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We determined the DNA sequence of an 8,211-base-pair region encompassing the chromosomal hemolysin,
molecularly cloned from an 04 serotype strain of Escherichia coli. All four hemolysin cistrons (transcriptional
order, C, A, B, and D) were encoded on the same DNA strand, and their predicted molecular masses were,
respectively, 19.7, 109.8, 79.9, and 54.6 kilodaltons. The identification of pSF4000-encoded polypeptides in E.
coli minicells corroborated the assignment of the predicted polypeptides for hlyC, hlyA, and hlyD. However,
based on the minicell results, two polypeptides appeared to be encoded on the hlyB region, one similar in size
to the predicted molecular mass of 79.9 kilodaltons, anqd the other a smaller 46-kilodalton polypeptide. The four
hemolysin gene displayed similar codon usage, which is atypical for E. coli. This reflects the low guanine-plus-
cytosine content (40.2%) of the hemolysin DNA sequence and suggests the non-E. coli origin of the hemolysin
determinant. In vitro-derived deletions of the hemolysin recombinant plasmid pSF4000 indicated that a region
between 433 and 301 base pairs upstream of the putative start of hlyC is necessary for hemolysin synthesis.
Based on the DNA sequence, a stem-loop transcription terminator-like structure (a 16-base-pair stem followed
by seven uridylates) in the mRNA was predicted distal to the C-terminal end of hlyA. A model for the general
transcriptional organization of the E. coli hemolysin determinant is presented.

The genetics and biochemistry of the Escherichia coli
hemolysin have become an active area of research after
recent reports of its significance in the virulence of extrain-
testinal E. coli infections (2-4, 7, 12, 43). In addition, factors
influencing the level of expression of extracellular hemolysin
activity are known to affect the level of homolysin-associ-
ated virulence in vivo (44). This evidence suggests that
insights into the regulation of the hemolysin may be of
clinical as well as academic interest. Our laboratory, along
with others, has identified by transposon-mediated mutagen-
esis an approximate coding region of seven kilobases (kb)
responsible for hemolysin synthesis (29, 30, 38, 45). Goebel
and co-workers identified within this region four cistrons,
hlyC, hlyA, hlyBa, and hlyBb, necessary for extracellular
hemolysin activity (30, 42). There exists a close similarity in
DNA sequences among E. coli hemolysins based on DNA-
DNA hybridization (1, 19, 45). However, it has also become
apparent that there are DNA sequence differences among
the E. coli hemolysins and, not surprisingly, that these
differences appear to have significant genetic, biochemical,
and pathogenic consequences (12, 23, 43, 45).

Presented here is the complete DNA sequence of the
hemolysin-encoding region of the recombinant plasmid
pSF4000. The hemolysin determinant in this case originated
from a urinary tract isolate of E. coli (strain J96, 04
serotype). Genetic as well as physical evidence indicates
that the hemolysin was originally encoded on the J96 chro-
mosome (15, 45).

MATERIALS AND METHODS
Bacteria and bacteriophage strains. Bacterial strains used

in this study include HB101, WAF100 (HB101 transformed
with pSF4000) (45) as the source ofhemolysin-specific restric-
tion endonuclease fragments, and JM101 as the host of M13
bacteriophage subclones (24). The source of hemolysin re-
combinant plasmids pSF4000 and pANN202-312 has been
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described (43, 45). DS410 (minA minB) was used as the host
background for electrophoretic analysis of [35S]methionine-
labeled plasmid-encoded polypeptides present in isolated
minicells (22). pUC9 and the replicative forms of the M13
vectors mp8, mplO, and mpll (40) used for the subcloning
were acquired from New England Biolabs, Inc., and P-L
Biochemicals, Inc.
Media and buffers. Recipes for LB broth and YT and

5-bromo-4-chloro-3-indolyl-o-D-galactoside-YT-overlay
agar media employed in growing bacteria and bacteriophage
were taken from Miller (28). Tris-acetate and Tris-borate
buffers utilized for DNA electrophoresis were prepared as
described previously (44, 45).

Molecular cloning and DNA sequencing. The strategy for
determination of the hemolysin DNA sequence by using the
chain termination method (35) and M13 vectors (40) was to
purify overlapping 1- to 3-kb restriction endonuclease frag-
ments by agarose gel electrophoresis and electroelution of
the DNA from the isolated gel slice. The isolated fragments
were redigested with a second restriction endonuclease that
is known to have multiple digestion sites within the fragment
and is capable of generating ends that are insertible in the
multiple cloning site of the M13 vectors. The redigested
fragments were ligated with the appropriately digested M13
vector, and the chimeric phage DNA was transfected into
JM101 (26). The protocols for the isolation of recombinant
templates and the dideoxy-sequencing reactions were those
suggested by the commercial supplier of the dideoxy-
nucleotide mixtures, the DNA polymerase large fragment,
and the restriction endonucleases (New England Biolabs).
[a-32P]dATP (ca. 800 Ci/mmol) was purchased from
Amersham Corp. The labeled reaction mixtures were sepa-
rated by electrophoresis on urea-10% acrylamide gels, the
gels were dried down, and the sequence was read from X-ray
film autoradiograms.
The methods used in our laboratory for the construction of

in vitro derived deletions and subclones of pSF4000 and
pANN202-312 have been described elsewhere (44, 45).
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FIG. 1. Sequencing strategy of the E. coli hemolysin located on the recombinant plasmid pSF4000. The hemolysin was localized by

Tnl-mediated mutagenesis to the region shown above the restriction enconuclease fragment map at the top. The 8.2-kb region that was
sequenced has been expanded in the lower portion of the figure (the numbered vertical lines represent 1 kb). The direction of the sequenced
DNA fragments is shown by the arrows, and the identity of the particular restriction endonuclease fragments is listed to the left. The
abbreviations for the restriction endonuclease sites shown on the physical map at the top of the figure are as follows: SA, Sall; H, HindIII;
P, PstI; S, SmaI; B, BamHI; and Bg, BglII.

DNA and amino acid sequence analysis. For routine DNA
sequence searches we employed the Pustell programs (33) on
an IBM PC microcomputer (programs provided courtesy of
International Biotechnologies, Inc.). The program for con-
struction of codon preference plots has been described
elsewhere (10). A program written to permit the drawing of
hydropathy plots and the predicted polypeptide secondary
structures by using the rules of Kyte and Doolittle (20) and
Chou and Fasman (5) was developed by M. Gribskov and R.
Burgess. These two programs were performed on a Digital
VAX computer, and the plots were produced by a Hewlett-
Packard 7221T plotter.

Isolation and radiolabeling of minicells. Minicells were
isolated from DS410 and different DS410 plasmid transform-
ants after overnight growth at 37°C in brain heart infusion
broth. The minicells were purified by sedimentation through
sucrose gradients and radiolabeled with [35S]methionine
(Amersham) according to the methods of Gill et al. (8).
Glycerol (final concentration, 0.2%) was substituted for
glucose in the minicell-labeling medium when isopropyl-
,-D-thiogalactoside-induced transcription from the pUC9
lac promoter was being examined. Isopropyl-p-D-thiogalac-
toside (final concentration, 0.66 mM) was added 30 min
before the addition of [35S]methionine label, and incubation
was continued for 90 min. Radiolabeled proteins present in
sodium dodecyl sulfate-lysed minicells were separated by
polyacrylamide gel electrophoresis by the method ofLaemm-
li (21). The gels were impregnated with En3Hance (New
England Nuclear Corp.) according to the manufacturer's
directions, and the dried gel was used for fluorography
against X-Omat R film (Eastman Kodak Co.).

RESULTS
DNA sequence of the E. coli hemolysin. Shown in Fig. 1 is

the series of overlapping M13 subclones of the hemolysin
determinant present on pSF4000 used to generate the DNA
sequence shown in Fig. 2. The sequence derived from these
covers a continuous 8,211-base-pair (bp) region of pSF4000
within which transposon-mediated mutations and deletions
indicate the hemolysin is located (45). Eighty-three percent
of both DNA strands were directly sequenced, and in most

instances in which the sequence for only one DNA strand
was available, overlapping clones of the area helped confirm
the sequence.

Association of ORFs with hemolysin cistrons. Goebel and
co-workers previously established the existence of four
hemolysin cistrons by use of subclones and their ability to
complement a series of transposon-mediated mutations (17,
30, 42). There exist four long open-reading frames (ORFs)
with ATG starts preceded by sequences resembling ribo-
some-binding sites (Shine-Dalgamo sequences) (36) within
the sequence presented in Fig. 2. They were encoded
sequentially by the DNA strand presented in the figure, and
no ORFs with the aforementioned features were found on
the reverse complement of the sequence presented in Fig. 2.
The predicted molecular masses of the polypeptides encoded
by these ORFs were, in left-to-right order (see Fig. 1), 19.7,
109.9, 79.9, and 54.6 kilodaltons (kd). Through the use of E.
coli minicells, each putative polypeptide corresponded in
mass to a similar species identified as being hemolysin-
specific and physically encoded in the region presented in
Fig. 2. Through the use of deletion and transposon mutants
of pSF4000, as well as subcloned fragments of pSF4000 and
a recombinant plasmid encoding a nearly homologous hemo-
lysin determinant (pANN202-312) in a minicell-producing
background, we identified where along the hemolysin deter-
minant the different polypeptide species were encoded.
These results are shown in Fig. 3. The order, size, and
location of the 19.7- and 109.9-kd species corresponded,
respectively, to the hlyC and hlyA cistrons (9). Although we
confirmed the apparent existence of two genes downstream
of hlyA due to the presence of two large ORFs, the order and
size of the 79.9- and 54.6-kd polypeptides were not similar to
those in previous reports (13, 18, 42). Because of this
complication and the desire to utilize conventional genetic
nomenclature, we propose that the two cistrons, respec-
tively, be termed hlyB and hlyD (rather than hlyBa and
hlyBb).
The minicell analysis of Tnl insertions within the hlyB

region of pSF4000 did not reveal the loss of any polypeptide
species detected visually in autoradiographs (data not
shown). Therefore, we chose to examine the polypeptides
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FIG. 2. Nucleotide sequence of the pSF4000 hemolysin region. The numbers above each line refer to the nucleotide position. Also listed
above the nucleotide sequence are selected restriction endonuclease cleavage sites that are referred to in the text. The predicted amino acid
sequences for HlyC (bp 796 to 1,303), HlyA (bp 1,320 to 4,388), HlyB (bp 4,462 to 6,582), and HlyD (bp 6,604 to 8,037) are shown beneath
the DNA sequence. The positions for possible ribosome-binding sequences (Shine-Dalgarno [S.D.] sequences of the mRNA) are shown above
the DNA sequence preceding each gene.
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FIG. 3. Polypeptides encoded by different plasmids in minicells. (A) Fluorograms of sodium dodecyl sulfate-10% polyacrylamide gels
containing [35S]methionine-labeled polypeptides encoded by different hemolysin recombinant plasmid derivatives present in purified E. coli
minicells. (B) Physical locations of deletions (A), Tnl insertions ( ), and subclones of hemolysin recombinant plasmids. The numbers
enclosed within parentheses indicate the lane in (A) which contains the polypeptides encoded by that particular plasmid derivative. In (A)
lanes 1 and 4 show polypeptides encoded by pSF4000. The lettered arrows next to these lanes indicate the location of the 110-kd HlyA (A),
54-kd HiyD (D), 33- and 32-kd X polypeptides (X), chloramphenicol acetyl transferase (cat), and the 19-kd HlyC polypeptide (C). Lanes 2 and
3 show the pSF4000APstI and pSF4000ASmaI deletion derivatives. Lane 5 contains the plasmid pSF4000::Tnl(34). The A* bands represent
the truncated form of the 110-kd HlyA protein and its probable proteolytic breakdown products. B indicates the location of the HlyB
polypeptide. Lane 6 contains pUC9. Lanes 7 and 8 are pUC9-based EcoRI subclones of pANN202-312 in which both orientations of the insert
(pWAM326 and pWAM327) have been examined. Polypeptides (B and B') of 77 and 46 kd are specifically encoded by these plasmids. p, and
P designate the precursor and mature forms of the pUC9 P-lactamase, and the pUC arrows represent pUC9-associated polypeptides. Lanes
9 and 10 contain pANN202-312. Lane 11 shows the plasmid pANN202-312ABglII (pWAF185). In the restriction map [Bg] represents a BgIII
site just outside the hemolysin determinant that is present in pANN202-312 but not pSF4000. Again, the A* represents a truncated HlyA
product. The horizontal bars below the restriction endonuclease fragment map show the assignment of the encoding regions for HlyC, HlyA,
HlyB, and HlyD. X designates the two polypeptides outside of the hemolysin region whose function is unknown, but which probably
represent a precursor-product relationship (R. A. Welch, unpublished data).

synthesized by subclones of the hlyB region. It had previ-
ously been reported that an EcoRI fragment spanning the
hlyB region of pANN202-312 inserted into pUR222
(pANN250-222) encoded a 46-kd polypeptide in minicells

(13). We constructed similar plasmids (pWAM326 and
pWAM327) and found that not only did they encode a 46-kd
polypeptide but a 77-kd polypeptide as well (Fig. 3, lanes 7
and 8). The orientation of the EcoRI fragment in pUC9
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(pWAM326 vs pWAM327) did not appear to influence the
amount of either polypeptide relative to the other. It is
apparent that isopropyl-p-D-thiogalactoside induction of the
lac promoter present upstream of the EcoRI insertion site in
pWAM327 enhanced equally the synthesis of the 77- and
46-kd polypeptides (Fig. 3, lane 8). The DNA sequence
analysis of the EcoRI fragment indicated that there would
not be a translational fusion created with the pUC9 lac
sequences at the EcoRI insert for either the hlyA or hlyD
gene. This was further substantiated by the fact that for both
orientations of the EcoRI fragment in pUC9, all of the
detectable polypeptides remained similar in size. Although
our sequence data was derived from pSF4000, DNA se-
quence comparison of pSF4000 and pANN202-312 (hlyC and
the first 120 bp of hlyA) revealed a 97% homology (R. A.
Welch and S. Pellett, manuscript in preparation). Additional
evidence for synthesis of the 79.9-kd HlyB polypeptide came
from examination of the minicell results with the plasmid
pSF4000::Tnl(34) (Fig. 3, lane 5). A polypeptide ca. 77 kd in
size was observed when the hlyA reading frame was inter-
rupted by the transposon insertion. Therefore, because a
79.9-kd polypeptide is predicted to be encoded" by the
pSF4000 hlyB region and a polypeptide close in size is
encoded by the hlyB region of pANN202-312, we think that
a correct assignment has been made.
The inability to detect the loss of the HlyB polypeptides

with transposon insertions within hlyB appears to be due to
two factors. First, there apparently was low production of
HlyB compared with HlyC, HlyA, and HlyD (Fig. 3, lane 4
versus lane 5 and lane 10 versus lane 11). Second, there was
probable masking of the HlyB species by what are thought to
be proteolytic breakdown products of HlyA that are abun-
dant in the minicell background (6).
We employed a derivatiye of pANN202-312 to assign the

54-kd polypeptide to the hlyD region. pSF4000 and pANN202-
312 shared a BglII site (bp 3,807; Fig. 2). pANN202-312 had
an additional BglII site -5 kb in the downstream direction,
which lay ca. 600 bp-distal to the C terminus of HlyD (44). A
deletion between the two BglII sites was isolated in vitro,
and this plasmid (pWAF185) was transformed into the
DS410 minicell background. In lane 11 of Fig. 3 we see that
this resulted in the loss of HlyA and the appearance of a
probable truncated form of HlyA. In addition, a 52- to 54-kd
polypeptide species was missing. This species is felt to
represent HlyD because a similar polypeptide, based on
comigration, was seen for pSF4000. The location of a Tnl
insertion near the hlyD region of pSF4000, which does not
interrupt hemolysin production, is indicated in Fig. 3B by
the arrow numbered 40. When this plasmid was examined in
minicells, the 54-kd polypeptide was still evident (data not
shown). Based on the DNA sequence analysis and the
minicell results with the BglII deletion plasmid and the
Tn](40) insertion, it is likely the assignment of the 54-kd
polypeptide to the region shown on pSF4000 physical map is
correct. The identification of the 54-kd HlyD polypeptide
and its transcriptional order relative to the other cistrons is
in disagreement with findings made in the laboratory of
Goebel (13, 18). Our results concerning HlyD have recently
been confirmed by N. Mackman and B. Holland (personal
communication).
DNA sequence features. The first general observation to be

made was the relatively low guanine-plus-cytosine content
(40.2%) of this DNA sequence when compared with that for
the E. coli genome (50 to 52%) (25). This situation is similar
to that seen for the E. coli heat-labile enterotoxin A and B
subunits (46). The lower guanine-plus-cytosine content in

that instance was associated with a codon usage pattern
distinct from that seen for a number of sequenced E. coli
genes. Shown in Fig. 4 is a codon preference plot of the four
hemolysin genes based on the codon frequencies observed
for a large collection of sequenced genes from E. coli (10).
From these DNA sequences, Gribskov et al. derived an
optimal codon usage pattern for E. coli. This permits the
derivation of a codon preference statistic for each position in
each of the three reading frames. A sliding window along
each reading frame of 25 codons permits a statistical mea-
sure of the similarity in occurrence of that set of codons to
that predicted from the optimal codon usage table. The plots
for the four hemolysin genes revealed that there was a
relatively poor match in the hemolysin codon usage with the
optimal codon usage for E. coli genes. For both highly and
moderately expressed E. coli genes, the codon preference
plot is often well above the random codon preference
statistic (10). Also shown is the occurrence of codons that
occur 5% or less of the time for E. coli in each of the
synonymous codon families (Fig. 4). In E. coli these rare
codons occur frequently in the nonencoding regions of DNA
sequences. For the four hemolysin genes, the rare codons
occurred as frequently in the ORFs as elsewhere in the
sequence.

Presented in Fig. 5 are the results of a deletion analysis of
the region upstream of the initial cistron, hlyC. The 132-bp
region between the PstI and BstEII sites was necessary for
hemolysin synthesis. There was no sizable ORF extending
across the BstEII site through to the putative translational
start of hlyC. Although not shown, TnJ insertions to the left
of the PstI site did not have any detectable effect on the
hemolysin phenotype, whereas those just to the right of this
site caused a reduction in the hemolysis zone size (45). In
fact, cells harboring the BstEII deletion did show a slight
zone of hemolysis surrounding colonies after 48 h of incuba-
tion of blood agar plates. In the lower portion of Fig. 5 is
shown the 437-bp region beginning at the Pstl site (bp 363)
through to the putative translational start of HlyC (bp 6,796).
Indicated within this DNA sequence are a number of fea-
tures of possible consequence. There are numerous rela-
tively small inverted repeats (3 to 7 bp), as well as several
directly repeated sequences clustered between the PstI and
BstEII sites.
A search within the DNA sequence from the PstI site (bp

363) to the beginning of hlyC for subsequences similar to
those described as consensus assignments for E. coli pro-
moters showed that there are in fact numerous potential
transcriptional initiation sites (14, 34). Identified in Fig. 5 are
possible promoter sequences based on this search. The
subsequences shown are only those meeting the following
criteria: seven or more matches with the 12 nucleotides
making up the -10 (T*A*TAAT*) and -35 (TT*G*ACA)
hexanucleotides (with perfect matches always at the
nucleotides marked with an asterisk), a -35 to -10 nucleo-
tide spacing of 17 + 2 bp, and a purine residue 5 to 7 bp
downstream from the last T of the -10 hexanucleotide
(representing the putative intitial nucleotide of the tran-
script), Based on these relatively stringent conditions, we
made six different promoter-like sequence assignments up-
stream of hlyC. Two of these (- 10, bp 407; -10, bp 468)
reside within the PstI-to-BstEII region.
The fact that all four ORFs were encoded sequentially on

one DNA strand suggests that all four genes could be
translated from one large transcript initiated upstream of
hlyC. However, some DNA sequence features and minicell
results suggest a more complicated operon configuration. In
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FIG. 4. Codon preference plot of the E. coli hemolysin. The plot is divided into three panels, with each representing a different reading
frame. The horizontal dashed line shows the calculated codon preference statistic for the theoretical random sequence of the same base
composition as the codon frequency table. The four ORFs (C, A, B, and D) are shown as labeled open boxes beneath the plotted codon
preference statistic. Other ORFs are marked by vertical lines not crossing the horizontal line (AUG codons), followed by an open box, and
the stop codons are shown as vertical lines crossing the horizontal line. The short vertical bars beneath the ORFs indicate the occurrence of
rare E. coli codons (5% or less within a synonomous family).

Fig. 6 we show a possible mRNA structure predicted from
the DNA sequence just downstream of the apparent C
terminus of hlyA. This structure is very similar in architec-
ture to rho-independent transcriptional termination regions
identified for a number of E. coli genes (34). Often these
structures are depicted as long-base-paired stems, followed
by four to eight unpaired uridylates. We show in Fig. 6 a

21-bp stemn that could be formed if base pairing with the
uridylates occurs. Because AU pairs do not contribute as
much stability to a duplex as GC pairs (39), a shorter 16-bp
stem followed by seven unpaired uridylates, still would have
a favorable free energy of formation (23.6 kcal [ca. 98.7
kJ]/mol). In conjunction with this observation, we also note
that the amount of the HIyB polypeptide relative to HlyC
and HlyA polypeptides was lower based on the intensity of
the autoradiograph signal in gels of minicells (Fig. 3, lane 4
versus lane 5). The low signal intensity cannot be explained
on the basis of relative low methionine content because there
were more methionines predicted in HlyB than in HlyA (lane
12 versus lane 5).
An examination of the DNA sequence surrounding the

possible terminator region did reveal a close match to the
consensus sequences for E. coli promoters. This region is
indicated in Fig. 6B. In the absence of induction of the lac
promoter, the orientation of the EcoRI fragment cloned in

pUC9 did not appear to influence the relative amount of
expression of the B and B' polypeptides based on the
intensity of the autoradiographic signal (data not shown).
This is evidence suggesting that hlyB has its own promoter.
Goebel and co-workers subcloned the 5-kbBgllI pANN202-

312 fragment (pANN205-222) and demonstrated that the
orientation of the fragment did not affect the ability to
complement successfully a TnS insertion mutation in the
most distal transport function (42). This suggested that the
distal hemolysin transport-associated function is under the
control of its own promoter (42). We observed a more
abundant expression of HlyD relative to HlyB (Fig. 3, lanes
4 and 5). Under these circumstances, HlyD expression was
clearly not polar to hlyB and confirmed the strong likelihood
of an HlyD-specific promoter. Three possible matches to the
consensus sequence for E. coli promoters based on the
criteria we have chosen exist for hlyD within the hlyB-en-
coding sequence. The -10 regions for these sequences
reside at bp 4,589, 4,824 and 5,211 (see Fig. 2).

Predicted amino acid sequence features. Based on the
predicted amino acid content, HlyC and HlyB would be
basic proteins (isoelectric points of 9.5 and 10.2), whereas
HlyA and HlyD would be slightly acidic (isoelectric points of
6.1 and 6.3). There are more charged amino acids per unit
length for HlyD (1 per 3.3 amino acids) than for HlyC (1 per
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FIG. 5. Deletion and DNA sequence analysis of the region upstream of HlyC. At the top is a restriction endonuclease fragment map of

the region upstream of HlyC. The four horizontal bars beneath the map indicate the rightward extent of in vitro-derived pSF4000 deletions.
The numbered dashed lines indicate the number of bp from the rightward endpoint of the deletion to the initial HlyC ATG codon. The plus
and minus designations beneath "Hemolysis" indicate whether these particular deletion derivatives still encoded a hemolytic phenotype on
blood agar plates. The DNA sequence listed below the deletion map begins with the PstI site (Fig. 2; bp 363) and ends 45 bp after the beginning
of the HlyC sequence. The first 15 predicted amino acids of HlyC are listed below the DNA sequence. The numbered asterisks refer to the
bp number of this sequence as listed in Fig. 2. The lettered horizontal arrows indicate direct DNA sequence repeats, whereas the unlettered
arrows pointing at one another indicate inverted repeat sequences. The boxes labeled pl, p2, etc., designate hexamers very similar in
sequence to the consensus sequence for the -35 region ofE. coli promoters. The unlabeled box 17 + 2 bp downstream from the -35 hexamers
represents an additional hexamer very similar to the -10 consensus sequence for E. coli promoters.

3.8 amino acids), HlyA (1 per 3.8 amino acids), and HlyB (1
per 4.3 amino acids). A curious finding involving HlyA was
the regional feature of basic versus acidic amino acids in its
primary sequence. Amino acids 1 to 230, 231 to 430, and 431
to 1,023 had estimated isoelectric points of 10.2, 6.8, and 5.6,
respectively. An interesting feature of the predicted amino

acid content was the absence of cysteine residues in HlyA
and HlyD. Otherwise, we did not find an abundance or lack
of any particular amino acid or class of amino acids.
Shown in Fig. 6 are the successive predicted hydropathy

plots for the sequence of amino acids of each hemolysin gene
based on the prediction of Kyte and Doolittle (20). Super-
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FIG. 6. Predicted mRNA structure and promoter-like DNA sequence distal to the HlyA C terminus. (A) Predicted secondary structure in
the mRNA downstream of hlyA. The numbers beneath the sequence indicate the numbers of the corresponding DNA bp as presented in Fig.
2. The 21-bp stem and its calculated free energy of formation are depicted. Shown is the longest predicted stem structure within this region
where it would incorporate five of the seven consecutive uridylates. The 3' end of the mRNA sequence shown represents the tentative HlyB
initiation codon. (B) Promoter-like DNA sequence immediately upstream of the stem-loop structure.

imposed on each hydropathy plot is the predicted amino acid
secondary structure based on the rules of Chou and Fasman
(5). An examination of the predicted N-terminal portion of
each protein revealed the absence of a pattern similar to that
associated with the signal sequence for secreted proteins (27,
31, 37, 41). Both positively and negatively charged residues
were present, and there was no core of strongly hydrophobic
amino acids in the predicted sequences.
The hydropathy plots are useful in identifying potential

transmembrane hydrophobic domains, as well as potential
antigenic sites (20). Large uncharged hydrophobic regions
(.15 amino acids) were apparent in HlyC (residues 25 to 40),
HlyA (residues 140 to 160, 245 to 260, 295 to 325, and 375 to
405), HlyB (residues 155 to 180), and HlyD (residues 55 to
80). Charged hydrophilic regions representing potential an-
tigenic sites existed at the HlyC C terminus (positively
charged), the N terminus of HlyA (positively charged), and
the entire C-terminal third of HlyA, HlyB (residues 315 to
330 and the C terminus), and HlyD (residues 15 to 40, 190 to
215, and 318 to 330).

DISCUSSION
We present the DNA sequence for an E. coli hemolysin

which was molecularly cloned from the chromosome of an
04 serotype, uropathogenic isolate of E. coli. One strand of
the DNA possessed four successive ORFs which physically
coincide with four reported hemolysin cistrons (29, 30, 42).
We also present evidence for the existence of pSF4000-
encoded polypeptides similar in size to each of the predicted
proteins. The apparent size of the HlyC and HlyA
polypeptides coincides with previous reports (9). However,
the evidence we present for the molecular mass of the two

hemolysin transport genes does not coincide. It has been
reported the HlyB (or HlyBa) and HlyD (or HlyBb) proteins
are 46 and 64 kd in molecular mass (12). Albeit that our DNA
sequence was derived from a hemolysin determinant of
different origin than that studied in the laboratory of Goebel,
our analysis of pANN202-312-encoded polypeptides sup-
ports the pSF4000 DNA sequence data that two proteins of
79.9 and 54 kd are encoded by the hlyB and hlyD regions,
respectively.

It is curious that in minicells we detected both 77- and
46-kd polypeptides for the EcoRI fragment covering the hlyB
cistron. Neither protein can be the result of translational
fusions between hlyA or hlyD sequences and the lac region
bordering the EcoRI site of pUC9. There were no sizable
ORFs in any of the other five possible reading frames of the
EcoRI fragment. Thus, we are left with two possible expla-
nations. The 46-kd B' polypeptide (Fig. 3, lane 8) may be a
proteolytic cleavage product of polypeptide B. Alterna-
tively, there may be different translational starts within the
ORF present in this fragment. We noted that at bp 5,317
there was an ATG codon preceded by a potential ribosome-
binding site (GCGG). The predicted molecular mass of a
protein covering the ORF from bp 5,317 to 6,582 is 46 kd,
and the sequence of the first 21 amino acids of that potential
product has a signal-like sequence (27, 31, 37, 41). At this
time, we do not know which alternative explanation is true.
Also, we do not know whether the hemolysin transport
function assigned to the HlyB cistron region is carried out by
either or both of the 77- and 46-kd proteins.
Although we do not provide direct evidence for the

existence of different hemolysin-specific mRNA species, a
number ofDNA sequence features and minicell results allow
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for some predictions about the transcriptional organization
of the hemolysin determinants. It is possible that a single
polycistronic mRNA species may encode all four genes. This
seems unlikely because we observed in minicells higher
amounts of the HlyD protein relative to the HlyB species.
The identification of a potential mRNA secondary structure
between the hlyA and hlyB genes that is similar to structures
encoded in regions of known transcriptional termination
suggests that occasional readthrough into the hlyB region
may account for the lower expression of hlyB relative to
hlyA. Alternatively, the hlyA transcript may efficiently end
at this site, and a second hlyB-specific transcript may begin
from a weaker promoter. The ability to detect the 77- and
46-kd polypeptides in either orientation of the EcoRI frag-
ment in subclones covering the hlyB region suggests that a
promoter specific for hlyB may exist. The promoter-like
sequence shown in Fig. 6B is presented only as a potential
candidate.
The HlyD protein is present in quantities greater than that

of the HlyB protein. This can best be accounted for by the
presence of a strong promoter within the hlyB-encoding
sequence. There is insufficient space in the hlyB and hlyD
intercistronic region for the needed transcription initiation
signals. The existence of a hlyD-specific promoter has been
supported by complementation data (42).
The in vitro deletions of the area upstream of hlyC

indicated that a region more than 300 bp from the putative
HlyC start codon was required for hemolysin synthesis. Our
analysis of the DNA sequence of this region indicated that
no ORFs existed in this area. The presence of numerous
direct and indirect repeated DNA sequences suggested a
regulatory site. The significance of any of these sequences is
untested and awaits the isolation of additional mutants in this
region. We present six different subsequences as possible
candidates for hlyC promoters. Because we cannot identify a
terminator-like sequence between the hlyC and hlyA genes,
we assume that a single mRNA encodes HlyC and HlyA.
Overall, the tentative model we propose for the transcrip-
tional organization of the hemolysin determinant dictates
that there are three transcriptional units (hlyC-hlyA, hlyB,
and hlyD). Work in our laboratory is presently directed at
the identification of the in vivo transcriptional start sites for
each of the predicted transcripts.
DNA-DNA hybridization experiments have indicated that

the E. coli hemolysin determinant is unique to a limited
number of E. coli isolates (45). In an evolutionary sense, we
suggested that this was evidence that the E. coli hemolysin
only recently came to reside in E. coli. We provide further
evidence for this conjecture based on the discrepancy in
guanine-plus-cytosine content between the E. coli genome
and the hemolysin sequence. In addition, the codon usage
pattern for theE. coli hemolysin is unlike that of other E. coli
genes (10, 11, 16). In the hemolysin-encoding genes there is
frequent use of rare E. coli codons. Therefore, it seems
likely that the hemolysin came from an organism not closely
related to E. coli.

In an accompanying paper, we provide evidence that the
E. coli hemolysin is secreted extracellularly (6). Analysis of
the amino acid content of extracellular proteins from a
variety of gram-positive and gram-negative genera led Pol-
lock and Richmond (32) to note that there are few if any
cysteine residues in this class of proteins. It is interesting
that the predicted absence of cysteine in the hemolysin
structural protein conforms to their observation.
The N-terminal amino acid sequence is known only for the

hemolysin structural gene (6). The other hemolysin proteins

(HlyC, HIyB [B'], and HlyD) have not been sufficiently
purified to permit this analysis. There is little physical
evidence concerning their location in the cell, although it has
been suggested the HlyC protein is in the cytoplasm and
HlyB and HlyD proteins are in the outer membrane (42). The
significance of the observation that signal-like sequences
appear to be absent for HlyB and HlyD is unknown and
awaits their purification and localization.
We note that based on the hydropathy plots, potential

membrane spanning domains (20) occur within each protein.
We are using a variety of genetic and biochemical ap-
proaches to localize each protein in the cell. In turn, we
intend to delineate a structural and functional role for each
hemolysin gene in the apparent hemolysin secretory path-
way. In addition, we predict that there may be a complex set
of interactions between the hemolysin protein and different
eucaryotic cells. We are examining the possible existence of
discrete domains within the hemolysin protein that may be
involved in this process.
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