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Histones are a set of highly cationic proteins essentially involved in the binding
and compaction of DNA in the cell nucleus chromatin (1-3). In mammals, five sub-
classes of histones exist: H1 (f1), H2a (f2a2), H2b (f2b), H3 (f3), and H4 (f2al)
(4,5), whereby four histones form an octameric core protein aggregate (H2a, H2b,
H3, H4) around which a 145-bp DNA molecule is wrapped, forming the core par-
ticle followed by a variable (~55 bp) DNA region, complexed with H1 (6). In the
cell nucleus, histones and DNA are present in similar quantities.

These components of the cell nucleus are two of the most important antigens for
autoantibody formation in SLE (7-12), and it has been reported that the titers of
both groups of autoantibodies correlate well with disease activity (13-16).

A prominent manifestation of organ involvement in SLE patients is the occurrence
of immune complex (IC)' glomerulonephritis. After the original report by Koffler
et al. (17), attention has been focussed on the role of DNA-anti-DNA IC for >20 yr.
Two proposals have been widely discussed in connection with the glomerular depo-
sition of DNA-anti-DNA complexes: the now unfashionable notion that preformed
soluble ICs can locate in the glomerular filter (18); and second, an affinity of DNA
for the glomerular basement membrane (GBM) in vivo has been suggested (19-23),
which could then initiate in situ IC formation. Extensive studies in animals on the
kinetics and clearance of circulating free or immune complexed DNA (24-27) in
regard to size and strandedness of DNA, however, revealed rapid nonrenal uptake
and clearance. Prolonged DNA persistence is difficult to explain by accepted con-
cepts; new proposals are needed (28). Contradictory findings on the occurrence of
free or IC-bound DNA in sera from normal individuals and SLE patients have been
reported (for review see reference 29). There are a number of technical problems
involved here and it is now accepted that DNA-anti-DNA immune complexes repre-
sent only a minor part of the ICs found in lupus patients, and that increased levels
of circulating DNA are found in a variety of conditions in which lysis of cells occurs.
Preliminary studies by Fournié (29) suggest that nucleosomes, which consist of DNA
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and histones, but not free DNA, are circulating in blood and warrant more atten-
tion. In fact, a further possibility, not previously considered, is that a cationic au-
toantigen is involved; histones as a group of highly cationic nuclear antigens and
as integral components of the nucleosome suggest themselves. Experimentally ca-
tionized protein antigens are excellent nephritogens. Such an antigen shows high
affinity for the anionic sites of the GBM and can act as a planted, target antigen
for subsequently injected antibody, leading to IC glomerulonephritis with heavy pro-
teinuria (30-33). The molecular mass (>40 kD) and the isoelectric point (>8.5) of
the antigen determines its affinity for the GBM (34).

Since histones not only possess regions of dense positive charge (35) but also ag-
gregate spontaneously to form stable complexes (36-42), they are excellent candi-
dates for inducing IC formation in the renal glomerulus.

Additionally, polycations can very effectively promote the deposition of anionic
antigens (43) or ICs (44) in the GBM, which could be the key event in the pathogen-
esis of lupus nephritis. Histones could induce the deposition of the highly negatively
charged DNA in the GBM, due to either local or systemic release of DNA and his-
tone during cell lysis. This combined deposition of DNA and histones could, espe-
cially if antinuclear antibodies and complement then bind to the complex, prolong
DNA deposition in the glomerular capillary wall, leading to glomerulonephritis.

Materials and Methods

Animals. Male Wistar rats (150 g) (Zentraltierziichterei Hannover, Hannover, FRG) were
used throughout. All injections and surgical procedures were carried out under ether narcosis.

Histone Preparation.  Histones were prepared from calf thymus tissue, which had been frozen
in liquid nitrogen immediately after slaughtering. Nucleohistone was purified as described
by Johns (4) using 50 mM sodium hydrogensulfit, pH 7.4, in 0.1 M sodium chloride as a
proteolysis inhibitor (45). Total histone was extracted from nucleohistone with 0.2 M sulfuric
acid, precipitated in ethanol, and lyophilized. Histone subfractions were extracted from nucleo-
histone by the method of Johns (4) and lyophylized. Histone concentration was estimated
photometrically (40), using total histones or histone subfractions at 1 mg/ml as standard.
Histones were analyzed by SDS-PAGE as described by Thomas and Kornberg (38), except
that the total acrylamide concentration was 15%; histone solutions (see below) were diluted
in sample buffer without mercaptoethanol and were not boiled. For autoradiography of
125]-labeled proteins (see below), the gels were fixed in 40% (vol/vol) ethanol, 10% (vol/vol)
acetic acid, and dried in a slab gel dryer (Bio Rad, Miinchen, FRG). The dried gel was over-
laid with an X-ray film (Eastman Kodak Co., Rochester, NY) using two titan plates as enhancer
(Siemens, Freiburg, FRG).

Preparation of Histone Solutions. ~ All steps were performed at 4°C. Histone subfractions f1
(H1), f2a (H4 + H2a), f2b (H2b), and {3 (H3) were dissolved in 0.01 M hydrochloric acid
at 12 mg/ml and dialyzed for 1 h against 10 mM sodium phosphate buffer, pH 7.4, in dialysis
tubing (Serva, Heidelberg, FRG) that had been previously boiled. The concentration of so-
dium chloride was increased stepwise by adding PBS to the buffer until, finally, the sample
was dialyzed against PBS (I = 0.15). The histone solutions were then diluted with PBS to
final concentrations of 12 mg/ml, 1 mg/ml, and 400 pg/ml and stored frozen at -20°C.

Radioisotopic Labeling of Proteins.  Lysozyme (Sigma Chemical Co., Deisenhofen, FRG) and
histone solutions at concentrations of 1 mg/ml in PBS were labeled with ‘%I (Amersham,
Frankfurt, FRG) by the chloramine T method. The separation of free and protein-bound
iodine was done by gel filtration with an Enzymplex column (E-Y-labs, San Mateo, CA), using
PBS as an eluent. The '?’I-labeled histone subfractions were mixed with nonlabeled frac-
tions, dissolved in PBS as described above.

Determination of DNA Content of Different Histone Preparations. 'The DNA content was estimated



SCHMIEDEKE ET AL. 1881

by comparing the absorbance of histone solutions at 260 and 280 nm (Azs0/Asso DNA = 0.5;
histone = 1.68) (16).

Analysis of Aggregation Behavior of Histones. Under physiological conditions (ionic strength
[I] = 0.15, pH 7.4) gel matrices like Sephadex G100 or Superose 6 or 12 (Pharmacia Fine
Chemicals, Freiburg, FRG) completely absorb histones, which can then only be desorbed
by acidic or high molar salt solutions. This binding could be prevented by equilibration of
the column with a solution of the polycation polyethylenimine (PEI) (1 mg/ml, mol wt 1,800)
(Polysciences, St. Goar, FRG) in PBS, pH 7.4. We used an FPLC system with a Superose
6 column (total vol, 25 ml) and equilibrated the column with 4 bed vol of polycation poly-
ethylenimine, followed by washing with 4 vol of PBS. The column was calibrated using natu-
rally occurring cationic as well as chemically cationized proteins. The degree of histone aggre-
gation was analyzed at different concentrations (12 mg/ml, 1 mg/ml, or 400 ug/ml) of nonlabeled
and '*I-labeled histone. The resulting peaks were analyzed by SDS-PAGE to reveal their
histone composition (Fig. 2).

Affinity of Histone Subfractions and Lysozyme to Heparin-Sepharose.  Affinity chromatography
was done using a column with a diameter of 0.5 cm and a gel length of 1 cm containing
200 pl of packed Heparin-Sepharose CL-6B (Pharmacia Fine Chemicals) in 0.15 M sodium
chloride, 10 mM sodium phosphate, pH 7.4, using a sodium chloride gradient of 0.15-2 M,
followed by elution with 6 M guanidine-HCl, pH 7.4. The '®I-labeled samples were applied
at a concentration of 400 ug/ml in PBS in a total vol of 0.1 ml, containing 13,000-40,000
cpm/pl. The flow rate was 0.2 ml/min. Fractions (500 ul) were collected and the %I content
was analyzed using a gamma counter (MAG 312; Berthold, Bad Wildbad, FRG).

Antihistone Anttbody. Rabbits were immunized either with histone-RNA complexes, as de-
scribed by Stollar and Ward (46) or with keyhole limpet hemocyanin (KLH) (Calbiochem,
Frankfurt, FRG) histone complexes, both in CFA (Sigma Chemical Co.). In the latter case,
300 ul of histone (12 mg/ml in PBS) was mixed with 100 ul of KLH (5 mg/ml in PBS) at
4°C, incubated for 30 min at 20°C, mixed with 400 ul CFA, and emulsified. Rabbits were
injected subcutaneously three times at monthly intervals and bled 2 wk after the last injec-
tion. Sera were tested for antihistone antibodies by Western blotting (see below) using sera
obtained before immunization as well as sera from rabbits immunized with either OVA, human
serum albumin, or horse spleen ferritin as controls.

Western Blot Procedure. Total histone was loaded onto a SDS-PAGE gel (C = 15%; T =
2.7%) with a 9.5-cm long sample pouch (12.6 pg histone/cm gel) using a Havana electropho-
resis system (Desaga, Heidelberg, FRG) with a gel height of 11 cm and thickness of 1.5 mm.
Histones were transferred to nitrocellulose with a pore size of 0.2 pm, (Schleicher & Schiill,
Inc., Dassel, FRG) by electrotransfer (47). A 1-cm wide strip of the membrane was cut and
stained with amidoblack. The remaining nitrocellulose was incubated in 10% (wt/vol) skimmed,
powdered milk/PBS solution and cut into 0.5-1-cm wide strips with a noodle machine, and
strips were incubated overnight with a 1:1,000 dilution of the appropriate rabbit sera in
milk/PBS plus 0.1% Tween 80 (Serva) followed by several washings in PBS/Tween. Then the
strips were incubated with peroxidase-labeled goat anti-rabbit IgG (Dianova, Hamburg, FRG)
(1:5,000 dilution) for 1 h, followed by washing in PBS/Tween. The strips were developed with
diaminobenzidine (Sigma Chemical Co.) (40 mg diaminobenzidine + 7.5 ul H2O; in 100
ml PBS).

Immunofluorescence.  5-pm cryosections of snap-frozen renal tissue were incubated with
specific rabbit antihistone antisera (dilution 1:40-1:80) for 30 min. For the second-step,
fluorescein-labeled goat anti-rabbit antibody (Nordic, Tilburg, Netherlands) at a dilution
of 1:80 was used. Controls were as described for Western blotting.

Coded sections were always analyzed by the same observer and graded from negative (¢)
to + + + +. Selected sera from SLE patients with antibodies to ssDNA (tested by a Farr assay
with '®I-labeled ssDNA) but without antibodies to f3 (tested by Western blotting) were used
to detect ssDNA by indirect immunofluorescence.

Kidney Binding of Intravenously Injected Histone. Histone f2a was injected intravenously (2
mg/100 g body weight) into each of four rats, a control group of four rats received the same
dose of the highly cationic, but not spontaneously aggregating protein lysozyme. Kidneys
were removed 15 min after injection and analyzed by immunofluorescence for histone or
lysozyme deposition, respectively.
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Organ Binding of '%°I-histone Subfractions. Groups of five to six rats were analyzed for each
histone, control experiments were done with lysozyme. After opening the peritoneal cavity,
a number 20 needle was inserted into the aorta and tied in place so that the tip was level
with the left renal artery. The aorta was ligated above the left and below the right renal artery
and the left kidney was injected with 0.3 ml of PBS to remove blood, followed by 0.5 ml of
the 'I-histone fraction (200 pg protein) at a flow rate of ! ml/min, followed again by 0.3
ml of PBS; the ligature was then removed to reestablish normal blood flow. 15 min later, 1ml
of blood was taken from the right jugular vein and then both kidneys were perfused with
5 ml of PBS via the aorta after clamping the aorta above the arteries and severing both renal
veins. Both kidneys were removed and the radioactivity was counted, then the upper fifth
part of each kidney was taken for immunofluorescence; the glomeruli were isolated from the
remainder of the left kidney only, and the radioactivity was measured. The number of glomeruli
isolated was estimated by direct counting of aliquots; it was assumed that a single kidney
contained 38,000 glomeruli (48). In addition, liver, spleen, lung, and heart were removed,
and the radioactivity was counted. When kinetic studies were performed, nerfusion proce-
dures were done as above, then the abdominal wall was closed in the normal fashion and
the skin was joined with clamps. At selected time points, organs were removed and treated
as detailed above.

In Situ Formation of Histone-Antihistone IC in the GBM. In a group of three rats, 500 ug his-
tone f2a was injected intraaortally into the left kidneys. 10 min later, 0.6 ml/100 g body weight
of rabbit antihistone antiserum was injected intravenously into the tail vein. Animals were
killed 1 h later. Both kidneys were analyzed by direct immunofluorescence for rabbit I1g depo-
sition. A control group of three rats received only rabbit antihistone antiserum.

Binding of ssDNA Fragments after Histone Injection. Highly polymerized calf thymus DNA
(Worthington/Cooper Biomedical, Frankfurt, FRG) was dissolved in PBS at 2 mg/ml con-
taining 5 mM MnCl, and digested with DNAse I (10 ug/ml) (Sigma Chemical Co.) at 37°C.
Digestion was stopped after intervals of between 15 s and 3 min by adding 0.2 M Na-EDTA,
pH 7.4, to a final concentration of 10 mM. DNA was denatured by the procedure of Doty
et al. (49). Each digestion batch was analyzed by FPLC-gel filtration chromatography on
a Superose 12 column (Pharmacia Fine Chemicals). Different batches were mixed to get a
polydisperse ssDNA pool with uniform DNA distribution throughout ranging from the ex-
clusion volume of the column (Emstem -Stokes Radius > 100 A) to an ESR of ~17 A. The
DNA pool was treated with proteinase K and purified by phenol-chloroform extraction and
alcohol precipitation as described by Maniatis et al. (50). The precipitated DNA was dis-
solved and dialyzed against PBS, denatured again, and reanalyzed by FPLC-gel filtration.
The final concentration of ssDNA was 820 pug/ml, measured photometrically at 260 nm. 500 ug
histone f3 was injected intraaortally into the left kidneys of a group of five rats, kidneys were
perfused afterwards with 300 ul of PBS, and subsequently, 30 s later with 320 pg ssDNA
fragments.

In control group 1, five rats received PBS instead of histone f3 followed by ssDNA frag-
ments; in control group 2, two animals received only histone f3. Kidneys were excised 15
min after the injection and studied by immunofluorescence using rabbit anti-f3 and human
anti-ssDNA for the detection of f3 and ssDNA, respectively.

Statistical Analysis.  Statistical analysis was done using a KWIKSTAT Software program
(Mission Technologies, Cedar Hill, TX). Independent groups were compared by the ¢ test,
if the distribution of the individual values was consistent with the normal distribution.

Results

Composition of Nonlabeled and '#°I-labeled Histone Subfractions. The histone subfrac-
tions prepared according to Johns (4) were composed of the corresponding histone
proteins at good purity (Fig. 1). f3 was composed not only of H3 and its dimer,
but also of H2A and H4. Autoradiographic analysis of ?°I-labeled samples showed
that the protein profile was nearly identical to that seen with Coomassie blue stain-
ing. In the case of f3 the contaminating H4 component was labeled to nearly the
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Ficure 1. SDS-PAGE (C =

15%, T = 2.7%}) of histone sub-

fractions, prepared according to

Johns (4) and solubilized as

-H1 = f1 - described in Materials and
- Methods. (Left side) Coomassie

blue staining (lanes I-¢ and 4);

(r2ight side) autoradiographic

/H..? =f3 analysis of !*I-labeled histone

= subfractions (lanes /-4). Lane

o - = fggb_ ;gbg " 1 f1; lane 2, 2a; lane 3, 2b;
a=rza lane ¢4, f3; 4, total histone.

N -H4 =f2al ® ®  (Classification of Bradbury (B)

(5) and Johns (J) (4).

F 2 3 4 h B J 1234

same extent as H3, indicating that tyrosine might be more accessible in H4 than
in H3 (51). In spite of the lack of protease inhibitors during preparation of histone
solutions used for injection, the extent of proteolysis was very low and was not evi-
dent in the case of f2a and f3. Only f1 showed initial proteolytic degradation after
1251 Jabeling.

Analysis of DNA Content of Different Histone Preparations. 'The histone subfractions
contained only low quantities of contaminating DNA: f1, 1%, f2a, 0.3%; f2b, 1%:;
and {3, 0.4%.

Analysis of Aggregation Behavior of Histones. The results of gel filtration chroma-
tography and peak composition analysis in SDS-PAGE are shown in Fig. 2. All his-
tone subfractions, including f1, revealed at least two peaks, one of low molecular
weight and the other of high molecular weight, due to aggregates of varying size.
f2a and f3 showed marked size heterogeneity and peak composition was variable.
H4 was enriched in the high molecular weight fraction of f2a and H3 in the high
molecular weight fraction of f3, respectively. Reanalysis of the highly aggregated
fraction revealed two peaks, a major one corresponding to the original material and
a minor one of lower molecular weight resulting from dissociation. Analysis of his-
tone solutions at low concentrations showed a reduction in the degree and extent
of aggregation; the proportion having a high molecular weight (aggregate) and the
maximum size decreasing. These data are consistent with the assumption of a re-
versible aggregation process, as has already been described in ultracentrifugation
studies by Sperling and Bustin (40).

In our studies, f3 showed the highest degree of aggregation and f1 and f2b showed
the lowest. Further studies showed that the elution profile of radioactivity of the
!%]-labeled histone preparations was identical with the optical absorption profile
at 280 nm, so we could assume that these fractions were representative of the whole
histone fractions, which were later used for in vivo studies.

Affinaty of Histone Subfractions and Lysozyme to Heparin-Sepharose. A Heparin-Sepharose
column was used to study the affinity of histones and lysosome to 2 GBM heparan-
sulfate-like matrix. This in vitro test correlates well with our in vivo findings. Fig.
3 shows the elution profiles of histone subfractions f1, f2a, and lysozyme using a
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Ficure 2.  Aggregation behavior of histone subfractions, concentration 12 mg/ml, sample volume
0.2 ml, flow 0.5 ml/min, analyzed by FPLC-gel filtration chromatography on a Superose 6 HR
10/30 column (total gel bed vol, 25 ml). Protein profiles of peak fraction analysis in SDS-PAGE
are shown in inserts. A, total histone; ¢, analyzed material. Markers for molecular masses were:
900 kD/450 kD, dimeric/monomeric cationized ferritin; 240 kD, cationized catalase from bovine
liver; 160 kD, cationized human IgG; 70 kD, cationized human serum albumin; 17.8 kD, myo-

globin from horse; 14.4 kD, ovine lysozyme.

salt gradient of 0.15-2 M NaCl. Lysozyme elutes at very low salt concentrations,
indicating a low affinity, whereas histone f1 has a medium affinity, the main por-
tion eluting at 1 M NaCl. Histone f2a and histone f3, with a high affinity, could
not be desorbed even with 2 M NaCl; an even higher salt concentration, 6 M guani-
dine-HCI, had to be used. The elution profile of f3 was nearly identical to f2a. In

60

50

40

30

20

% eluted ~ lysozyme T 6M guanidine
- f’
. fZa
fk‘,
it .
it ent]l !
i adie™) 2M NaCl
e
[ : 1M NaCl
Z /""‘ 3 i
0 5 10 15 20 25

elution volume (ml)

Ficure 3. Affinity of histone subfractions {1, f2a,
and lysozyme to Heparin-Sepharose tested by salt
elution studies. Running conditions were: Total
bed volume, 200 pl; sample volume, 100 ul (400
pg/ml in PBS). Elution buffers: buffer 1 (bl), 0.15
M NaCl, 10 mM sodium phosphate; buffer 2 (b2),
2 M NaCl, 10 mM sodium phosphate; buffer 3
(b3), 6 M guanidine-chloride, pH 7.4. Gradient:
0-20 ml, linear gradient start 100% bl, 0% b2,
end 0% bl, 100% b2; 20-25 ml, 100% b3. Frac-
tion vol, 1 ml.
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the case of {2b, ~50% of the radioactivity eluted with the sodium chloride gradient.
The data for f2b and f3 are not shown in Fig. 3 for improved clarity.

Antisera to Histone Subfractions. 'The antihistone reactivity of various rabbit an-
tisera raised against complexes of histones with either hemocyanin (KLH) or RNA
are shown in Fig. 4. Rabbits immunized with histone KLH developed antibodies
to histones more frequently and in higher titers than animals treated with histone
RNA. Some sera showed broad reactivity against nearly all histone subfractions,
whereas others were specific for single subfractions, such as H3 or H2a/H4. All
control sera showed essentially no antihistone reactivity.

Kidney Binding of Histone f2a and Lysozyme after Intravenous Injection. Histone f2a
binds to the GBM as effectively when given intravenously as when it is given intra-
aortally (see below). We used higher doses for intravenous injection, because of the
ability of histones to bind to various other tissues throughout the body. Histone
f2a showed a linear to fine granular pattern of deposition along the GBM and pe-
ritubular capillaries (Fig. 5 4). It was also seen in reabsorption droplets in the proximal
tubules, whereas lysozyme, injected in control rats, was found only in the latter lo-
cation (Fig. 5 B). Preliminary studies with '%I-labeled histone fractions showed in-
creasing affinities in the order of f1, f2a, and {3 (data not shown).

Organ Distribution of Histone Subfractions after Injection via the Aorta.  After injection
of 1%°I-1abeled histones, all subfractions tested showed a high affinity to glomerular
structures in comparison with lysozyme. The ratio of glomerular bound histone to
bound lysozyme ranged from a factor of 33 (f1) to a factor of 79 (f3). The organ
distribution of !?°I-histone and !*I-lysozyme is shown in Table I. Renal histone
binding was seen almost exclusively in the left (perfused) kidney, whereas lysozyme
was deposited in the right kidney as well. Virtually no lysozyme was found in iso-

A flf2af3f2bfl 3fZa f12af3f2b
hhhhrrr cccc

Ficure4. Western blots of sera from rabbits immunized with histone-RNA (r) or histone-KLH
(%) complexes. Control sera (before immunization) of the animals receiving histone-KLH are
shown on the right side (¢). All sera were used at a dilution of 1:1,000. Amido black stain of
histone antigen fixed on the nitrocellulose strip (4).
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Ficure 5.  Histone as a planted antigen. Indirect (4~C) or direct immunofluorescence (D). (A)After
intravenous injection of histone f2a (2 mg/100 g body weight), the antigen is deposited in a linear
to fine granular fashion along the GBM and the peritubular capillaries. Only a small amount
is detectable in reabsorption droplets in the cytoplasm of tubular cells (arrows). Note absence
of nuclear staining. Compacted f2a is not accessible for the antibody. (B) In contrast, lysozyme
used as control is found only in tubular cells. (C) Localization of histone f2a after intraaortal
injection of 200 pg/100 g body weight. Kidneys were excised 15 min after injection. f2a is seen
in a linear to fine granular pattern along the capillary wall. (D) Deposition of rabbit IgG after
injecting 500 pug histone f2a into the left kidney via the aorta followed by subsequent intravenous
injection of 0.6 ml/100 g body weight rabbit anti-f2a-serum. Antibody is deposited along the
glomerular capillary wall. Direct immunofluorescence using FITC-labeled anti-rabbit IgG. x640.

lated glomeruli, by immunofluorescence it was located in the tubular cells. Histone
f1 shows the lowest, f2a a medium, and f3 the highest amount of deposition in
glomeruli. The affinity of the various histone subfractions correlated well with their
afhinity to Heparin-Sepharose in vitro (see above). The pattern of glomerular-bound
histone f2a after injection via the aorta is shown in Fig. 5 C; the distribution as
well as the intensity was similar to that of intravenously injected histone f2a. In the
case of {3, which was contaminated with H2a and H4, we found a very strong staining
of the GBM with specific anti-H3 serum, whereas staining with specific anti-H4/H2a
serum was much weaker. The opposite was found in protein reabsorption droplets
in tubular cells, which stained strongly with anti-H4/H2a and with reduced inten-
sity with anti-H3. This is in agreement with the assumption that the highly aggregated
fraction has a greater affinity for the GBM than the less-aggregated fraction, the
latter passing the glomerular filter to reach the urinary space.

Kinetic Studies of Renal '%°I-histone-f2a and '#°I-f1 Binding after Injection via the Aorta.
The results of the kinetic studies are shown in Table II. These show that, as mea-
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TabLE 1
Organ Distribution of 12> I-histone Subfractions and 12°I-lysozyme after Intraaortal Injection

Organ Lysozyme (n = 5) fl (n = 5) f2a{n = 6) f2b(n = 5) f3 (n = 5)
#“e

Left kidney 43.0 + 10.0* 113.0 + 13.0 50.0 + 15.0 60.0 + 16.0 74.0 + 20.0
Right kidney 20.0 + 10.2 5.0 + 1.7 17 £ 0.7 2.2 + 0.8 3.3 + 21
Liver 144 + 1.4 700 + 20.0 93.0 + 40.0 36.0 + 17.0 106.0 + 55.0
Splecn 1.3 + 2.8 36 + 2.8 5.3 £ 21 1.9 + 1.0 50 + 1.8
Lung 2.0 + 0.3 35+ 09 42 + 22 1.9 + 0.7 6.8 + 4.1
Heart 09 + 0.2 1.1 + 09 1.0 + 0.4 0.3 + 0.1 0.8 + 0.4
Blood (1 ml) 4.1 + 1.5 1.5 + 0.3 6.3 + 2.3 2.0 + 0.4 4.7 + 1.2
Isolated glomeruli

from left kidney 0.4 + 0.2 13.3 + 5.3 17.0 + 2.3 17.0 + 5.9 31.7 £+ 9.6

p vs. lysozyme <0.0005 <0.0005 <0.0005 <0.0005

pvs. fl <0.07 <0.005

p vs. f2a <0.005

p vs. f2b <0.05

200 pg of '*I-labeled histone f1, f2a, f2b, {3, or lysozyme was injected into the left renal artery via the
aorta. Animals were killed 15 min after injection and radioactivity was counted.
* Mcan + SD.

sured in isolated glomeruli, f1 is more rapidly cleared than f2a, in spite of the greater
quantity of f1 found in the whole kidney at all times tested. The latter is mainly
located in tubular cells, resulting from reabsorption of histones, which have penetrated
the GBM to reach the urinary space.

In Situ Immunecomplex Formation. ~ After injection into the left kidney via the aorta,
glomerular-bound histone f2a was accessible for a subsequently intravenously in-
Jected antibody. IC formation occurred in situ in the GBM, as only the left kidney
showed linear deposition of rabbit Ig by immunofluorescence (Fig. 5 D), whereas
the right kidney showed no Ig deposits. Additionally, there were some reabsorption
droplets containing rabbit Ig in the left kidney only, indicating that histone could
have disturbed normal glomerular protein restriction, leading to enhanced protein

TapLe 11
Disappearance of 12°1-f1 and '2°1-f2a from Left Kidney and Glomeruli

after Intraaortal Injection

Time interval fl f2a

after injection Left kidney Isolated glomeruli Left kidney Isolated glomeruli
HE

15 min 113.0 + 13.0*% 13.3 + 5.3* 50.0 + 15.0 17.0 + 5.9

1h 62.9 + 3.2* 4.9 + 0.5* 48.3 + 8.5 21.5 + 5.8

4h 44.0 + 4.6* 1.7 + 0.4* 215 + 6.4 9.4 + 3.4

8 h ND ND 9.5 + 2.4 4.1 + 09

Five animals were examined for each group.
* p (vs. f2a) < 0.001.
! Mean t SD.
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TasrLe III
Influence of Histone on ssDNA Binding to Glomerular Capillary Wall
Group 13 ssDNA
1 (f3/ssDNA) (n = 35) o+l + 4 4l + 4
2 (ssDNA alone) (n = 5) 3 [
3 (f3 alone) (n = 5) + o+ o+ )

Samples were injected directly into the left kidney via the aorta. Rats received
f3 alone, f3, and (subsequently) ssDNA or ssDNA alone. Kidneys were removed
15 min after the last injection. Indirect immunofluorescence using rabbit anti-
f3 or human anti-ssDNA antibody, respectively.

Ficure 6. ssDNA deposition after injection of 320 ug ssDNA without (4) or with (B) previous
injection of 500 pg f3. Indirect immunofluorescence using an SLE serum, containing antibodies
to ssDNA. ssDNA is only seen along the capillary wall when preceded by injection of histone.
Nuclear fluorescence is seen in all cases.

leakage through the capillary filter. Control animals receiving only the appropriate
antiserum did not show deposition of rabbit Ig.

Binding of ssDNA after Histone f3 Injection. The results are shown in Table III. Poly-
disperse ssDNA fragments, which we injected into the left kidney via the aorta, did
not bind to the GBM as tested by immunofluorescence using human sera from pa-
tients with SLE (Fig. 6 4). These sera had a high titer of anti-ssDNA antibodies,
but no antihistone reactivity. If the same ssDNA material was injected via the aorta
after a previous injection of histone f3, we found granular deposits of ssDNA along
the GBM and the peritubular capillaries by immunofluorescence (Fig. 6 B). The
specificity of our anti-ssDNA sera was tested using kidneys from rats injected with
histone f3 alone. These were strongly positive with our rabbit antihistone f3 sera,
but completely negative with the human anti-ssDNA sera used.

Discussion

In spite of >20 yr of intensive effort to elucidate the immunological basis of renal
involvement in SLE, this subject remains somewhat mysterious. The major focus
of attention has been on nuclear antigens, principally DNA, and a number of mech-
anisms have been proposed. These range from the classic concept of glomerular depo-
sition of preformed DNA-anti-DNA complexes (18), in situ formation of immune
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complexes initiated by binding of DNA to the GBM (19-23), as well as direct im-
munological assault mediated by anti-DNA antibodies with crossreactivity for the
GBM (52-55). All of these concepts have weaknesses and we have tried to throw
some new light onto the mechanisms involved by integrating recently gained in-
sights on charge based glomerular IC formation (30-34) and nuclear antigen in-
volvement in SLE nephritis (56). Positively charged antigens are excellent candi-
dates as “Nephritogens,” and the group of nuclear antigens contains an interesting
member, the histones. '

Our work clearly demonstrates that free, soluble histones show a high affinity for
the GBM and other basement membranes, e.g., those in the peritubular capillaries
when injected intravenously or intraaortally. For most experiments we preferred in-
traaortal injection, because it eases analysis of the parameters responsible for binding
of histones to the GBM, in contrast to the very complex interactions occurring in
the case of intravenous injection. In previous studies from our laboratory (34), two
major determinants were shown to be critical for binding of antigen to the GBM:
the size (> 40,000) and the charge, the latter roughly estimated from the isoelectric
point (pI > 8.5). In spite of a high cationic charge histones would not be expected
to persist in the GBM because of their small size (mol wt < 22,000). Histones have
the unique function of organizing the chromosomal DNA fiber into a highly con-
densed chromatin fiber. This is due to some special properties; histones can be con-
sidered as being composed of two regions, one positively charged, rich in arginine
and lysine residues, and giving the histones a high net positive charge, being respon-
sible for binding to the DNA fiber, the other hydrophobic and interacting with other
histones (35). This explains how they are able to aggregate spontaneously, in spite
of the repulsion to be expected between molecules of like charge. In fact, aggrega-
tion of histones can be promoted by adding counter ions (increase in ionic strength)
or by polyanions.

Naturally occurring aggregates, under physiological conditions, are a H2a-H2b
dimer and a H3;-H4, tetramer with association constants of 105 M~! and 7 x
10% M3, respectively, underlining their stability (37). In chromatin itself the basic
histone unit is an octamer, which is only stable in chromatin or in the presence of
2 M NaCl (38). The clustering of positive charges is presumably also responsible
for the very avid binding of histones to both Heparin-Sepharose in vitro and to the
GBM in vivo as shown here. Variation in the clustering of charges as well as in the
tendency to form reversible aggregates explain the differences between the amounts
of the various histone subfractions and lysozyme bound to Heparin-Sepharose in
vitro or to the GBM in vivo. Variation in the molecular characteristics will also be
the reason for the different clearance of f1 and f2a from the glomeruli, as seen in
our kinetic studies.

Lysozyme is a cationic, nonagggregating molecule, which shows poor binding to
the GBM, although it has been used as a tracer for anionic regions in the glomerular
capillary wall before the introduction of superior reagents (57). After chemical cross-
linking of lysozyme, leaving charge distribution untouched, the affinity of the poly-
meric lysozyme to the GBM increases (58). The histone subfractions show different
degrees of aggregation and, especially in the case of f1 and f3, the proportion of
aggregates and their molecular size correlates well with their affinity for the GBM.
When histone subfractions were compared, f1 showed the lowest affinity to the GBM
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and the Heparin-Sepharose column, although we are dealing with the most densely
charged histone. This apparent contradiction is probably due to the low tendency
of histone f1 to form aggregates (35). We do not know which subconstituent of a
soluble histone preparation has the highest affinity to the GBM as there will be an
equilibrium between the high and low size aggregate forms; in situ aggregation of
the histones in the GBM is a possibility as well. In the case of {3, we have some
evidence that the high molecular weight fraction has the highest affinity for the GBM.
By using specific antisera to H3 or H2a/H4, we could show by immunofluorescence
that H3, which was enriched in the high molecular fraction, had superior binding
to the GBM and therefore reduced passage through the GBM in comparison with
H2a/H4, which were enriched in the low molecular weight fraction.

As has been mentioned above, there is concurrence between charge repulsion and
intermolecular adherence. Interaction of the positively charged residues with an-
1onic molecules facilitates adherence between histone molecules. Therefore, interac-
tion of histones with anionic sites of the GBM together with subsequent binding
of nucleic acids may enhance aggregation and lead to locally enlarged deposits in-
side the GBM. This may be comparable with a cristallization process around a cristal-
lization germ.

A difficulty that occurs when working with free histones under physiological con-
ditions is the unavoidable contamination with proteases. Protease inhibitors are toxic
and cannot be used in vivo; apart from this, they can interact with protein mole-
cules. In our experiments with !25I-labeled histones, only f1 and f2b showed a slight
degree of early stage proteolytic degradation, which may have had some negative
influence on their binding.

We also do not know if the low amount of DNA contamination (<1%) in the his-
tone preparations could have had an influence on aggregation behavior and binding
of histones to the GBM.

Most of the autoantibodies found in SLE are directed against nuclear antigens,
which is the reason that such antigens are suspected to be involved in the pathogen-
esis of the disease. It has been reported that DNA has an affinity for purified col-
lagen, type I and III, and isolated GBM in vitro; in vivo DNA did not bind to the
GBM unless LPS had been previously injected (21). We were also unable to demon-
strate an affinity in vivo; as reported here, pure ssDNA did not accumulate along
the glomerular capillary wall after intraaortal injection, as tested by immunofluores-
cence using FITC-labeled anti-ssDNA antibody. ssDNA was only detectable when
histone had been previously injected. This could also be confirmed with radiola-
beled ssDNA (unpublished data).

It has been clearly demonstrated here that histones have a high affinity for the
GBM in vivo. An intriguing aspect is whether histones are liberated during cell break-
down in a free form, or as a complex with DNA, as the principal subunit is the nu-
cleosome structure. It is known that DNA can be liberated from chromatin by treat-
ment with heparin or dextran sulfate, which complex with histones more avidly than
DNA (59). This allows the speculation that histones present in circulating nucleo-
somes, perhaps partially degraded by nucleases, could swap their DNA partner for
the negative charges (heparin sulphate) contained in the GBM, due to the higher
avidity of the latter interaction.

A similar phenomenon has been described for platelet factor 4 (PF4), which con-
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sists of a protein complexed to chondroitin sulphate. After liberation of PF4 from
platelets, the protein portion of the molecule can exchange its polysaccharide partner
for a molecule having a higher net negative charge, for example, heparan sulfate
in the GBM (60).

The binding of histones to the vascular bed could be the key event in the patho-
genesis of lupus disease. (@) First, the tissue-bound histones can act as planted, target
antigen for circulating antibody, leading to immune complex formation. This of course
does not exclude the involvement of preformed, circulating antigen (here histone)-
antibody complexes. (5) Second, the interaction of the positive histone molecules
with the negatively charged basement membrane can promote the binding of poly-
anionic antigens, for example, DNA fragments, normally repulsed, which can them-
selves act as target antigens. Further studies are necessary to look for histone in-
volvement in murine lupus models and human disease, and they are currently
underway in our laboratory.

We are also studying, if a “change of binding partner” of histones from the nucleo-
some structure (DNA) to the histone-anionic proteoglycan complex occurs in vivo,
whereby we have shown, on tissue sections, that this holds true in vitro (unpublished
data).

Summary

An effort has been made to integrate insights on charge-based interactions in im-
mune complex glomerulonephritis with nuclear antigen involvement in lupus nephritis.
Attention was focussed on the histones, a group of highly cationic nuclear constitu-
ents, which could be expected to bind to fixed anionic sites present in the glomerular
basement membrane (GBM).

We demonstrated that all histone subfractions, prepared according to Johns (4),
have a high affinity for GBM and the basement membrane of peritubular capillaries.
Tissue uptake of 2°I-labeled histones was measured by injecting 200 ug of each frac-
tion into the left kidney via the aorta and measuring organ uptake after 15 min.
In glomeruli isolated from the left kidneys, the following quantities of histones were
found: f1, 13 pg; f2a (f2al + 2a2), 17 ug; £2b, 17 ug; and 3, 32 ug. Kinetic studies
of glomerular binding showed that f1 disappeared much more rapidly than f2a. The
high affinity of histones (pl between 10.5 and 11.0; mol wt 10,000~22,000) for the
GBM correlates well with their ability to form aggregates (mol wt > 100,000) for
comparison lysozyme (pI 11, mol wt 14,000), which does not aggregate spontane-
ously bound poorly (0.4 ug in isolated glomeruli). The quantity of histones and lyso-
zyme found in the isolated glomeruli paralleled their in vitro affinity for a Heparin-
Sepharose column (gradient elution studies). This gel matrix contains the sulfated,
highly anionic polysaccharide heparin, which is similar to the negatively charged
heparan sulfate present in the GBM. Lysozyme eluted with 0.15 M NaCl, f1 with
1 M NaCl, and f2a, f2b, and f3 could not be fully desorbed even with 2 M NaCl;
6 M guanidine-HCI] was necessary.

Two further findings of great relevance for the concept of induction of immune
complex glomerulonephritis by histones were: (2) glomerular-bound histone was ac-
cessible for specific antibody given intravenously; and (4) prior binding of histones
promoted glomerular deposition of anionic antigens, as could be shown with ssDNA
fragments. These data justify the proposal that glomerular deposition of histones
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can induce immune complex formation, start an inflammatory process, and pro-
duce tissue damage.

Recewved for publication 14 September 1988 and in revised form 12 January 1989.
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