +                 | BW5147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B6-Ts <sub>2</sub> -28   | 25.8 ± 2.3     | $9.5 \pm 1.6$ |
| C57BL/6               | +                  | +                 | B6Ts2-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                        | $27.0 \pm 3.4$ | ND§           |
| C57BL/6               | +                  | -                 | B6-Ts <sub>2</sub> -28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                        | 16.3 ± 2.8     | ND            |
| C57BL/6               | +                  | +                 | B6-pTs <sub>3</sub> -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                        | $23.6 \pm 1.2$ | ND            |
| C57 <b>BL/</b> 6      | +                  | +                 | B6-pTs <sub>3</sub> -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B6-Ts <sub>2</sub> -28   | 9.8 ± 1.0      | 9.5 ± 1.2     |
| C57BL/6               | _                  | +                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | $4.8 \pm 1.6$  | $1.3 \pm 0.6$ |
| B10.A                 | +                  | +                 | BW5147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | $42.6 \pm 2.1$ | $9.3 \pm 0.8$ |
| B10.A                 | +                  | +                 | CKB-Ts <sub>2</sub> -59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CKB-Ts <sub>2</sub> -59  | $41.8 \pm 4.2$ | ND            |
| <b>B</b> 10. <b>A</b> | +                  | _                 | CKB-Ts <sub>2</sub> -59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                        | 17.6 ± 1.8     | ND            |
| B10.A                 | +                  | +                 | CKB-pTs <sub>3</sub> -80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                        | $39.5 \pm 3.1$ | ND            |
| B10.A                 | +                  | +                 | CKB-pTs <sub>3</sub> -80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CKB-Ts <sub>2</sub> -59  | $16.5 \pm 2.4$ | 11.2 ± 0.6∥   |
| B10.A                 | -                  | +                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | $11.8 \pm 0.8$ | $0.5 \pm 0.3$ |

 TABLE I

 Antigen Specificity of Activated pTs3 Hybridoma-Derived Factors\*

\* Groups of four or five mice were immunized with either NP-O-Su or DNFB. 24 h later some groups were given 20 mg/kg CY i.p. On the day before and the day of antigen challenge, mice were given an injection of 0.4 ml i.v. of either control BW5147 or suppressor factors. Activated  $pTs_3$  suppressor factors were obtained by culturing  $pTs_3$  hybridomas with  $TsF_2$  for 2 d and then in fresh media for 1 d.

‡ The data are expressed as the increment of footpad or ear swelling.

§ Not done.

|| Indicates significant suppression, P < 0.01.



F1G. 1. Kinetics of  $pT_{s_3}$  activation. Groups of B6 mice or B10.BR mice were immunized subcutaneously with NP-O-Su. 24 h later all mice were given 20 mg/kg CY i.p. During the effector phase, mice were given an injection of 0.5 ml i.v. of either BW5147 or activated suppressor hybridoma factors. Activated B6-pTs<sub>3</sub>-9 () and CKB-pTs<sub>3</sub>-80 () factors were obtained by culturing suppressor hybridomas with B6-Ts<sub>2</sub>-28 ascites or CKB-Ts<sub>2</sub>-59 ascites, respectively, for 30 min to 48 h, and then in fresh media for 1 d. The data represent the pooled results from two separate experiments in the case of CKB-pTs<sub>3</sub>-80 and one experiment with B6-pTs<sub>3</sub>-9. The data are expressed as the percent suppression of the NP-O-Su CS response compared with BW5147 supernatant controls (- -).

ranging from 5 min to 48 h. The hybridoma cells were washed and cultured in fresh media for 24 h, and the latter culture supernatants were assayed for suppressive activity in NP-O-Su-primed CY-treated B6 or B10.BR recipients. As shown in Fig. 1, maximal suppressive activity was noted after 6-24 h of in vitro activation with TsF<sub>2</sub>.

## 1384 INDUCIBLE HYBRIDOMA SUPPRESSOR CELLS

Activation of  $pTs_3$  hybridomas with  $TsF_2$  for up to 48 h did not result in increased levels of immune suppression. Over a large series of experiments we noted that the level of suppression obtained with  $pTs_3$ -derived factors ranged from 30 to 90%; however most batches of  $pTs_3$ -derived factor caused about 50–60% suppression.

Effector Phase Suppression. To compare the kinetics of activity of the pTs<sub>3</sub>-derived suppressor factors with other NP-specific suppressor factors, we determined when in the phase of the immune response the pTs<sub>3</sub> hybridoma-derived factors were active. 0.5 ml of pTs<sub>3</sub>- or Ts<sub>1</sub>-derived factor was injected intravenously (*a*) on the day of and the day after antigen priming (induction phase) or (*b*) the day before and the day of antigen challenge (effector phase). The groups of mice that received control BW5147 or pTs<sub>3</sub>-derived factors were injected intraperitoneally with 20 mg/kg CY on the day after antigen priming. In confirmation of previous reports (7, 18), the B6-Ts<sub>1</sub>-29 and CKB-Ts<sub>1</sub>-17-derived TsF<sub>1</sub> only demonstrated suppressive activity when administered during the induction phase of the immune response (Table II). In contrast, activated B6-pTs<sub>3</sub>-9- and CKB-pTs<sub>3</sub>-80-derived factors were only active when administered during the effector phase of the NP response (Table II).

Genetic Restrictions on  $pTs_3$ -derived Factors. Since the cell surface phenotype of  $pTs_3$  cells and the kinetics of activity of  $pTs_3$ -derived factors correlated with those of conventional and hybridoma  $Ts_3$  cells and factors, we wished to further explore the similarities between these cells by evaluating the genetic restrictions on the activity of  $pTs_3$ -derived factors. B6-pTs\_3-9 and CKB-pTs\_3-80 cells were activated with B6- and CKB-derived TsF\_2, respectively. Control BW5147 cells were also cultured in TsF\_2 for 2 d, after which the cells were washed and recultured in fresh medium. The

|                  |                   |                                                             | Footpad swelling‡<br>Time of TsF administration |                  |  |
|------------------|-------------------|-------------------------------------------------------------|-------------------------------------------------|------------------|--|
| Recipient strain | CY treat-<br>ment | Factor source                                               |                                                 |                  |  |
|                  |                   |                                                             | Induction phase                                 | Effector phase   |  |
|                  |                   |                                                             | $10^{-3} cm$                                    | $a \pm SE$       |  |
| C57BL/6          | +                 | BW5147                                                      | 36.4 ± 2.0                                      | $36.4 \pm 2.0$   |  |
|                  | -                 | B6-Ts <sub>1</sub> -29                                      | $16.0 \pm 2.1$ §                                | N.D.             |  |
|                  | +                 | B6-pTs <sub>3</sub> -9.3 activated with<br>B6 Ts- 28 factor | $39.3 \pm 0.9$                                  | $13.5 \pm 2.4$ § |  |
|                  |                   | b0-132-20 factor                                            |                                                 |                  |  |
| B10.A            | +                 | BW5147                                                      | $45.6 \pm 1.6$                                  | $45.6 \pm 1.6$   |  |
|                  | -                 | CKB-Ts1-17                                                  | $13.3 \pm 2.7$ §                                | $43.8 \pm 2.6$   |  |
|                  | +                 | CKB-pTs <sub>3</sub> -80.2 activated with                   | $45.0 \pm 2.2$                                  | 21.3 ± 1.9§      |  |
|                  |                   | CKB-Ts <sub>2</sub> -59 factor                              |                                                 |                  |  |

TABLE II pTsa-derived Factor Suppresses the Effector Phase of the CS Response\*

\* 0.5 ml of TsF<sub>1</sub>, pTs<sub>3</sub> or control BW5147 supernatants were given intravenously on the day of and the day after NP-O-Su priming (induction phase) or the day before and the day of NP-O-Su challenge (effector phase). Appropriate groups were treated with CY to prevent Ts<sub>3</sub> generation (groups which received TsF<sub>1</sub> could not be CY treated since these factors fail to suppress CY-treated recipients). Four or five mice were included in each group.

 $\ddagger$  The negative control values, representing the swelling observed in unprimed C57BL/6 and B10.A mice, were 7.3  $\pm$  0.5 and 9.2  $\pm$  1.0, respectively.

§ Indicates significant suppression, P < 0.01.

|| Not done.

supernatants from these activated cells were tested for their ability to suppress NPinduced CS responses in various strains of mice. The data from several experiments are summarized in Table III. In brief, suppressor factors derived from activated B6pTs<sub>3</sub>-9 cells only suppress NP responses in H-2- and Igh-compatible B6 recipients. Similarly, suppressor factors from activated CKB-pTs<sub>3</sub>-80 cells only function in CKB recipients. Thus, matching at both the H-2 and Igh complexes was required for expression of pTs<sub>3</sub>-derived TsF activity. Mismatching the pTs<sub>3</sub> donor and the recipient strain for either H-2 or Igh was sufficient to prevent expression of suppressor activity. Thus, CKB-pTs<sub>3</sub>-80-derived factors suppress NP-induced CS responses in CKB (H-2<sup>k</sup>, Igh<sup>b</sup>) mice but not in Igh-congeneic C3H recipients (H-2<sup>k</sup>, Igh<sup>j</sup>). Furthermore, suppressor factors derived from activated B6-pTs<sub>3</sub>-9 cells functioned in B6 (H-2<sup>b</sup>) mice but not in H-2-incompatible B10.G (H-2<sup>q</sup>) recipients (Table III).

To further establish the role of H-2 in restricting  $pTs_3$ -derived TsF activity, a series of H-2-congeneic strains were used as recipients (Table IV). All the strains carried H-2 recombinant haplotypes in which various regions were of H-2<sup>b</sup> origin, thereby enabling precise intra-H-2 mapping of the genes responsible for genetic restriction. The data demonstrate the role of the I-J region in controlling the restrictions on the activity of  $pTs_3$ -derived factors. Thus, when B6 (I-J<sup>b</sup>)-derived  $pTs_3$  factor was assayed in I-J-compatible 4R and 3R recipients, significant levels of suppression were observed. However, the same batch of  $pTs_3$ -derived factor failed to suppress NP responses in I-J<sup>k</sup>-bearing 5R or B10.MBR recipients (Table IV). In reciprocal experiments CKB (I-J<sup>k</sup>)-derived  $pTs_3$  factor suppressed NP responses in B10.MBR and 5R recipients, but not in 3R or 4R mice (Table IV). The critical role of the I-J region is clearly established by the reciprocal patterns of  $pTs_3$  activity noted in I-J-congeneic 3R and 5R animals (Table IV).

Specificity of  $Ts_3$  Activation. The next series of experiments was designed to evaluate the nature of the signals required for activation of pTs<sub>3</sub> cells. pTs<sub>3</sub> cells were incubated with hybridoma-derived TsF<sub>2</sub> or control BW5147 ascitic fluid (Table V). After 2 d the cells were washed and recultured in fresh media for an additional 24 h. These

|                          | Footpad swelling in recipient strains             |                                                 |                                                |                                               |                                               |
|--------------------------|---------------------------------------------------|-------------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Factor source            | C57BL/6<br>(H-2 <sup>b</sup> , Igh <sup>b</sup> ) | B10.G<br>(H-2 <sup>q</sup> , Igh <sup>b</sup> ) | C57L<br>(H-2 <sup>b</sup> , Igh <sup>a</sup> ) | C3H<br>(H-2 <sup>k</sup> , Igh <sup>j</sup> ) | CKB<br>(H-2 <sup>k</sup> , Igh <sup>b</sup> ) |
|                          |                                                   |                                                 | $10^{-3} cm \pm SE$                            |                                               |                                               |
| BW5147                   | $30.3 \pm 2.1$                                    | 35.6 ± 2.0                                      | 32.8 ± 7.0                                     | $36.6 \pm 3.1$                                | $41.6 \pm 4.1$                                |
| B6-pTs <sub>3</sub> -9   | $16.0 \pm 1.6 \ddagger$                           | $39.4 \pm 2.8$                                  | $32.0 \pm 4.4$                                 | 35.8 ± 5.3                                    | $43.5 \pm 4.1$                                |
| CKB-pTs <sub>3</sub> -80 | $32.4 \pm 4.0$                                    | $40.6 \pm 3.7$                                  | ND§                                            | $33.3 \pm 3.1$                                | $16.0 \pm 1.5 \ddagger$                       |
| Negative control         | $8.7 \pm 0.8$                                     | $8.3 \pm 1.4$                                   | 7.2 ± 2.0                                      | 7.1 ± 1.7                                     | $8.0 \pm 1.3$                                 |

 TABLE III

 Genetic Restrictions of Activated pTs3-derived Factors\*

\* The data from two to four independent experiments were pooled. Each group contains 7-13 mice, which were immunized with NP-O-Su. 24 h later all groups were given 20 mg/kg cyclophosphamide i.p. On the day before and the day of antigen challenge (effector phase), mice were given an injection of 0.4 ml i.v. of either control BW5147 or activated pTs<sub>3</sub> hybridoma factors. Activated pTs<sub>3</sub>-derived factors were obtained by culturing B6-pTs<sub>3</sub>-9 or CKB-pTs<sub>2</sub>-80 hybridoma with B6-Ts<sub>2</sub>-28 or CKB-Ts<sub>2</sub>-59-derived factor respectively for 2 d and then in fresh media for 1 d.

 $\ddagger$  Indicates significant suppression, P < 0.001.

§ Not done.

| TsF source                 | TsF2 for activa-        | NP-0-         | Footpad swelling in recipient strains |                         |                         |                         |
|----------------------------|-------------------------|---------------|---------------------------------------|-------------------------|-------------------------|-------------------------|
|                            | tion                    | Su<br>priming | B10.A (3R)                            | B10.A (4R)              | B10.A (5R)              | B10.MBR                 |
|                            |                         |               |                                       | 10 <sup>-3</sup> a      | $n \pm SE$              |                         |
| BW5147                     | _                       | +             | $48.3 \pm 1.8$                        | $28.2 \pm 2.2$          | $30.2 \pm 1.8$          | $40.2 \pm 0.8$          |
| B6-pTs₃-9                  | B6-Ts <sub>2</sub> -28  | +             | 29.0 ± 2.0‡                           | $15.3 \pm 1.0 \ddagger$ | $29.0 \pm 0.7$          | $41.0 \pm 1.3$          |
| CKB-pTs <sub>3</sub> -80.1 | CKB-Ts <sub>2</sub> -59 | +             | $48.0 \pm 3.2$                        | $27.8 \pm 2.1$          | $19.0 \pm 1.0 \ddagger$ | $27.5 \pm 1.8 \ddagger$ |
| CKB-pTs <sub>3</sub> -80.2 | CKB-Ts <sub>2</sub> -59 | +             | 46.7 ± 2.0                            | $28.5 \pm 1.0$          | 21.5 ± 1.2‡             | 31.3 ± 2.3‡             |
| BW5147                     |                         |               | 10.3 ± 1.7                            | $6.3 \pm 0.9$           | 8.3 ± 1.3               | $12.3 \pm 0.9$          |

| TABLE IV                                              |                                           |
|-------------------------------------------------------|-------------------------------------------|
| Intra-H-2 Mapping of the Restrictions on Activated by | Ts <sub>3</sub> Hybridoma-derived Factors |

\* Groups of four or five mice were immunized with NP-O-Su. 24 h later all groups were given 20 mg/kg CY i.p. On the day before and the day of NP-O-Su challenge, mice were given an injection of 0.5 ml i.v. of either control BW5147 or activated pTs<sub>3</sub> hybridoma factors. pTs<sub>3</sub> factors were obtained by culturing pTs<sub>3</sub> hybridomas with TsF<sub>2</sub> for 2 d and then in fresh media for 1 d. Two different subclones of CKB-pTs<sub>3</sub>-80 were tested in this experiment.

 $\ddagger$  Indicates significant suppression, P < 0.01.

activated pTs3 culture supernatants were tested for suppressive activity in NP-primed B6, B10,BR, or C3H.SW CY-treated recipients. Significant levels of suppressive activity were only noted in those combinations in which the H-2 and Igh determinants of the TsF<sub>2</sub>, pTs<sub>3</sub> cells and the recipient strains were matched. Thus, B6 (H-2<sup>b</sup>, Igh<sup>b</sup>)derived B6-pTs<sub>3</sub>-9 cells were activated after incubation with TsF<sub>2</sub> factors from either B6-derived B6-Ts<sub>2</sub>-28 or B6-Ts<sub>2</sub>-14 cells, but incubation with TsF<sub>2</sub> derived from an H-2-mismatched, Igh-matched CKB (H-2<sup>k</sup>, Igh<sup>b</sup>) source or an H-2-matched, Ighmismatched C3H.SW source failed to trigger the release of suppressive materials from pTs<sub>3</sub> cells (Table V). In accord with the data presented in the previous section, factors from activated B6-pTs<sub>3</sub>-9 cells failed to suppress H-2- or Igh-incompatible B10.BR (H-2<sup>k</sup>, Igh<sup>b</sup>) or C3H.SW (H-2<sup>b</sup>, Igh<sup>j</sup>) recipients. Furthermore, supernatants from B6pTs<sub>3</sub>-9 cells incubated with CKB- or C3H.SW-derived TsF<sub>2</sub> also failed to function in B10.BR or C3H.SW recipients. Thus, homology between the TsF2 and the recipient strain is not sufficient for expression of suppressive activity. The combined data imply that H-2 and Igh homology is required at two stages: (a) for the activation of pTs<sub>3</sub> cells and (b) for the expression of the suppressive activity mediated by pTs<sub>3</sub>-derived factors. To verify these conclusions, the genetic restrictions on the activation of CKBderived  $pT_{s_3}$  cells were analyzed in reciprocal fashion with similar results (Table V). As an additional control the biological activity of the C3H.SW-Ts<sub>2</sub>-7-derived TsF<sub>2</sub> was established by incubation with a population of NP-primed C3H.SW lymph node cells. As expected from our previous reports (17, 19), the C3H.SW-derived  $TsF_2$  was capable of activating the Ts<sub>3</sub> cells in this lymphocyte population. Finally, we attempted to activate B6-pTs<sub>3</sub>-9 cells with a mixture of Igh<sup>b</sup>-compatible CKB-derived TsF2 and H-2-compatible C3H.SW-derived TsF2. The mixture of these two functional TsF<sub>2</sub> factors failed to activate B6-derived pTs<sub>3</sub> cells (Table V).

Ability of  $pTs_3$  Cells to Adsorb I-J-mismatched TsF<sub>2</sub>. One possible explanation for the failure of Igh- or H-2-mismatched TsF<sub>2</sub> to activate pTs<sub>3</sub> cells is that these products will not bind the pTs<sub>3</sub> cells. In fact, we have previously demonstrated that monoclonal TsF<sub>2</sub> has antiidiotypic specificity and will only bind to cells that carry the appropriate idiotypic determinants (15). In the present studies, we evaluated the ability of TsF<sub>2</sub> to

| Strain of CY-<br>treated recipients | pTs3 or Ts3 source        | TsF source                    | Normalized per-<br>cent suppression<br>± SE‡ |
|-------------------------------------|---------------------------|-------------------------------|----------------------------------------------|
| C57BL/6                             | BW5147                    | None                          | $0 \pm 4$                                    |
| •                                   | B6-pTs <sub>3</sub> -9    | BW5147                        | 5 ± 7                                        |
|                                     | •                         | B6-Ts <sub>2</sub> -28        | 49 ± 5§                                      |
|                                     |                           | B6-Ts <sub>2</sub> -14        | $58 \pm 1$ §                                 |
|                                     |                           | CKB-Ts2-59                    | 8 ± 3                                        |
|                                     |                           | C3H.SW-Ts <sub>2</sub> -7     | $8 \pm 4$                                    |
|                                     |                           | $CKB-Ts_2-59 + C3H.SW-Ts_2-7$ | 3 ± 4                                        |
|                                     | CKB-pTs <sub>3</sub> -80  | BW5147                        | $-6 \pm 3$                                   |
|                                     | •                         | B6-Ts <sub>2</sub> -28        | $-3 \pm 5$                                   |
|                                     |                           | CKB-Ts <sub>2</sub> -59       | $-3 \pm 6$                                   |
| B10.BR                              | BW5147                    | None                          | $0 \pm 6$                                    |
|                                     | B6-pTs <sub>3</sub> -9    | BW5147                        | $-6 \pm 13$                                  |
|                                     | •                         | B6-Ts <sub>2</sub> -28        | $0 \pm 6$                                    |
|                                     |                           | B6-Ts <sub>2</sub> -14        | 3 ± 9                                        |
|                                     |                           | CKB-Ts <sub>2</sub> -59       | $-6 \pm 13$                                  |
|                                     |                           | C3H.SW-Ts2-7                  | $-3 \pm 14$                                  |
|                                     | CKB-pTs <sub>3</sub> -80  | BW5147                        | 7 ± 4                                        |
|                                     | ·                         | B6-Ts <sub>2</sub> -28        | -5 ± 8                                       |
|                                     |                           | $B6-Ts_{2}-14$                | $-1 \pm 7$                                   |
|                                     |                           | CKB-Ts <sub>2</sub> -59       | $60 \pm 5$ §                                 |
|                                     |                           | $C3H.SW-Ts_2-7$               | $-5 \pm 2$                                   |
| C3H.SW                              | BW5147                    | None                          | $0\pm 3$                                     |
|                                     | B6-pTs <sub>3</sub> -9    | B6-Ts <sub>2</sub> -28        | $-4 \pm 3$                                   |
|                                     | •                         | C3H.SW-Ts2-7                  | $4 \pm 9$                                    |
|                                     | CKB-pTs <sub>3</sub> -80  | CKB-Ts <sub>2</sub> -59       | $-1 \pm 8$                                   |
|                                     | •                         | C3H.SW-Ts2-7                  | $0 \pm 2$                                    |
|                                     | C3H.SW                    |                               |                                              |
|                                     | NP-primed Ts <sub>3</sub> | BW5147                        | $0 \pm 9$                                    |
|                                     |                           | C3H.SW-Ts <sub>2</sub> -7     | $68 \pm 9$ §                                 |

 TABLE V

 Specificity of pTs3 Hybridoma Activation\*

\* Recipient mice were immunized with NP-O-Su. 24 h later all mice were given 20 mg/kg CY i.p. On the day before and the day of antigen challenge, mice were given 0.4 ml i.v. of either BW5147 or activated suppressor hybridoma factors. Activated pTs<sub>3</sub>-derived factors were obtained by culturing B6-pTs<sub>3</sub>-9 or CKB-pTs<sub>3</sub>-80 hybridoma cells with various kinds of TsF<sub>2</sub> for 2 d and then in fresh media for 1 d.

<sup>‡</sup> The data represent the pooled results from six separate experiments (not all groups were included in each experiment). The data were normalized and the percent suppression ± standard error was calculated. Each group represents the pooled normalized data of at least two experiments involving a total of at least seven mice.

§ Indicates significant suppression, P < 0.01.

Regional lymph node cells from C3H.SW mice primed subcutaneously with 2 mg NP-O-Su 6 d earlier were cultured in vitro with C3H.SW-Ts<sub>2</sub>-7 ascitic factor or control BW5147 factor for 2 h. After washing,  $1 \times 10^7$  activated C3H.SW lymph node cells were transferred into CY-treated C3H.SW mice primed with NP-O-Su.

bind to I-J-mismatched pTs<sub>3</sub> cells. Thus aliquots of B6- and CKB-derived TsF<sub>2</sub> were adsorbed with  $3 \times 10^7$  B6-pTs<sub>3</sub>-9, CKB-pTs<sub>3</sub>-80, and BW5147 cells/ml. The activity of the absorbed TsF<sub>2</sub> was assayed on NP-O-Su-primed recipients. As indicated in Table VI, TsF<sub>2</sub> activity was completely absorbed by both H-2-compatible and H-2-

| Recipient strain | NP-O-Su<br>priming | TsF source              | Cells for TsF2 absorp-<br>tion | Footpad swelling        |  |  |
|------------------|--------------------|-------------------------|--------------------------------|-------------------------|--|--|
|                  |                    |                         |                                | $10^{-3} cm \pm SE$     |  |  |
| C57BL/6          | +                  | BW5147                  | _                              | $43.5 \pm 2.7$          |  |  |
|                  | +                  | B6-Ts2-28               | BW5147                         | $18.3 \pm 0.3 \ddagger$ |  |  |
|                  | +                  | B6-Ts2-28               | B6-pTs <sub>3</sub> -9         | $46.3 \pm 1.3$          |  |  |
|                  | +                  | B6-Ts2-28               | CKB-pTs <sub>3</sub> -80       | $45.5 \pm 1.9$          |  |  |
|                  | -                  | None                    | _                              | $3.3 \pm 0.7$           |  |  |
| B10.BR           | +                  | BW5147                  | _                              | $40.0 \pm 2.2$          |  |  |
|                  | +                  | CKB-Ts <sub>2</sub> -59 | BW5147                         | $23.3 \pm 1.2 \ddagger$ |  |  |
|                  | +                  | CKB-Ts <sub>2</sub> -59 | B6-pTs <sub>3</sub> -9         | 38.0 ± 3.3              |  |  |
|                  | +                  | CKB-Ts <sub>2</sub> -59 | CKB-pTs <sub>3</sub> -80       | 37.8 ± 3.2              |  |  |
|                  | _                  | None                    |                                | $9.0 \pm 1.2$           |  |  |

|            | Таі                      | ble VI         |         |        |
|------------|--------------------------|----------------|---------|--------|
| Absorption | of TsF <sub>2</sub> with | I-J-mismatched | $pTs_3$ | Cells* |

\* Aliquots of  $TsF_2$  were absorbed with  $2.5 \times 10^6$  B6-pTs<sub>3</sub>-9 (I-J<sup>b</sup>), CKB-pTs<sub>3</sub>-80 (I-J<sup>k</sup>), or control BW5147 cells/ml. The absorbed TsF<sub>2</sub> was then tested for effector phase suppressive activity in previously NP-O-Su-primed recipients.

 $\ddagger$  Indicates significant suppression, P < 0.001.

TABLE VII Fractionation of pTs<sub>3</sub>-derived Factors on Immunoadsorbent Columns\*

|                               |                                | -                  | Footpad swelling<br>Source of suppressor factor‡ |                          |                         |
|-------------------------------|--------------------------------|--------------------|--------------------------------------------------|--------------------------|-------------------------|
| Factor source                 | Immunoad-<br>sorbant<br>column | Column<br>fraction |                                                  |                          |                         |
|                               |                                |                    | B6-pTs <sub>3</sub> -9                           | CKB-pTs <sub>3</sub> -80 | B6-Ts <sub>3</sub> -8   |
|                               |                                |                    |                                                  | $10^{-3} cm \pm SE$      |                         |
| Activated BW5147              | None                           | _                  | $34.8 \pm 2.0$                                   | $50.2 \pm 2.6$           | $29.5 \pm 2.0$          |
| Nonactivated pTs <sub>3</sub> | None                           | _                  | $35.2 \pm 3.4$                                   | 50.4 ± 3.4               | $16.8 \pm 1.3 \ddagger$ |
| Activated pTs <sub>3</sub>    | None                           | _                  | $13.6 \pm 1.4 \ddagger$                          | $16.2 \pm 2.3 \ddagger$  | _                       |
| <b>^</b>                      | Anti-I-J <sup>b</sup>          | Filtrate           | $40.0 \pm 1.1$                                   | $31.3 \pm 3.8 \ddagger$  | $28.3 \pm 1.7$          |
|                               | -                              | Eluate             | $17.5 \pm 4.3 \ddagger$                          | $43.0 \pm 4.0$           | $17.0 \pm 1.2 \ddagger$ |
|                               | Anti-I-J <sup>k</sup>          | Filtrate           | $14.4 \pm 1.3 \pm$                               | 47.8 ± 4.4               | $18.3 \pm 1.6 \ddagger$ |
|                               | Ŭ                              | Eluate             | $34.0 \pm 4.0$                                   | 21.3 ± 1.5‡              | $30.3 \pm 3.2$          |
|                               | NP-KLH                         | Filtrate           | $44.3 \pm 4.2$                                   | $47.0 \pm 2.0$           | $30.5 \pm 2.2$          |
|                               |                                | Eluate             | $18.5 \pm 5.5 \ddagger$                          | $19.3 \pm 3.3 \pm$       | $15.8 \pm 3.0 \ddagger$ |
|                               | Anti-NP <sup>b</sup>           | Filtrate           | $43.0 \pm 3.5$                                   | $43.3 \pm 6.9$           | $25.5 \pm 3.7$          |
|                               |                                | Eluate             | $21.8 \pm 1.8 \ddagger$                          | $19.3 \pm 3.3 \ddagger$  | $17.3 \pm 1.3 \pm$      |
|                               | $NP^{b}$                       | Filtrate           | $9.8 \pm 2.0 \ddagger$                           | $31.3 \pm 3.8 \ddagger$  | $16.3 \pm 1.9 \ddagger$ |
|                               |                                | Eluate             | $30.4 \pm 2.4$                                   | $43.0 \pm 4.0$           | $27.8 \pm 1.7$          |
| Negative (background)         | —                              |                    | $8.3 \pm 3.4$                                    | $9.2 \pm 2.5$            | $10.0 \pm 1.6$          |

\* Activated  $pT_{s_3}$  or conventional nonactivated  $T_{s_3}$  hybridoma-derived TsF containing supernatant fluids were adsorbed onto various columns and the filtrate and acid-eluted fractions were tested for suppressive activity in either C57BL/6 or B10.BR recipients. The TsF<sub>3</sub> from the constitutatively secreting Ts<sub>3</sub> hybridoma (B6-Ts<sub>3</sub>-8) is included for comparison. Refer to the legend to Table I for protacol. ‡ Indicates significant suppression, P < 0.01.

incompatible pTs<sub>3</sub> cells. Thus it appears that  $TsF_2$  can bind to I-J-mismatched pTs<sub>3</sub> cells but that this binding event is insufficient to cause activation of the pTs<sub>3</sub> cell. The specificity of absorption was demonstrated by the inability of BW5147 cells to absorb  $TsF_2$  activity (Table VI).

| TABLE | VIII |
|-------|------|
| LADED |      |

Presence of TsF in Extracts of Nonactivated pTs<sub>3</sub> Hybridoma Cells\*

| pTs3 source              | TsF2 used for acti-<br>vation | Fraction     | Normalized<br>percent CS sup-<br>pression $\pm$ SE |
|--------------------------|-------------------------------|--------------|----------------------------------------------------|
| BW5147                   | None                          | Cell extract | $0 \pm 8$                                          |
| CKB-pTs <sub>3</sub> -80 | None                          | Cell extract | 56 ± 6‡                                            |
| CKB-pTs <sub>3</sub> -80 | None                          | Supernatant  | $8 \pm 9$                                          |
| CKB-pTs <sub>3</sub> -80 | CKB-Ts <sub>2</sub> -59       | Cell extract | $2 \pm 9$                                          |
| CKB-pTs <sub>3</sub> -80 | CKB-pTs <sub>2</sub> -59      | Supernatant  | 40 ± 5‡                                            |
| BW5147                   | None                          | Cell extract | $0 \pm 6$                                          |
| B6-pTs <sub>3</sub> -9   | None                          | Cell extract | $61 \pm 7 \ddagger$                                |
| B6-pTs <sub>3</sub> -9   | None                          | Supernatant  | $-12 \pm 9$                                        |
| B6-pTs <sub>3</sub> -9   | B6-Ts <sub>2</sub> -28        | Cell extract | $27 \pm 7$                                         |
| B6-pTs <sub>3</sub> -9   | B6-Ts2-28                     | Supernatant  | $40 \pm 10 \ddagger$                               |

\* TsF<sub>2</sub>-activated (see Table I for protocol) or nonactivated pTs<sub>3</sub> cells were disrupted by three to four cycles of freeze-thawing; the cell debris was removed by centrifugation and the extract fraction was tested for suppressive activity. Supernatant fractions represent aliquots of the culture supernatants from the activated or nonactivated cells before disruption. The data from two experiments were normalized and expressed as percent suppression. Groups consist of seven to ten mice.

 $\ddagger$  Indicates significant suppression, P < 0.05.

Characterization of  $pTs_3$ -derived Factors. To further document the relationship between pTs<sub>3</sub>- and Ts<sub>3</sub>-derived factors, the antigeneic determinants present on the factors were analyzed using a series of affinity columns. As shown in Table VII, the factors derived from activated pTs<sub>3</sub> cells carried allele-specific I-J determinants. Thus passage of B6-pTs<sub>3</sub>-9 factor over anti-I-J<sup>b</sup> immunoadsorbants depleted suppressive activity. The suppressive activity could be recovered from the anti-I-J<sup>b</sup> column by acid elution (Table VII). Furthermore, the specificity of adsorption was illustrated by the inability of anti-I-J<sup>k</sup> immunoadsorbant columns to deplete the B6-pTs<sub>3</sub>-9-derived suppressor activity. In reciprocal experiments the CKB (H-2<sup>k</sup>)-derived pTs<sub>3</sub> factors were removed on anti-I-I<sup>k</sup> columns and the activity was recovered in the acid eluates. In addition to I-J determinants the  $pT_{s_3}$ -derived factors have NP<sup>b</sup> idiotype-related, antigen-binding determinants. Thus both the B6- and CKB-derived pTs<sub>3</sub> factors could be adsorbed onto and eluted from antiidiotype (anti-NP<sup>b</sup>) or antigen (NP-KLH) immunoadsorbants (Table VII). To demonstrate that the pTs<sub>3</sub>-derived factors did not require any residual  $T_{s}F_{2}$  for expression of activity, we passed the factors over columns that contained NP<sup>b</sup> idiotype; these columns had been shown to completely deplete TsF<sub>2</sub> activity (15). pTs<sub>3</sub> factors failed to bind to NP<sup>b</sup> idiotype-coupled columns. For further comparison, the results of the  $pTs_3$  fractionation are compared with the fractionation of conventional TsF<sub>3</sub> from an NP-specific hybridoma (B6-Ts<sub>3</sub>-8) that constitutatively secretes TsF<sub>3</sub> (Table VII).

Presence of Preformed  $T_sF_3$  in  $pT_{s_3}$  Cells. The final series of experiments was directed at determining whether activation of  $pT_{s_3}$  cells caused the *de novo* synthesis of  $T_sF_3$  or if  $T_sF_3$  was already stored in these cells and activation resulted in the export of this factor into the surrounding medium. Nonactivated CKB- $pT_{s_3}$ -80 and B6- $pT_{s_3}$ -9 hybridoma cells were disrupted by freeze-thawing and the cell extract was injected into NP-primed CY-treated CKB and B6 recipients, respectively. These extracts of nonactivated  $pT_{s_3}$  cells contained suppressive activity whereas extracts from BW5147 1390

control cells failed to suppress NP-induced CS responses (Table VIII). The antigen specificity of the extracted factor was established by determining that this material did not suppress DNFB-induced CS responses (data not shown). As additional controls, the culture media in which the nonactivated  $pTs_3$  cells were grown was also tested for suppressive activity. As expected, supernatants from nonactivated  $pTs_3$  cells failed to suppress NP CS responses.

In addition,  $pTs_3$  cells that had been activated by  $TsF_2$  and then allowed to release factor for 24 h in fresh medium were disrupted and the cellular extracts tested for suppressive activity. Little or no suppressive activity was demonstrable in the extracts of activated  $pTs_3$  cells (Table VIII). As expected, the supernatants of activated  $pTs_3$ cells contained suppressive activity.

## Discussion

The pTs<sub>3</sub> hybridomas described in this report display numerous similarities to the Ts<sub>3</sub> cells previously described in the NP system. The origin, phenotype, and activation requirements of the pTs<sub>3</sub> cells as well as the genetic restrictions and antigenic determinants found on pTs<sub>3</sub> hybridoma-derived factors are identical to those previously noted on conventional Ts<sub>3</sub> cells and factors (4, 5, 17–19). Thus, the pTs<sub>3</sub> and Ts<sub>3</sub> hybridomas were derived from the fusion of antigen-adherent T cells obtained from immune mice. Ts<sub>3</sub> and pTs<sub>3</sub> cells and their factors bear I-J- and NP<sup>b</sup>-related idiotypic determinants. The factors only function during the effector phase of the immune response and can suppress CS responses in CY-treated recipients. The activity of the suppressor factor is restricted by at least two sets of genes, one associated with the I-J region and the other with the Igh complex. In view of all of these similarities, we have termed these hybridoma cells, pTs<sub>3</sub>. The prefix denotes that the cells must be specifically activated to release their biologically active product. This feature clearly distinguishes this series of hybridomas from those which constitutively release TsF<sub>3</sub>.

These inducible hydridomas presumably represent a stable stage in the differentiation cycle of  $Ts_3$  cells, i.e., a resting, nonsecretory stage of the mature  $Ts_3$  cell. We have previously noted that after conventional antigen-priming,  $Ts_3$  cells are generated concomitantly with helper and CS effector T cells. However, the mature  $Ts_3$  cells will not mediate suppressive activity unless specifically activated by  $TsF_2$ . Thus, mature  $Ts_3$  populations normally remain in an inactive resting state, thereby allowing expression of helper or CS activity. However, after release of  $TsF_2$ , activation of  $Ts_3$ cells and suppression occur. This process allows for a rapid regulation of immune responses. The establishment of an inducible hybridoma line confirms these conclusions, which were originally hypothesized after analysis of the activation of heterogeneous populations of splenic or lymph node  $Ts_3$  cells. The latter lymphocyte populations contained  $Ts_3$  cells as well as other NP-specific T cells including helper and/or CS effector cells. The present report describes hybridoma clones that have retained the properties of a mature, non- $TsF_3$ -secreting  $Ts_3$  cell. Furthermore, this report directly documents the interaction of  $TsF_2$  with  $Ts_3$  cells.

Other investigators (24–26) have described an analogous series of major histocompatibility complex (MHC)-restricted hybridoma or cloned T cells that represent inducible helper or proliferating cells. Activation of these hybridomas or clones also requires corecognition of two components, i.e., antigen and I-A- or I-E-encoded MHC products. Similarly, activation of the inducible  $pTs_3$  hybridomas also required recognition of two elements: MHC components encoded by the I-J subregion and a specific T cell-derived idiotype (which may also be regarded as an antigenic determinant or internal image). The genetic restrictions and the mixing experiment used to analyze the activation of  $pTs_3$  hybridomas indicated that both I-J and idiotypic determinants must be present on the same molecular complex. Similar activation requirements were noted for cloned or hybridoma helper T cells, which required presentation of MHC products and antigenic determinants on the same cell. Thus, similar principles apply for the activation of both helper and suppressor T cell populations. However, it appears that cells of the suppressor cascade are programmed to recognize or interact with I-J molecules whereas helper cells interact with I-A or I-E molecules.

Taniguchi and associates (27) have also identified an I-J-positive inducible suppressor cell hybridoma that was obtained after fusion of antigen-adherent cells from KLH-primed mice. These hybridoma cells bore a receptor (acceptor) for a KLHspecific suppressor factor (27). After activation with suppressor factor, the inducible hybridoma described in the KLH system produced its own distinct, genetically restricted factor that displayed carrier specificity. However, the factors produced by the latter inducible suppressor cell hybridoma had different binding properties than those described in the present report. Thus, Taniguchi et al. (27) demonstrated that the suppressor factor that was required to activate hybridoma pTs cells bound to KLH whereas the factor released from pTs cells failed to bind to KLH. Furthermore, the authors concluded that the pTs-derived factor was antiidiotypic, since it bound to other T cell hybridomas that presumably bore idiotypic determinants specific for KLH (27). The data described in this report represent a reciprocal pattern. Thus, in the NP system, the TsF2 factor required for pTs3 activation bound to idiotype while the  $pTs_3$ -derived factor bound to antigen. Several hypotheses can reconcile the latter two series of observations. (a) These pTs hybridomas represent distinct elements of a common suppressor cell cascade. Presumably, the  $T_sF_3$  released by  $pT_{s_3}$  cells could activate a complimentary antiidiotypic suppressor T cell (Ts<sub>4</sub>) similar to that described by Taniguchi et al. (27). (b) Both idiotypic and antiidiotypic  $T_{S_2}$  and  $T_{S_3}$  cells and factors exist. Kapp and Araneo (13) have interpreted data in the L-glutamic acid<sup>50</sup>-L-tyrosine<sup>50</sup> system in support of this contention. The method of Ts induction and the possibility of antigen bridging would presumably determine the idiotypic or antiidiotypic nature of the different suppressor elements. (c) Perhaps two distinct Ts pathways are involved. This would imply that the suppressor cells described in the NP and KLH systems are members of independent suppressor cell pathways.

The identification of inducible T cell hybridomas permits analysis of the activation processes required for suppressor cell function. Although the activation of  $pTs_3$  cells requires triggering with ascites containing  $TsF_2$ , additional requirements for activation may also exist. Thus, it is possible that the ascites contains additional substances that are involved in  $pTs_3$  activation. Nonetheless, the data demonstrate that  $pTs_3$  cells require specific activation with  $TsF_2$ . Furthermore, analysis of the genetic restrictions on  $pTs_3$  cell activation indicated that the H-2 and Igh complexes of the donor had to match the strain from which the  $pTs_3$  cells were derived. Homology at only one gene complex (H-2 or Igh) was not sufficient to trigger activation of the  $pTs_3$  cells. The failure of Igh-matched H-2-mismatched  $TsF_2$  to trigger  $pTs_3$  cells was not due to the inability of these materials to bind to the  $pTs_3$  cells. Thus, I-J-incompatible  $pTs_3$  cells could completely absorb activity. These findings suggest that two distinct steps are required for  $pTs_3$  triggering, i.e., binding of  $TsF_2$  to the idiotypic receptor and interaction of the cell with the I-J (or anti-I-J) determinant on  $TsF_2$ . These two triggering signals must be delivered in a very specialized spacial or temporal configuration, presumably by a single molecule or molecular complex. Thus, incubation of  $pTs_3$  cells with two distinct  $TsF_2$  factors, one having H-2 homology and the other Igh homology, was insufficient for  $pTs_3$  activation. The simplest interpretation of this observation is that the triggering of the receptor (acceptor) site on  $pTs_3$  cells requires activation by two spacially related determinants. Several laboratories (28–33) have demonstrated that TsF from a variety of sources is a dimer that contains one chain with MHC (I-J) determinants and another with antigen-binding or Igh-linked determinants. The physiological significance for this type of molecular complex may lie in the mechanism required for suppressor cell triggering.

Another important conclusion that can be derived from the present series of observations is that antigen is not required for the triggering of  $pTs_3$  cells. In previous systems it was not possible to evaluate the requirements for antigen in this phase of the suppressor cell cascade, since the  $Ts_3$  cells are obtained from antigen-primed mice and the assay for CS immunity requires the presence of antigen in the effector phase. However, the present observations clearly demonstrate that antigen is not required for activation of  $pTs_3$  hybridomas and presumably is also not required for activation of conventional  $Ts_3$  lymphocytes.

It is also known that antigen is not required for  $Ts_2$  cell induction (11, 21). Thus, once the cellular elements of the suppressor cell cascade are generated, immune suppression can proceed in the absence of additional antigen. Antigen is apparently only required for the initial induction of  $Ts_1$  and  $Ts_3$  cells (4, 19). Subsequent cellular activation presumably proceeds via idiotype antiidiotype and I-J anti-I-J interactions. Thus, the cascade of regulatory interactions observed in NP systems conforms with the basic predictions of the Jerne network theory (34).

In a series of preliminary experiments, we tried to activate  $pT_{s_3}$  hybridoma cells with either antigen, antiidiotype, or anti-I-J. Neither NP-bovine serum albumin, antigen-modified syngeneic cells, guinea pig antiidiotype, auto-antiidiotype, or anti-I-J alloantiserum was able to activate the  $pT_{s_3}$  cells under the experimental conditions used (data not shown). Although these attempts to activate  $pT_{s_3}$  cells were unsuccessful, the therapeutic value of identifying alternative mechanisms for  $T_{s_3}$  activation is potentially great for selected diseases.

In addition it is important to distinguish among the mechanisms of TsF activation. As shown in this report,  $TsF_2$  acts on a previously expanded and at least partially differentiated population of antigen-specific  $Ts_3$  cells, causing the release of soluble mediators. In contrast, the soluble factors obtained from first-order suppressor cells ( $TsF_1$ ) induce the generation and differentiation of another suppressor cell population from normal splenic T cells (7, 8, 11). Thus, whereas  $TsF_2$  activates,  $TsF_1$  induces suppressor cells.

Finally, it is important to note that the activation of  $pTs_3$  cells by  $TsF_2$  does not appear to involve the *de novo* synthesis of  $TsF_3$ . Thus, lysis of nonactivated  $pTs_3$ hybridoma cells released an antigen-specific suppressor factor that functioned in the effector phase of the CS response.  $TsF_3$  had already been synthesized by  $pTs_3$  cells before activation. After  $TsF_2$  activation, the  $pTs_3$  cells cleared the  $TsF_3$  from the intracellular pool and released it into the surrounding medium. Thus,  $pTs_3$  cells represent a mature differentiated stage in the life cycle of the  $Ts_3$  suppressor cell in which a specific activation step is required for the rapid (<6 h) release of antigen-specific suppressor factors into the local environment. The ability of  $Ts_3$  cells to store  $TsF_3$  permits the immune system to rapidly modulate immune responses.

#### Summary

The Ts<sub>3</sub> subset of suppressor cells is generated after antigen priming, but, in order to express suppressor activity these cells require an additional activation step involving triggering with specific suppressor factors (TsF2). This report characterizes two cloned hybridoma cell lines (pTs<sub>3</sub> hybridomas) that represent this stage of Ts<sub>3</sub> cell differentiation. These hybridoma cells could be specifically activated with  $T_{s}F_{2}$  to release another antigen-specific suppressor factor  $(TsF_3)$  within 6 h. The inducible feature of these cells permitted analysis of the signals necessary for Ts<sub>3</sub> activation. Antigen was not required for activation. Only TsF2 factors derived from antiidiotypic second-order suppressor cells could activate  $pT_{s_3}$  hybridoma cells. There were stringent genetic restrictions on the ability of  $Ts_2$  to activate  $pTs_3$  cells. Triggering of  $pTs_3$  required corecognition of two determinants on the  $TsF_2$  molecular complex, i.e., the I-J and Igh-related idiotypic determinants. Thus, although  $pTs_3$  cells could absorb  $TsF_2$  from an I-J-mismatched source, these pTs3 were not activated by the allogeneic TsF2. For activation to occur, the H-2 (I-J) and Igh complexes of the TsF<sub>2</sub> donor had to match those of the strain from which the  $pTs_3$  cells were derived. Mixing two distinct  $TsF_2$ , one derived from an H-2-matched source and the other from an Igh-matched source, failed to activate pTs<sub>3</sub> cells. Once activated, the pTs<sub>3</sub> cells released a suppressive material that was indistinguishable from the  $TsF_3$  factors previously characterized in this system. Finally, the activation of the pTs3 cells apparently does not induce the de novo synthesis of  $TsF_3$  since the suppressive activity could be extracted from nonactivated  $pTs_3$  cells. Thus, the inducible  $pTs_3$  hybridomas represent a mature stage in the differentiation cycle of Ts<sub>3</sub> cells and provide a means for studying the nature of the specific signals required for Ts<sub>3</sub> activation.

Received for publication 25 October 1982.

## References

- 1. Weinberger, J. Z., R. N. Germain, S. T. Ju, M. I. Greene, B. Benacerraf, and M. E. Dorf. 1979. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. II. Demonstration of idiotypic determinants on suppressor T cells. J. Exp. Med. 150:761.
- Sherr, D. H., S. T. Ju, J. Z. Weinberger, B. Benacerraf, and M. E. Dorf. 1981. Haptenspecific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. VII. Idiotype-specific suppression of plaque-forming cell responses. J. Exp. Med. 153:640.
- 3. Dorf, M. E., K. Okuda, and M. Minami. 1982. Dissection of a suppressor cell cascade. Curr. Top. Microbiol. Immunol. 100:61.
- 4. Sunday, M. E., B. Benacerraf, and M. E. Dorf. 1981. Hapten-specific T cell responses to 4hydroxy-3-nitrophenyl acetyl. VIII. Suppressor cell pathways in cutaneous sensitivity responses. J. Exp. Med. 153:811.
- 5. Sherr, D. H., and M. E. Dorf. 1982. Hapten-specific T cell responses to 4-hydroxy-3nitrophenyl acetyl. XIII. Characterization of a third order T cell (Ts<sub>3</sub>) involved in suppression of in vitro PFC responses. J. Immunol. **128**:1261.

#### INDUCIBLE HYBRIDOMA SUPPRESSOR CELLS

- Weinberger, J. Z., R. N. Germain, B. Benacerraf, and M. E. Dorf. 1980. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. V. Role of idiotypes in the suppressor pathway. J. Exp. Med. 152:161.
- 7. Okuda, K., M. Minami, D. H. Sherr, and M. E. Dorf. 1981. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. XI. Pseudogenetic restrictions of hybridoma suppressor factors. J. Exp. Med. 154:468.
- 8. Waltenbaugh, C., J. Theze, J. A. Kapp, and A. B. Benacerraf. 1977. Immunosuppressive factor(s) specific for L-glutamic acid<sup>50</sup>-L-tyrosine<sup>50</sup> (GT). III. Generation of suppressor T cells by a suppressive extract derived from GT-primed lymphoid cells. J. Exp. Med. 146:970.
- 9. Thomas, W. R., M. C. Watkins, and G. L. Asherson. 1981. Differences in the ability of T cells to suppress the induction and expression of contact sensitivity. *Immunology*. 42:53.
- Eardley, D. D., J. Hugenberger, L. McVay-Boudreau, F. W. Shen, R. K. Gershon, and H. Cantor. 1979. Immunoregulatory circuits among T cell sets: effect of mode of immunization on determining which Ly 1 T cell will be activated. J. Immunol. 122:1663.
- Takaoki, M., M. S. Sy, B. Whitaker, J. Nepom, R. Finberg, R. Germain, A. Nisonoff, B. Benacerraf, and M. Greene. 1982. Biologic activity of an idiotype-bearing suppressor T cell factor produced by a long-term T cell hybridoma. *J. Immunol.* 128:49.
- Sunday, M. E., J. Z. Weinberger, S. Wolff, and M. E. Dorf. 1981. Anti-receptor antibodyinduced suppression of murine H-Y-specific delayed-type hypersensitivity responses. *Eur. J. Immunol.* 11:626.
- Kapp, J. A., and B. A. Araneo. 1982. Antigen-specific suppressor T cell interactions. I. Induction of an MHC-restricted suppressor factor specific for L-glutamic acid<sup>50</sup>-L-tyrosine<sup>50</sup>. J. Immunol. 128:2447.
- Sherr, D. H., S. Ju, and M. E. Dorf. 1981. Hapten-specific T cell responses to 4-hydroxy-3nitrophenyl acetyl. XII. Fine specificity of anti-idiotypic suppressor T cells (Ts<sub>2</sub>). J. Exp. Med. 154:1382.
- Minami, M., K. Okuda, S. Furusawa, B. Benacerraf, and M. E. Dorf. 1981. Analysis of T cell hybridomas. I. Characterization of H-2 and Igh-restricted monoclonal suppressor factors. J. Exp. Med. 154:1390.
- Sherr, D. H., and M. E. Dorf. 1981. Hapten-specific T cell responses to 4-hydroxy-3nitrophenyl acetyl. IX. Characterization of idiotype-specific effector-phase suppressor cells on plaque-forming cell responses in vitro. J. Exp. Med. 153:1445.
- 17. Minami, M., S. Furusawa, and M. E. Dorf. 1982. I-J restrictions on the activation and interaction of parental and F<sub>1</sub>-derived Ts<sub>3</sub> suppressor cells. J. Exp. Med. 156:465.
- Okuda, K., M. Minami, S. Furusawa, and M. E. Dorf. 1981. Analysis of T cell hybridomas. II. Comparisons among three distinct types of monoclonal suppressor factors. J. Exp. Med. 154:1838.
- Minami, M., N. Honji, and M. E. Dorf. 1982. Mechanism responsible for the induction of I-J restrictions on Ts<sub>3</sub> suppressor cells. J. Exp. Med. 156:1502.
- Committee on Care and Use of Laboratory Animals. 1978. Institute of Laboratory Animal Resources, National Research Council, U. S. Department of Health, Education and Welfare Publication No. (NIH) 78-23. 70 pp.
- Okuda, K., M. Minami, S. T. Ju, and M. E. Dorf. 1981. Functional association of idiotypic and I-J determinants on the antigen receptor of suppressor T cells. *Proc. Natl. Acad. Sci.* USA. 78:4557.
- 22. Ju, S. T., and M. E. Dorf. 1981. Cross-induction of predominant NP<sup>b</sup> idiotypic antibodies with derivatives of (4-hydroxy-3-nitrophenyl) acetyl. J. Immunol. 127:2224.
- 23. Sunday, M. E., J. Z. Weinberger, B. Benacerraf, and M. E. Dorf. 1980. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. IV. Specificity of cutaneous sensitivity responses. *J. Immunol.* **125:**1601.
- 24. Watson, J. 1979. Continuous proliferation of murine antigen-specific helper T lymphocytes

in culture. J. Exp. Med. 150:1510.

- 25. Sredni, B., and R. H. Schwartz. 1981. Antigen-specific, proliferating T lymphocyte clones. Methodology, specificity, MHC restriction and alloreactivity. *Immunol. Rev.* 54:187.
- Kappler, J. W., J. Graham, J. Leibson, B. Skidmore, D. Wegmann, J. White, and P. Marrack. 1981. T cell hydridomas. *In* Immunoglobulin Idiotypes. C. Janeway, E. E. Sercarz, H. Wigzell, C. F. Fox, and F. J. Strusser, editors. Academic Press, Inc. New York. 353-363.
- Taniguchi, M., I. Takei, T. Saito, and T. Tokuhisa. 1981. Activation of an acceptor T cell hybridoma by a V<sub>H</sub><sup>+</sup> 1-J<sup>+</sup> monoclonal suppressor factor. In Immunoglobulin Idiotypes. C. Janeway, E. E. Sercarz, H. Wigzell, C. F. Fox, and F. J. Stusser, editors. Academic Press, Inc. New York. 397-406.
- Taniguchi, M., T. Saito, I. Takei, and T. Tokuhisa. 1981. Presence of interchain disulfide bonds between two gene products that compose the secreted form of an antigen-specific suppressor factor. J. Exp. Med. 153:1672.
- 29. Taussig, M. J., and A. Holliman. 1979. Structure of an antigen-specific suppressor factor produced by a hybrid T-cell line. *Nature (Lond.)*. 277:308.
- Furusawa, S., M. Minami, D. H. Sherr, and M. E. Dorf. 1983. Analysis of the suppressor T cell cascade with products derived from T cell hybridomas. *In Cell Fusion. R. F. Beers* Jr., and E. G. Basset, editors. Raven Press, New York. In press.
- 31. Yamauchi, K., N. Chao, D. B. Murphy, and R. K. Gershon. 1982. Molecular composition of an antigen-specific, Ly-1 T suppressor inducer factor. J. Exp. Med. 155:655.
- Sherr, D. H., M. Minami, K. Okuda, and M. E. Dorf. 1983. Analysis of T cell hybridomas. III. Distinctions between two types of hapten-specific suppressor factors that affect plaqueforming cell responses. J. Exp. Med. 157:515.
- Lei, H. Y., S. T. Ju, M. E. Dorf, and C. Waltenbaugh. 1983. Regulation of immune responses by I-J gene products. III. GT-specific suppressor factor is composed of separate I-J and idiotype-bearing chains. J. Immunol 130:1274.
- 34. Jerne, N. 1974. Towards a network theory of the immune system. Ann. Immunol. (Paris). 125C:373.