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Avoiding graft-vs .-host disease (GVHD)' while retaining the engraftment-pro-
moting and antileukemic effects of T cells in allogeneic marrow remains a major
challenge in the field of bone marrow transplantation (BMT). While T cell deple-
tion reduces the incidence of GVHD, it is associated with an increased probability
ofengraftment failure (1-6) and a greater risk ofleukemic relapse (4, 5, 7) . Previous
work from this laboratory has demonstrated that the GVHD-related mortality of
lethally irradiated, bone marrow-reconstituted mice can be delayed by the coad-
ministration of T cell-depleted (TCD) syngeneic marrow (8). Although this result
was encouraging, we have found the magnitude ofthe protection from acute GVHD
mortality to be limited, and no protection from chronic GVHD mortality has been
apparent (8). We therefore sought a method of augmenting this protective effect
of TCD syngeneic marrow. We have previously demonstrated that TCD syngeneic
marrow is responsible for most of the natural suppressor (NS) activity arising in
spleens of lethally irradiated mice reconstituted with a mixture of allogeneic plus
syngeneic marrow, and have hypothesized that such cells might be responsible for
the anti-GVHD effect of TCD syngeneic marrow (9). Since cell lines with in vitro
NS activity and in vivo anti-GVHD effects have been successfully cultured in IL-2
(10, 11 ; Sykes M., K. A. Hoyles, M. L. Romick, and D. H. Sachs, manuscript in
preparation), we wished to address the possibility that the administration of IL-2
in vivo to lethally irradiated, bone marrow-transplanted mice might increase the
anti-GVHD effect of TCD syngeneic bone marrow. Our results indicate that IL-2
provides significant protection against GVHD mortality from allogeneic lympho-
cytes while permitting complete repopulation by allogeneic bone marrow cells (BMC).
When suboptimal amounts of IL-2 were given, maximal protection was achieved
when TCD syngeneic marrow was also administered . Survivors protected in this
manner similarly demonstrated complete allogeneic reconstitution .

Address correspondence to Megan Sykes, Transplantation Biology Section, Immunology Branch, Na-
tional Cancer Institute, Building 10, Room 4B13, National Institutes of Health, Bethesda, MD 20892 .

1 Abbreviations used in this paper. BMC, bone marrow cells ; BMT, bone marrow transplantation; FCM,
flow cytometry; GVHD, graft-vs .-host disease ; LAK, lymphokine-activated killer; NSy natural suppressor;
TCD, T cell depleted .
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Materials and Methods
Animals.

	

Male and female C57BL/10SnJ (1110, H-26 , KbIbSbDb), B10.D2/nSn (1110 .132,
H-2d, KdIdSdDd), and A/J (H-2a, KIIISdDd) mice were obtained from The Jackson Labora-
tory Bar Harbor, ME, or from the Frederick Cancer Research Facility ofthe National Cancer
Institute .
BMT.

	

BMT was performed as previously described (12) . Briefly, recipient B10 mice, aged
12-16 wk, were lethally irradiated (1,025 rad, 137Cs source, 110 rad/min) and reconstituted
within 8-12 h with BMC obtained from the tibiae and femora of sex-matched donors aged
6-14 wk. Animals were housed in sterilized microisolator cages, in which they received au-
toclaved food and autodaved acidified drinkingwater. Syngeneic (1110) bone marrow was TCD
using rabbit anti-mouse brain serum, as previously described (12) . 1-1 .5 x 10' untreated
fully MHC-mismatched allogeneic (B10.D2 or A/J) BMC were administered with or without
allogeneic spleen cells, varying in dose from 6.5 x 106 (A/J spleen cells) to 3.5 x 10' (B10.D2
spleen cells) . All BMC and spleen cells were coadministered in a single 1-ml intravenous in-
jection . Irradiation controls received no BMC or spleen cells and died 7-12 d after irradiation .

To avoid any cage-related effects on experimental results, animals were randomized both
before assigning the experimental groups, and after BMT, so that animals from different
experimental groups were randomly mixed in each cage . Survival was checked on a daily
basis for 100 d .
IL-2Administration.

	

The indicated doses ofhuman rIL-2, kindly provided by Cetus Corp .
(Emeryville, CA), were injected intraperitonealiy in 0.2 ml of HBSS. Unless otherwise indi-
cated, the first dose of IL-2 was administered 1-3 h before BMT, and approximately every
12 h thereafter, for a total of 10 doses . As a control for IL-2 toxicity, additional irradiated
animals received IL-2 plus TCD syngeneic marrow with or without allogeneic marrow, and
without allogeneic spleen cells .

mAbs .

	

FITC-conjugated mAb 5F1 (anti-Kb) (13) and biotinylated mAb 34-2-12 (anti-Dd)
(14) were prepared by standard methods using antibodies purified from ascites using protein
A-Sepharose 411 beads (Pharmacia Fine Chemicals, Uppsala, Sweden) .

Phenotyping of Chimeras .

	

Phenotyping was performed 9-15 wk after BMT Animals were
bled and PBMC were isolated as described (12) . PBMC from each animal were then split
into two tubes, and staining with mAbs was performed as described (15) . Staining with both
donor-specific and host-specific mAbs was performed on each chimera and control animal .
One-color flow cytometry (FCM) was performed as described (16) . In all experiments, per-
cent staining was determined from one-color fluorescence histograms and comparison with
those obtained from normal donor and host-type animals, which were used as positive and
negative controls . The percentage of cells considered positive after staining with a mAb was
determined using a cutoff for positivity chosen as the fluorescence level at the beginning of
the positive peak of the positive control strain . The relative percent staining of a chimera
with a mAb was calculated using the formula : 100 x (chimera percent positive) - (negative
control percent positive)/(positive control percent positive) - (negative control percent posi-
tive) . Since the mAbs used were allele specific for class I H-2 antigens, nearly 100% of cells
from positive control animals, and 0% of cells from negative control animals, stained with
each mAb in every experiment .

StatisticalAnalysis.

	

Survival probability was determined using the censored data technique
of Kaplan-Meier, and statistical significance was determined using the method of Wilcoxon
and Breslow. Since this method of analysis attributes increased weight to the early portion
ofa survival curve, a two-tailed stratified log rank survival test was substituted when the ques-
tion of protection from late mortality was specifically being addressed . All statistical results
are expressed as p values, and values <0.05 are considered to be significant .

Results
Effects of IUD Syngeneic Marrow and IL-2 on Mortality from Moderate GVHD.

	

The
results in Fig . 1 show the effects of TCD syngeneic marrow and IL-2 on mortality
from a moderately severe GVHD, which caused early mortality in one third of con-
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trol animals. The survival of lethally irradiated B10 control mice given 1.5 x 10 1
A/J BMC plus 8 x 10' A/J spleen cells is shown by the solid line in Fig. 1, B-D.
All animals presumably succumbed to GVHD, since control animals not receiving
A/J spleen cells demonstrated excellent survival (Fig. 1 A) . The results in Fig. 1 B
demonstrate that, while TCD syngeneic marrow prevented early GVHD mortality,
all animals eventually succumbed to chronic GVHD, and the overall survival curve
was not significantly different from that ofthe controls . However, similar to previous
reports (17), GVHD mortality occurred in two phases, including an acute phase
in which deaths occurred between days 7 and 15, and amore chronic phase, usually
beginning after day 30 . We therefore performed separate statistical analyses on the
two phases of the survival curves . Analysis of the early portion of the curves (i .e.,
the first 25 d) revealed a statistically significant (p < 0.02) protective effect of TCD
syngeneic marrow against mortality. When the results ofthis experiment were com-
bined with three others involving similarly mild early GVHD mortality, a significant
protective effect ofTCDsyngeneic marrow was again demonstrated (data not shown) .
The effect of IL-2 administration on GVHD mortality is shown in Fig. 1 C. In

these animals, IL-2 was found to protect against both early and late GVHD mor-
tality (Fig. 1 C; p < 0.008) .

Fig. 1 D shows the effect of combined treatment with TCD syngeneic marrow
plus IL-2, 50,000 U twice daily from days 0 to 4, on GVHD mortality. This com-
bined regimen significantly reduced both early and late GVHD mortality, so that
63% of animals survived >100 d, compared with only 7°Jo survival among animals
receiving neither IL-2 nor TCDsyngeneic marrow (p < 0.0006) . Similar protection
from late GVHD mortality by this treatment regimen has been reproducibly ob-
served in another strain combination, B10.D2 into BIO (p < 0.003 for the combined
results of three experiments; n = 27 in each group) . Although the difference in sur-
vival between the groups receiving IL-2 with or without TCD syngeneic marrow
did not achieve statistical significance, long-term survival was slightly greater in
recipients ofTCD syngeneic marrow (63 vs . 46%), possibly reflecting the improved
protection from acute GVHD seen in the group receiving TCD marrow (see below).
In two additional experiments comparing chronic GVHD mortality in animals
receiving IL-2 with or without TCD syngeneic marrow, the late mortality curves
of both groups were also similar (see below) .

Effects of TCD Syngeneic Marrow and IL-2 on Mortalityfrom Severe GVHD.

	

We next
examined the effects of IL-2 on acute mortality due to a more potent GVHD. In
most experiments, administration of >8 x 10' A/J spleen cells was sufficient to kill
control recipients before day 15, as is shown by the solid line in Fig. 2, B-D, for
animals receiving 1.1 x 101 A/J BMC plus 9 x 106 A/J spleen cells. Since animals
receivingBMC without spleen cells demonstrated excellent survival (Fig . 2 A), mor-
tality was most likely due to GVHD. As shown in Fig. 2 B, administration of TCD
syngeneic marrow without IL-2 had no effect on the rapid mortality from this A/J
lymphocyte inoculum (p > 0.05), and similar results have been observed in most
experiments in which the majority of control animals died in the acute phase of
GVHD. The effects of IL-2 on such mortality in mice receiving A/J cells with or
without TCD syngeneic marrow were examined . The results in Fig. 2 C show that
IL-2 (10,000 U twice daily for 5 d) provided no protection against acute GVHD
mortality when given without TCD syngeneic marrow (p > 0.05) . In contrast, ad-
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FIGURE 1 .

	

Effect of IL-2 andTCDsyngeneic marrow on GVHD mortality from A/J lympho-
cytes. Lethally irradiated B10 mice received 8 x 106 A/J spleen cells plus 1.5 x 10' A/J BMC,
with or without 5 x 106 TCD B10 BMC, and IL-2, 50,000 U, i.p., twice daily for 5 d. (A) Sur-
vival of control animals not receiving A/J spleen cells; (") TCD B10 alone (n = 5) ; (") TCD
B10BMCplus IL-2 (n = 5) ; (p)TCDB10 BMC plus A/J BMC (n = 5); (A)TCD B10BMC
plus A/J BMC plus IL-2 (n = 5) ; (O) A/J BMC (n = 2) ; (A) A/J BMC plus IL-2 (n = 3) .
(B, C, and D) (

	

) The survival of animals receiving only A/J BMC plus spleen cells
(n = 15) . (B) ( - - - ) Survival curve of animals receiving A/J BMC plus spleen cells plus TCD
B10BMC(n = 15). (C) (- - -) Survival curve of animals receiving A/J BMCplus spleen cells
plus IL-2 (n = 15) . (D) (- - -) Survival curve ofanimals receiving A/J BMC plus spleen cells,
plus TCD B10 BMC plus IL-2 (n = 14) .

ministration o£ TCD syngeneic marrow plus IL-2 was associated with significant
protection from GVHD mortality (Fig . 2 D; p < 0.02) . Thus, coadministration of
TCD syngeneic marrow and IL-2 was necessary to protect against mortality from
the potent GVHD observed in this experiment . In an additional experiment in which
IL-2 alone did not provide optimal protection, a similar effect of TCD syngeneic
marrow was observed (data not shown) . In other experiments, IL-2 alone was capable
of producing marked protection against acute GVHD mortality (e.g., Fig. 3) .
Nevertheless, maximal early survival was achieved in recipients of TCD syngeneic
marrow along with IL-2 in five of five experiments (e.g., Figs . 2 and 3) .
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FIGURE 2.

	

Effect of IL-2 andTCD syngeneic marrow on rapid, acute GVHD mortality pro-
duced by A/j lymphocytes . Lethally irradiated B10 mice received 9 x 10 6 A/j spleen cells plus
1 .1 x 10' A/j BMC, with or without 5 x 10 6 TCD B10 BMC and IL-2, 10,000 Utwice daily
for 5 d. (A) Survival of control animals not receiving A/j spleen cells ; (`) TCD B10 BMC plus
IL-2 (n - 3); (O) TCD B10 BMC plus A/j BMC (n = 3) ; (A) TCD B10 BMC plus A/j BMC
plus IL-2 (n - 5). (B, C, andD) (

	

)Thesurvival ofanimals receiving A/jBMCand spleen
cells alone (n = 10) . (B) (- - - ) Survival curve ofanimals receivingA/j BMC plus spleen cells
plus TCDB10 BMC (n = 9) . (C) ( - - - ) Survival curve for animals receiving A/j BMCplus
spleen cells plus IL-2 (n = 9) . (D) ( - - - ) Survival curve for animals receiving A/jBMC plus
spleen cells plus TCD B10 BMC and IL-2 (n = 9) .

Relationship ofIL-2 Dose to Prevention of GVHD Mortality.

	

We examined the dose-
response relationship of IL-2 and protection from GVHD mortality. In four of five
experiments the degree ofprotection from acute GVHD mortality was directly propor-
tional to the dose of IL-2 administered . These results are summarized in Table I;
the difference in mortality in recipients of the 10,000- vs . the 50,000-U dose was
significant, but only reflected differences in acute GVHD mortality (see 25-d sur-
vival, Table I) . Only a small difference in long-term survival was apparent between
the two groups, suggesting an increase in chronic GVHD mortality in recipients
ofthe higher, compared with the lower, IL-2 dose (100-d survival, Table I). The mag-
nitude of the acute protective effect in a fifth experiment was inversely proportional



650

	

INTERLEUKIN 2 PREVENTS GRAFT-VS.-HOST DISEASE MORTALITY

100

A eo
so
70

> so
so
40

30

20

10

0

B 100

00

so
70a

>_ so
e0

~! 40

30

20

10

0
0 1 '0 20 30 40 s0

-------
1 _---

. . . . . . . . . . . . . . . . .

TIME (DAYS)

FIGURE 3 .

	

IL-2 alone prevents acute GVHD mortality,
but maximal early survival is achieved in recipients of
TCDsyngeneic marrow plus IL-2 . (A and B) Two inde-
pendent experiments showing survivalin lethally irradi-
atedmice reconstituted with similar inocula containing
A/J BMC plus A/J spleen cells, along with : no addi
tional treatment(

	

); TCDsyngeneic marrow coad-
ministered in the reconstituting inoculum on day 0
( - - - ) ; IL-2, 50,000 U twice daily on day 0-4 (A) or
day 0-2 (B) ( . . . . . ) ; IL-2, 50,000 Utwice daily on day
0-4 (A) or day 0-2 (B) plus TCDsyngeneic marrow coad-
ministered in the reconstituting inoculum on day 0
(- -) Each group contained 8-10 animals. Control
animals not receiving A/J spleen cellsdemonstrated ex-
cellent survival in both experiments .

to the dose (10,000, 25,000, or 50,000 U twice daily for 5 d) of IL-2 administered.
We considered this result to be dueto aberrant IL-2 toxicity (discussed below), and
therefore elected not to include this experiment in the summarypresented in Table
I . Control animals receiving TCD syngeneic marrow and/or A/J marrow with or
without IL-2 demonstrated uniformly excellent survival (data not shown) .

TABLE I

Dose-Response Relationship of IL-2 and GVHD Mortality
(BI0(-T) BM + AIJ BM + AIJ Spleen - B10)

No . of survivors

" The indicated dose was administered twice daily for 5 d, beginning immedi-
ately before BMT.

t MST, median survival time determined from Kaplan-Meier plots .
S P value comparing group above and below the indicated value . For group

receiving 50,000 U IL-2, P< 0.0001, compared with group not receiving IL-2 .
All P values were determined using the method of Wilcoxon and Breslow .

IL-2 dose'
U

Day 25
%

Day 100
%

MSTI
d

Ps

0 (n - 38)
10,000 (n = 38)
50,000 (n - 35)

6 (16)
21 (55)
32 (91)

5 (13)
14 (37)
16 (46)

9
47
89

<0.002
<0.03



Elect of Timing of IL-2 Administration on GVHD Prevention.

	

Several investigators
have reported that in vivo administration of IL-2 is associated with acceleration of
GVHD mortality (17-19) . One possible explanation for this discrepancy with our
own results was that IL-2 was administered by those workers for a prolonged period,
or was begun with a delay of 7 or 8 d after BMT (17, 18), whereas we began IL-2
administration on the day of BMT and completed the treatment after 5 d. To assess
this possibility, we compared survival in lethally irradiated B10 recipients of TCD
B10 marrow plus A/J BMC and spleen cells without IL-2, or with 10,000 U IL-2
administered twice daily for 5d beginning either on the day ofirradiation andBMT,
or 7 d later. The results, shown in Fig. 4, indicate that IL-2 was protective only
when administration was begun on the day of BMT (;6 < 0.01) . Administration of
IL-2 beginning on day 7 was associated with a significant acceleration of GVHD
mortality (lb < 0.0005), consistent with previous reports (17, 18). Similar results were
obtained in a repeat experiment using the higher dose of IL-2 (50,000 U) .
Although the first dose of IL-2 was administered immediately before BMT in all

experiments reported here, such timing was not critical, since additional experiments
demonstrated that delaying administration until 1 h after BMT did not reduce the
anti-GVHD effect of IL-2 (data not shown) . Administration of a single high dose
of IL-2 (immediately preceeding BMT) did not protect against acute GVHD mor-
tality (Fig . 5) .
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FIGURE 4 .

	

Effect oftiming ofIL-2 administration
on GVHD mortality. Lethally irradiated B10 mice
received 5 x 106 TCD B10 BMC, 10 1 A/J BMC,
and 9 x 106 A/J spleen cells . (

	

) Survival of
control animals not receiving IL-2 (n = 10) ; ( - - - )
survival of animals receiving 10,000 U IL-2 twice
daily for 5 d beginning on the day of BMT (n =
10) ; ( . . . . . ) survival ofanimals receiving 10,000 U
ofIL-2 twice daily for 5 d beginning 7 d after BMT
(n = 10). Control animals (not shown ; n = 5)
receiving A/J marrow plus TCD syngeneic marrow
demonstrated 100% survival .
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Since animals in some experiments began to appear ill on the fourth day of high-
dose (50,000 U) IL-2 administration, showing lethargy, hunching, and ruffled fur,
it seemed possible that this dose of IL-2 might be producing cumulative toxicity.
We therefore examined the effect of a shortened 2.5-d (five dose) course ofhigh-dose
IL-2 on GVHD mortality. As shown in Fig. 5, this shortened course was at least
as protective against early GVHD mortality as was a full 5-d course, and the animals
showed no clinical evidence for adverse effects . Similar results were obtained in a
repeat experiment . Also, no differences in later mortality have been seen after a 100-d
follow-up .

Effect ofIL-2 on Engraftment.

	

To examine the effects of IL-2 on alloengraftment,
the PBL oflong-term BMT survivors were phenotyped using mAbs and FCM. No
differences were observed in the level of allogeneic reconstitution between animals
receiving or not receiving IL-2 (10,000-50,000 U twice daily for 5 d for one or two
courses) along with allogeneic (A/J or BMW) spleen cells, BMC, and TCD syn-
geneic marrow . Examples of FCM profiles from such animals are shown in Fig. 6.
Most animals in all groups, regardless of whether or not spleen cells were administered,
demonstrated complete allogeneic lymphopoietic repopulation, similar to the results
shown in Fig. 6. In some animals receiving IL-2 plus allogeneic BMC and TCD
syngeneic BMC without allogeneic spleen cells, however, a small, negative peak
representing -1-10% of cells was evident on staining with antibody recognizing
donor H-2 antigens. This negative peak corresponded to a positive peak on staining
with antibody recognizing host H-2 antigens, and tended to disappear with time;
such host-type cells were detected in six of seven recipients tested before day 70,
and in only 5 of 27 such animals tested after day 95 . 1 of 13 simultaneous control

B10 B10.D2 FIGURE 6 . Examples of the
phenotype of lymphopoietic
cells repopulating lethally ir-
radiated B10mice treated or not
treated with IL-2, 50,000 U
twice daily for 5 d beginningon
thedayofBMT B10 micewere
lethally irradiated and recon-
stituted with either TCD 1110
BMC plus B10.D2 BMC, or
with TCD B10 BMC, 1110 .132
BMC, and 1110 .132 spleen cells,
or with B10.D2 BMC and
spleen cells alone, as indicated.
PBL were obtained 15 wk after
BMT, stained with mAbs, and
analyzed using FCM, as indi-
cated in Materials and Meth-
ods. Staining with Kb-specific
mAb 5171 (---); staining
with Dd-specific mAb 34-2-12

NO IL2 +IL2

8101-TIBM + B10.D2BM ~n\

B10.D2BM + B10.D2Spleen IV

B101-T)BM + B10.D2BM +

1

r\/B10MSpleen
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recipients ofTCD syngeneic marrow and allogeneic marrow without IL-2 demon-
strated such a peak. Of 21 animals receiving allogeneic spleen cells in addition to
TCD syngeneic marrow, allogeneic marrow, and IL-2, none showed any evidence
for repopulation by host-type cells at any time .

Discussion
In this report we demonstrate that IL-2 administered in vivo at the time of BMT

has a potent effect in preventing mortality due to both acute and chronic GVHD.
Furthermore, the combination of IL-2 and TCD syngeneic marrow provides op-
timal protection against acute GVHD mortality. Neither IL-2 alone nor IL-2 plus
TCD syngeneic marrow prevented complete lymphopoietic reconstitution by coad-
ministered allogeneic BMC plus spleen cells. This novel method of achieving com-
plete allogeneic lymphopoietic repopulation while reducingGVHD mortality presents
a possible solution to the opposing problems ofGVHD versus failure ofalloengraft-
ment associated with T cell depletion for the prevention ofGVHD (1-6) . The possi-
bility that administration of IL-2 might still permit, and even add to (20), the an-
tileukemic effects of allogeneic T cells (4, 5, 7, 21) is currently being explored in
a murine leukemia model, which we have recently described (22) .

Previous reports from this laboratory demonstrated that TCD syngeneic marrow
can delay mortality from acute GVHD (8). In the experiments reported here, we
have detected a protective effect ofTCD syngeneic marrow against acute GVHD
only when the GVHD was mild in severity (e.g ., Fig. 1) . Furthermore, consistent
with the previous report (8), TCD syngeneic marrow alone did not prevent late mor-
tality from chronic GVHD. Thus, TCD syngeneic marrow alone hasalimited ability
to prevent acute GVHD mortality and no detectable effect on chronic GVHD. In
contrast, the addition of high doses of IL-2 leads to increased protection from acute
GVHD mortality (e .g ., Figs . 2, 4, and 5), as well as significant protection from chronic
GVHD mortality (e.g ., Fig. 1) . Protection from chronic GVHD mortality is ap-
parent regardless of whether or not TCD syngeneic marrow is coadministered .

In the absence ofTCD syngeneic marrow, IL-2 also has significant protective ac-
tivity against acute GVHD mortality, but, in every instance, such protection was
less than that observed when TCD syngeneic marrow was coadministered (e.g., Figs .
2 and 3) . The ability ofTCD syngeneic marrow to increase the protective effect
in recipients of IL-2 was most apparent in experiments in which IL-2 alone provided
suboptimal protection (e.g ., Fig. 2) . In some experiments, the degree of protection
afforded by IL-2 alone was so potent that there was little room for improvement
by the addition ofTCD syngeneic marrow (e.g ., Fig. 3) . The reasons for the vari-
ability in the degree ofprotection afforded by similar doses of IL-2 alone are as yet
unclear. If this model were to be applied to larger animals or man, it is possible
that IL-2 toxicity would prevent the administration ofoptimal doses, in which case,
the improved protection provided by the addition ofTCD autologous marrow might
be desirable.
Our data suggest that activation or generation by IL-2 of a cell population con-

tained in TCD syngeneic marrow, such as lymphokine-activated killer (LAK) cells
(23-25), NS cells (23, 26), or veto cells (23, 27), might play a role in protecting from
GVHD mortality. Both NK and LAKcells have been shown to be activated by treat-
ment with IL-2 in vivo (28-31). Such cell populations in syngeneic marrow might
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suppress a GVH response better than similar populations in allogeneic marrow be-
cause oftheir ability to preferentially kill allogeneic and not syngeneic lymphoblasts
(32), or to preferentially suppress responses directed against antigens shared by the
suppressive population (9, 23, 27). The weaker effect of IL-2 in the absence of TCD
syngeneic marrow could reflect the activation of residual cell populations in the ir-
radiated host, or ofcell populations in allogeneic BMC and spleens with the ability
to suppress GVH reactions in an antigen-nonspecific manner.
Our results appear to conflict with those of other workers, who have found that

GVHD is potentiated, rather than abrogated, by in vivo administration ofIL-2 (17-19) .
This discrepancy could be due to several differences in the systems studied, including
the fact that these workers did not coadminister TCD syngeneic marrow, administered
lower doses of IL-2 (17-19), and used a delayed or prolonged time course of IL-2
administration (17, 18) . Consistent with this possibility, we observed protection when
IL-2 was administered for 5 d starting on day 0, but acceleration of mortality when
administration of the same dose was begun after a 7-d delay. Thus, IL-2 maypoten-
tiate GVHD once T cells have already become sensitized, but may prevent or abort
the sensitization of previously unprimed T cells . Indeed, IL-2 may be a mediator
of the anti-GVHD effect of CD4+ allogeneic T cells observed by Sprent et al . (17)
in a class I difference-only GVHD.
Additional possible mechanisms for the anti-GVHD effect of IL-2 include more

rapid hematopoietic recovery induced by IL-2 (33), which may be secondary to the
production of hematopoietic growth factors by activated NK cells (34) . IL-2 may
improve resistance to infection through the antiviral, antifungal, antiprotozoan, or
antibacterial activities of activated NK cells (35, 36), or by promoting the develop-
ment of other immunocompetent cell populations; such activities might be highly
protective, since infection has been found to play a pivotal role in the induction of,
and morbidity from, GVHD (37, 38). The ability of IL-2 to prevent GVHD mor-
tality long after completion of such therapy suggests that protection is either due
to the induction of a protective cell population by IL-2, or to the permanent deletion
of GVH-reactive clones from the original allogeneic splenocyte inoculum . Experi-
ments are currently underway to distinguish between these possibilities.

In one of five dose-response titrations in the A/J into B10 strain combination, greater
protection was provided by decreasing, rather than increasing, doses of IL-2 . Al-
though we cannot explain this variability between experiments, these results, the
apparent illness of some animals after the third day of high-dose IL-2 treatment,
and the observation that IL-2 therapy beginning on day 7 leads to accelerated mor-
tality, suggested that a shorter course of high-dose IL-2 might optimize survival by
limiting IL-2 toxicity or by diminishing the exacerbation of GVHD associated with
IL-2 administration at later times afterBMT The results of such an approach (Fig.
5) support this notion, and such a protocol may prove to be optimal for avoiding
both GVHD and IL-2 toxicity.
We have obtained preliminary evidence for a transient, early increase in NK ac-

tivity in the spleens ofsome, but not all, lethally irradiated mice receiving IL-2 and
TCD syngeneic marrow (data not shown) . Since NK cells have been found to play
a role in mediating IL-2 toxicity (39), resisting alloengraftment (40-42), and effecting
GVHD-related injury (43), it will be important to dissect the role, if any, of NK
cells in the phenomenadescribed here . Despite the increase in NK activity observed
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in some animals, complete allogeneic repopulation was achieved in all long-term
survivors reconstituted with TCD syngeneic marrow, allogeneic marrow, and al-
logeneic spleen cells .

In summary, we have presented a new approach to the avoidance of mortality from
acute and chronic GVHD that does not prevent alloengraftment . Attempts to un-
derstand the mechanism of this effect, and to apply it in a leukemic model (22),
will help to determine its potential for clinical application .

Summary
Previous work from this laboratory has demonstrated that T cell-depleted (TCD)

syngeneic marrow can delay, but not prevent, the mortality from acute graft-vs .-
host disease (GVHD) caused by MHC-mismatched lymphoid cells administered
to lethally irradiated mice. We demonstrate here that a protective effect against GVHD
is also observed after in vivo treatment with IL-2 . Administration of 10,000-50,000 U
of IL-2 twice daily for the first 5 d after bone marrow transplantation markedly re-
duced the mortality from both acute and chronic GVHD induced across complete
MHC barriers in lethally irradiated mice, and frequently led to long-term survival .
Complete allogeneic reconstitution was demonstrated in all long-term survivors of
this treatment regimen . While either IL-2 or TCD syngeneic marrow administered
alone was protective in some experiments, the maximal protective effect was ob-
served after administration ofboth IL-2 and TCD syngeneic marrow, especially when
the effects of IL-2 were suboptimal. The timing of IL-2 administration was critical
to this beneficial effect, since a delay of 7 d in commencing IL-2 treatment was as-
sociated with accelerated GVHD mortality. This new approach to the prevention
ofGVHD permits the administration of allogeneic T cells, and may therefore avoid
the increased incidence of graft failure and loss of antileukemic effects associated
with the T cell depletion of allogeneic marrow, which is otherwise required for the
prevention of GVHD.
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