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In the presence of Fe*?, Oz~ and Hy0; react in vitro to form hydroxyl radical
(-OH). Considerable attention has been focused on the role of iron-catalyzed -:OH
production in phagocyte microbicidal activity and tissue damage. Early studies im-
plied that both neutrophils (PMN [reviewed in reference 1]) and mononuclear phago-
cytes (2-9) generated -OH in the absence of an exogenous catalyst. However, the
experimental systems used in these studies probably lacked specificity for -OH (1).

Using spin trapping, generally considered the most specific technique for -OH
detection, we did not find evidence for -OH production by human PMN in the ab-
sence of an exogenous iron catalyst (10, 11). Even then, -OH production appears
to be inhibited by PMN secretion of lactoferrin and myeloperoxidase (MPO) (11-13).
Monocytes do not possess lactoferrin (14) and have less MPO than PMN (15). Differen-
tiation of monocytes to monocyte-derived macrophages (MDM) is associated with
the loss of MPO (15) and the acquisition of tartrate-resistant acid phosphatase (TRAP)
(16). TRAP is an iron-containing enzyme, similar to uteroferrin, that may act as
an -OH catalyst (17). The current work was undertaken to determine if these factors
influenced the potential for -OH formation by mononuclear phagocytes.

Materials and Methods

Preparation of Phagocytes. Human mononuclear leukocytes and PMN were obtained by dex-
tran and Ficoll-Hypaque separation. Monocytes and lymphocytes were separated by placing
them in sterile petri dishes at 37°C, for 2 h. After washing, adherent monocytes were gently
scraped into suspension. For MDM, monocytes were incubated in medium 199 (University
of Towa Cancer Center) with 13% autologous serum and gentamicin (50 ug/ml) for 5-7 d.
MDM were released with trypsin and EDTA or by gentle scraping. In some cases, MDM
were incubated in IFN-y (100 U/ml) for an additional 4 d.
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TRAP Activity.  TRAP activity was assessed using the previously described cytochemical
and paranitropheny] phosphate colorometric assays (16). For TRAP release studies, MDM
were exposed to desired stimuli for 30 min, pelleted, and supernatant was removed.

Spin Trapping. Sequential EPR spectra of phagocytes (0.25-1 x 107/ml), 5,5-dimethyl-
1-pyrroline-1-oxide (DMPO, 0.1 M), DMSO (Me;SO, 0.14 M), stimulus (PMA, 100 ng/ml;
or opsonized zymosan (OZ), 3 mg/ml), and buffer (HBSS containing 0.1 mM diethylenetri-
aminepentaacetic acid [DTPC])) were recorded at 25°C using an EPR spectrometer (model
E-104A; Varian Associates, Inc., Palo Alto, CA). Where desired, ferrous ammonium sulfate
(0.1 mM), SOD (10 pg/ml), and catalase (600 U/ml) were included. Exclusion of DTPC did
not qualitatively alter the EPR spectra. Spectrometer microwave power was 20 mW, modula-
tion frequency was 100 kHz with an amplitude of 1.0 G, sweep time was 12.5 G/min, and
the receiver gain was 3.2 x 10* with a response time of 1 s.

DMPO reacts with Oy~ and -OH to yield 2,2-dimethyl-5-hydroperoxy-1-pyrrolidinyloxyl
(DMPO-OOH) and 2,2-dimethyl-5-hydroxy-1-pyrrolidinyloxyl (DMPO-OH), respectively
(11). However, DMPO-OH is also a decomposition product of DMPO-OOH, making it un-
reliable as evidence for -OH production (1, 10, 11). -OH reacts with Me;SO to form methyl
radical, which can be spin trapped as 2,2,5-trimethyl-1-pyrrolidinyloxyl (DMPO-CH3) (refer-
ences 10, 11). When Me2SO is present in excess of DMPO as in this study, -OH production
is manifested primarily as DMPO-CH3, providing a more specific detection system for -OH.

Results

Spin Trapping of Oxygen-centered Radicals After Monocyte Stimulation. EPR spectra were
obtained after monocyte stimulation with PMA or OZ. PMA spectra comprised
mostly DMPO-OOH and DMPO-OH (Fig. 1). With OZ, DMPO-OH dominated
with only small DMPO-OOH peaks detected (Fig. 1). Small DMPO-CHj; peaks
observed were not in excess of those expected from the small quantity of -OH pro-
duced as a direct decomposition product of DMPO-OOH (10). SOD markedly in-
hibited all spin-trapped adducts whereas catalase had no effect (Fig. 1). No qualita-
tive difference was noted in spectra obtained after OZ stimulation of monocytes
pretreated with cytochalasin B (data not shown), excluding the possibility that the
monocyte phagosome prevented detection of -OH. Monocytes stimulated with PMA
or OZ in the presence of exogenous Fe*? to induce -OH production yielded EPR
spectra dominated by DMPO-CH3 (Fig. 1).

Detection of Oxygen-centered Free Radical Production by MDM. MDM stimulated with
PMA or OZ yielded spectra that were a composite of DMPO-OOH and DMPO-
OH (Fig. 2). Minimal DMPO-CH3 was detected. DMPO-OOH peaks were greater
with PMA whereas DMPO-OH peaks were larger with OZ. With either stimulus,
SOD inhibited all adducts, whereas catalase had no effect (Fig. 2). Cytochalasin
B did not result in qualitative changes in the spectra (data not shown). MDM pos-
sessed TR AP that was released by exposure to either stimulus (Table I). Stimulation
of IFN-y-treated MDM with PMA or OZ (Fig. 2) only increased Oz~ -derived spin-
trapped adducts (DMPO-OOH and DMPO-OH). Minimal DMPO-CH3s was ob-
served. IFN-y decreased MDM TRAP (Table I).

Free Radical Production by Monocytes and MDM in the Presence of Exogenous Iron.  Next
-OH production by iron-supplemented mononuclear phagocytes and PMN was com-
pared. Monocytes and MDM stimulated with PMA or OZ in the presence of Fe*?
(Fig. 3), exhibited sustained -OH production (stable or increasing DMPO-CHyg).
Catalase inhibited DMPQ-CHj3 90-100% whereas SOD inhibited 20-40%. Under
the same conditions PMN -OH generation terminated after 10-15 min (Fig. 3).
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TasLe 1
Acid Phosphatase Activity in Mononuclear Phagocytes

Acid phosphatase activity

TRAP
Release cytochemical
Phagocytes Total Tartrate resistant PMA OZ OZ/CB stain
Monocytes  21.5 ¢ 2.6 18.4 + 2.4 ND ND ND -
MDM 43.0 + 7.5 36.8 + 6.6 15 25 19 +
MDM-¥ 9.5 + 2.9 83 + 2.5 0 0 0 -

Mean + SEM (n = 8-18) of total acid phosphatase and TRAP activity expressed as mU acid
phosphatase/mg cellular protein of monocytes, MDM, and IFN-y-treated MDM (MDM-y).
Percentage of TRAP released extracellularly by MDM and MDM-y after stimulation with
PMA, OZ, or OZ after preincubation with cytochalasin B (OZ/CB) is also shown (n = 3),
as are results of cytochemical stain for TRAP.

Discussion

PMN do not possess the endogenous capacity for -OH formation (1, 10, 11) and
the lactoferrin and MPQ release limits -OH generation even if the cells are provided
with an exogenous iron catalyst (11-13). Their relative lack of MPO (15), absence
of lactoferrin (14), and presence of TRAP (16) suggested that mononuclear phago-
cytes might have a greater propensity than PMN to generate -OH. However, when
monocytes or MDM were stimulated with either PMA or OZ, only DMPO-OH
and DMPO-OOH were observed. Since -OH production should have been manifested
as DMPO-CH; and all spin-trapped adducts were blocked by SOD but not cata-
lase, these data indicate only Oy~ formation. Oz generation manifested as DMPO-
OH rather than DMPO-OOQOH has been noted with PMN and other nonphagocytic
cells (1, 10, 11) and appears to result from cell metabolism of DMPO-OOH to DMPO-
OH (1). The results observed with cytochalasin B-treated cells suggest that failure
of the spin trap to reach intraphagosomal sites was not responsible for lack of -OH

MOM + PMA + Fe Ficure 3. Representative {(n

= 3) EPR scans obtained be-

ginning immediately after (scan

1) and ~35 min after (scan

2) stimulation of MDM with

PMA in the presence of Fe*3.

DMPO-CH3 remained the

only detectable adduct, indicat-

ing ongoing -OH formation.

] | | | The bottom two scans are se-
quential 6-min scans obtained

PMN + PMA + Fe immediately after PMA stimu-
lation of PMN in the presence

of exogenous Fe* 3. By the end

of the second scan DMPO-

OOH was the dominant species

with only a small DMPO-CHj

peak detectable. This indicates
termination of -OH production

M in spite of continued Oq~ for-
mation.
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detection. Thus, neither monocytes nor MDM appear to possess the endogenous
capacity to generate -OH, presumably because they do not possess and/or mobilize
an appropriate catalyst. MDM possessed TRAP and appeared to release it when
stimulated. It is not clear why TRAP release did not allow MDM -OH production.

Previous studies (2-9) reported :OH production by monocytes and/or macrophages.
However, the specificity of the assay systems for -OH used in these reports has been
questioned (1). In addition, the possibility that iron contaminating the buffers al-
lowed -OH to be produced was not addressed. To our knowledge no spin-trapping
studies of monocytes have been reported. Using spin trapping we showed that mono-
cytic HL-60 cells lack the endogenous capacity for -OH production (18). Mouse mac-
rophages have been studied by EPR (9). DMPO-OH was detected and inhibited
by MezSO, consistent with -OH production. Unfortunately, no comment was made
as to whether DMPO-CH3 was detected. Endogenous capacity to form -OH may
differ among macrophages of different species or anatomical sites.

Although IFN-y increases MDM microbicidal and tumoricidal activity, we found
no evidence that IFN-y induces human MDM to generate -OH. IFN-y reportedly
increased murine peritoneal macrophage -OH (ethylene) production 19-fold (4). This
may again reflect species differences but more likely relates to differences in the
specificity of the two -OH detection systems (1).

Monocytes and MDM, but not PMN, stimulated in the presence of exogenous
iron produced sustained -OH. This would be anticipated since monocytes and MDM
lack lactoferrin, which terminates PMN -OH production (11, 13).

Although we find no evidence for the endogenous capacity for -OH production
by human phagocytes (PMN or mononuclear), their remains the potential for phago-
cytes to induce formation of -OH in vivo under conditions where an appropriate
catalyst is present. The sustained -OH production observed with iron-supplemented
mononuclear phagocytes suggests -OH might play a significant role in the cytotox-
icity of these cells. However, the contribution of mononuclear phagocyte-derived
-OH to inflammatory mechanisms clearly requires additional study.

Summary

Monocytes lack lactoferrin and have much less myeloperoxidase than neutrophils.
They also acquire a potential catalyst for -OH production (tartrate-resistant acid
phosphatase) as they differentiate into macrophages. Consequently, the nature of
free radicals produced by these cells was examined using the previously developed
spin-trapping system. When stimulated with either PMA or OZ neither monocytes
nor monocyte-derived macrophages (MDM) exhibited spin trap evidence of -OH
formation. Pretreatment with IFN-y failed to induce MDM -OH production. When
provided with an exogenous Fe*? catalyst, both stimulated monocytes and MDM,
but not PMN, exhibited sustained -OH production, presumably due to the absence
of lactoferrin in mononuclear phagocytes. Sustained production of -OH could con-
tribute to the microbicidal activity of mononuclear phagocytes as well as inflamma-
tory tissue damage under in vivo conditions where catalytic Fe*3 may be present.

We thank Drs. Gerald Rosen, Robert Clark, and William Nauseef for their helpful com-
ments, Dr. Harold Goff for use of the EPR spectrometer, and Linda Shaull for her assistance
in manuscript preparation.
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