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S u m m a r y  

Diabetes was induced in a normal nonautoimmune rat strain by rendering the animals relatively 
T cell deficient using a protocol of adult thymectomy and sublethal 3' irradiation. All male rats 
and 70% of females developed an acute syndrome with severe loss of weight and hyperglycemia. 
Diabetes in these lymphopoenic rats was associated with extensive insulitis involving CD4 + and 
CD8 + T cells and macrophages. The CD8 + T cells were essential for the development of 
diabetes but not insulitis. The autoimmune diabetes and insulitis were completely prevented by 
the injection of a particular CD4 + T call subset, isolated from healthy syngeneic donors, of 
the phenotype CD45RC l~ T cell receptor cx/ f l  + KT6 § Thy-1- OX-40-. Cells of this 
protective phenotype, which make up about 5% of thoracic duct lymphocytes, were found to 
provide help for secondary antibody responses and produce interleukin 2 (II-2) and I1-4, but 
no interferon % on in vitro activation. These data provide evidence for the presence of autoreactive 
T cells in the normal immune system of the rat and reveal that in the intact animal these cells 
are prevented from expressing their autoreactive potential by other T cells. 

W hile it is well established that the clonal deletion of 
T cells reactive with self-antigens expressed in the 

thymus represents a major mechanism of self-tolerance, the 
processes involved in peripheral tolerance to self-antigens ex- 
pressed extrathymically are less well understood. Two mech- 
anisms have been proposed for the maintenance of self-tolerance 
in the periphery, one involving the functional inactivation 
of autoreactive T cells (T cell clonal anergy), and the other 
involving an active process of suppression where T cells are 
prevented from displaying their autoreactive potential by other 
antagonizing T cells. The factors involved in the establish- 
ment of T cell anergy have been extensively studied in vitro, 
but the role of clonal anergy to self-antigen in vivo is less 
clear (reviewed in reference 1). 

A number of organ-specific autoimmune diseases can be 
induced in rodent strains that do not normally develop au- 
toimmunity by procedures that interfere with normal T cell 
maturation or by rendering the animals partially T cell deficient 
(2-4). As described herein, thymectomy and irradiation of 
a nondiabetic rat strain is sufficient to induce cell-mediated 
autoimmune diabetes, demonstrating that autoreactive ceils 
against certain peripheral tissues have neither been deleted 
nor made irreversibly anergic. The ability of a defined subset 
of T cells, from syngeneic healthy donors, to prevent the de- 

velopment of autoimmunity on transfer to these lymphopoenic 
animals indicates that an intact immune system contains cells 
with the capacity to prevent the activation of autoreactive 
T cells (5). 

It has been observed that in response to foreign proteins 
and to infectious agents the humoral and cell-mediated arms 
of the immune response are often unequally expressed (6). 
Although a detailed explanation of this imbalance is still 
lacking, it clearly rests on the demonstration that T cells are 
functionally heterogeneous (7-9), and this heterogeneity is 
a reflection of the repertoire of cytokines produced by different 
cells (8, 10, 11). Studies on the factors that determine what 
types of cytokines are induced on exposure to antigen have 
shown that the nature of the APC and the presence of cer- 
tain cytokines can promote the development of either Thl- 
or Th2-type responses (8, 12, 13). Most significantly, I1"4, 
a product of Th2-type T cells, inhibits the induction of Thl- 
type responses, suggesting that a potent Th2 reaction is likely 
to inhibit cell-mediated immunity (14-16). Increasing evi- 
dence for similar restricted cytokine production after anti- 
genic stimulation in vivo (17-19) suggests that the immune 
system exists as a dynamic, finely regulated balance between 
different types of immune responses, and a similar mecha- 
nism may be involved in regulating responses to self-antigens. 
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In the rat the CD4 + T cell population can be divided into 
two functionally distinct subsets based on the expression of 
exon C of the leukocyte common antigen, CD45, as defined 
by the OX-22 mAb (20, 21). CD45RChig h CD4 + T cells 
have been shown to be important in cell-mediated immune 
responses (7, 22) and produce II.-2 and IFN-y but little 
I1.-4 after in vitro activation (10, 23). In contrast, the 
CD45RC l~ CD4 + T cell population produces less I1:2 and 
IFN-3' but is the more potent producer of II:4 on activation 
(10, 24). Consistent with this pattern of lymphokine produc- 
tion, the CD45RC l~ CD4 + T cells provide the majority 
of help in secondary antibody responses (22, 25). A previous 
study from this laboratory (26) revealed that the transfer of 
separated CD45RChig h CD4 + T cells to congenic athymic 
nude rats led to a fatal wasting disease with severe mononuclear 
cell infiltrates in a variety of organs, while recipients of the 
CD45RC l~ CD4 + T cells remained healthy. Importantly, 
animals receiving unfractionated CD4 + T cells (a mixture 
of CD45RChig h cells and CD45RC l~ cells; 2:1) also re- 
mained well, indicating that the CD45RC l~ CD4 + T cells 
were able to regulate the pathological responses of the 
CD45RChig h CD4 + T cell population. Further studies on 
the immunoregulatory action of CD4 § T cell subsets in the 
rat presented herein demonstrate that the development of au- 
toimmune diabetes in immunodeficient rats can be prevented 
by the transfer of only the CD45RC l~ CD4 + T cell subset. 
Detailed characterization of the protective CD4 + subset has 
shown the phenotype to be TCR-a/[3 + RT6 + Thy-1- OX- 
40- CD45RC l~ CD4 +. Cells of this phenotype provide 
secondary B cell help and produce Ib2 and I1:4 on in vitro 
activation. The data provide evidence that the maintenance 
of self-tolerance is in part an active T cell-mediated process, 
and that the regulatory cells involved may mediate this pro- 
tection via the production of immunoregulatory cytokines, 
like I1:4 and I1:10, with the capacity to inhibit cell-mediated 
autoimmune reactions. A brief report on some of the work 
described herein has been published elsewhere (5). 

Materiah and Methods 
Animals. PVG.RT1 c, PVG.R.T1 ~, and PVG.ILT7 b strain rats 

were used from the specific pathogen-free unit of the Medical 
Research Council Cellular Immunology Unit. PVG.RT1 c and 
PVG.RT7 b are congenic strains that differ with respect to the al- 
lele of the leukocyte common antigen, CD45, that they express. 
PVG.RT1 c and PVG.R.T1 ~ are congenic strains that differ at the 
MHC region. 

Cells. Rat thoracic duct lymphocytes (TDL) 1 were obtained 
by cannulation of the duct (27). Cells were collected at 4~ over- 
night into flasks containing PBS and 20 U/ml heparin. 

Antibodies. The mouse mAbs used in these studies were as 
follows: W3/25 (anti-rat CD4) (28), OX-35 (anti-rat CD4, non- 
competitive with W3/25) (29), OX-22 (anti-rat exon C of CD45) 

1Abbreviations used in this paper: BdUr, bromodeoxyuridine; NOD, 
nonobese diabetic; RAM, rabbit anti-mouse; TDL, thoracic duct 
lymphocytes. 

(20, 21), OX-32 (anti-rat exon C of CD45, noncompetitive with 
OX-22) (21, 30), OX-12 (anti-rat IgK chain) (31), OX-6 (anti-rat 
MHC class II) (32), OX-7 (anti-rat Thy-l.1) (33), OX-8 (anti-rat 
CDS) (34), OX-14 and OX-16 (both anti-rat Ig 3" 2b, noncom- 
petitive) (35), OX-21 (anti-human C3b inactivator) (36), OX-39 
(anti-rat IL-2R) (37), OX-40 (against a cell surface antigen on rat 
CD4 + T ceU blasts) (37), IL73 (anti-rat TCIL-ot/B) (38), HIS 41 
(anti-rat CD45 allotype RT7 b) (39), Bu20a (antibromodeoxyuri- 
dine) (40); also, a rat mAb, P4/16 (anti-rat R.T6a, PVG) (41). Bi- 
otinyhted mAbs were prepared as described (42). Rabbit anti-mouse 
Ig (RAM-Ig), FITC-conjugated RAM Ig (RAM-FITC), and FITC- 
conjugated Fab fragments of RAM Ig (RAM-Fab-FITC) were used. 

Isolation o fT  Lymphocyte Subpopulations. Rat T cell populations 
were negatively sdected from TDL using a rosetting technique 
as described elsewhere (42). CD4 § T cells were isolated by deple- 
tion of B ceils and CD8 § T calls using the mAbs OX-12, OX-8, 
and OX-6. CD8 + T cells were obtained by depletion of B cells 
and CD4 + T calls using the mAbs OX-12, OX-35, W3/25, and 
OX-6. The CD4 + T cellpopulation was further fractionated by 
cell sorting on a FACS II | (Becton Dickinson & Co., Mountain 
View, CA) on the basis of the expression of exon C of the CD45 
molecule after labeling of the isolated CD4 + T cells with mAbs 
OX-22, and OX-32, and RAM-FITC. CD45RC l~ CD4 + T cells 
were also directly isolated by rosette depletion using the mAbs OX- 
22, OX-32, and OX-8. Single-positive CD4 + thymocytes were 
isolated by depletion of CD8 + and CD45RC § cells. The purity 
of all isolated cells was analyzed on a FACScan | (Becton Dick- 
inson & Co.) by labeling of pre- and postdephtion samples with 
RAM-FITC. 

Flow Cytofluorography. Dual-color flow cytofluorographic anal- 
),sis of TDL was performed essentially as described (42). Briefly, 
I(Y s rat TDL were incubated in 50/zl of bybridoma tissue culture 
supernatant at 4~ for 30 rain, washed with PBS containing 0.2% 
BSA and 10 mM NAN3, and incubated with RAM-Fab-FITC for 
30 min at 4~ After a further wash the cells were incubated with 
biotinylated Ab and PE-conjugated streptavidin. After incubation 
with streptavidin-PE, unconjugated biotin was added at a final con- 
centration of 3/xg/ml for 10 min to reduce cell aggregation. The 
rat mAb P4/16 (anti-RT6) was detected using FITC-conjugated 
OX-14 and OX-16 Igs. 

Immunohistochemistry. Tissues were removed and either fixed 
in 10% formal saline and embedded in paraffin wax or frozen in 
a bath of solid CO2 and/s0-pentane. Paraffin sections (5/~m) were 
stained with hematoxylin and eosin. Cryostat sections (5/~m) were 
cut and stored with dessicant at 4~ Staining of cells was per- 
formed by the peroxidase technique described in reference 43. Sec- 
tions were fixed in ethanol, washed, and incubated with mAb for 
1 h at 4~ The bound antibody was detected by incubation at 
4~ with a peroxidase-labeled RAM-Ig (Dakopatts Ltd., Copen- 
hagen, Denmark) and 3,3' diaminobenzidine HC1. The slides were 
lightly counterstained with Harris' hematoxylin. 

Incorporation of Bromodeoxyuridine (BdUr). Thoracic duct-can- 
nulated animals were infused with 0.3 mg/ml 5-hromo-2'- 
deoxyuridine in PBS containing 1 U/ml heparin at a rate of 2 ml/h 
for 18 h. TDL were collected throughout this period and cell smears 
made onto glass slides. Cell smears were fixed in acetone and air 
dried before incubation in 95% formamide for 35 rain in a 67~ 
waterbath. The slides were removed to PBS at 4~ and stained 
with Bu20a (antibromodeoxyuridine) mAb by the peroxidase tech- 
nique as described above. 

Measurement of Serum Glucose. The glucose level in serum was 
detected using a quantitative enzymatic (hexokinase) glucose (HK) 
reagent (Sigma Diagnostics, Pooh, UK). 
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Results 
Protocol for the Induction of Diabetes. A protocol for the 

induction of diabetes in rats was developed based on the in- 
duction of thyroiditis in normal rat strains by thymectomy 
and irradiation as described by Penhale et al. (4). Using this 
protocol both diabetes and thyroiditis occurred concurrently 
in female PVG.KT1 c strain rats, with an incidence of diabetes 
ranging from 10 to 53% (44). In our studies PVG.RT1 u rats, 
which share the same MHC genotype (RT1 ~) as the spon- 
taneously diabetic BB rat (45) and the same non-MHC geno- 
type as the strain studied in Penhale's thyroiditis experiments 
(44), were used for the induction of diabetes. PVG.RT1 ~ rats 
were thymectomized at 6 wk of age, rested for 2 wk, and 
then given a series of four doses of 250 rad 3' irradiation 2 
wk apart, a cumulative dose of 1,000 rad (5). Rats that had 
been treated by this protocol were termed Tx-X rats. The 
animals spontaneously developed disease with high incidence: 
98.3% (n = 175) of male rats and 73% (n = 30) of female 
rats became diabetic. The onset of disease ranged from 3 to 
18 wk after the last dose of irradiation (5). The rats experi- 
enced acute weight loss and hyperglycemia that proved rap- 
idly fatal. The mean change in body weight, calculated as 
the difference between weight on the day of last irradiation 
and weight at the time of diabetes onset was a loss of 23% 
(n = 16) of starting body weight for diabetic animals com- 
pared with a gain of 18% (n = 10) for nondiabetic (female) 
rats over the same time period. Mean serum glucose levels 
for diabetic and nondiabetic rats were 542 _+ 44 mg/dl and 
188 _+ 30 mg/dl, respectively. 

Evidence for Cell-mediated Autoimmune Diabetes. All affmaals 
with clinical signs of diabetes had a focal lymphocytic infiltra- 
tion in the islets of the pancreas (Fig. 1 A). Immunohistochem- 
ical analysis of frozen sections revealed extensive infiltration 
of T cells (Fig. 1 C), both CD4 + (not shown) and CD8 + 

T cells (Fig. 1 D), and macrophages, dendritic cells, and NK 
cells (data not shown). The majority of the T cells in the 
infiltrate expressed the ID2R. In contrast, the pancreata of 
normal PVG.RT1 u rats showed no insulitis (Fig. 1 B). In ad- 
dition, a focal thyroiditis was seen in only 1 of 24 diabetic 
rats examined, with circulating antithyroglobulin autoanti- 
bodies found in the serum of 3 of 36 diabetic rats. Other 
tissues examined included the salivary gland, small intestine, 
liver, lung, and kidney; no lymphocytic infiltration was ob- 
served in these organs. 

To confirm that the lymphocytic infiltration was impli- 
cated in the destruction of the fl cells of the pancreas, we 
examined the role of CD8 + T calls in the development of 
diabetes. Using a protocol modified from Like et al. (46), 
known to deplete CD8 + T cells in vivo, Tx-X animals were 
treated with either OX-8 (anti-CDS) or OX-21 mAb (isotype- 
matched, irrelevant antibody) from the day of the last irradi- 
ation for a 2-wk period. As illustrated in Table 1, OX-8 
mAb-treated animals failed to develop diabetes in all cases, 
while the OX-21 mAb-treated control animals remained fully 
susceptible. Immunohistochemical staining of pancreata from 
anti-CD8-treated nondiabetic Tx-X animals revealed a peri- 
insulitis made up of CD4 + T cells and macrophages but, 
CD8 § T ceils were not detectable (data not shown). 
Transfer of syngeneic CD8 + cells from healthy donors to 
CD8+-depleted Tx-X rats fully restored disease suscepti- 
bility. Indeed, the provision of CD8 + TCR-ot/fl + T cells 
alone was sufficient to mediate diabetes (Table 1). These data 
strongly support the view that the fl ceils in the Tx-X rats 
were destroyed by a cell-mediated immune response and are 
in accordance with data from the spontaneously diabetic non- 
obese diabetic (NOD) mouse, where CD8 + T cells are es- 
sential for the pathogenesis of autoimmune diabetes (47, 48). 
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Figure 1. Immunopathology of 
the pancreas from diabetic Tx-X rats 
Para~n sections of pancreatic tis- 
sue from clinicaUy diabetic Tx-X 
PVG.KT1 u rats (A) and normal 
nondiabetic PVG.KT1 u rats (/3) 
stained with haematoxylin and eo- 
sin showing the densely stained 
mononuclear cell infiltrate within 
and around the islet of the diabetic 
pancreas (x 200). Cryostat sections 
from a diabetic rat stained with 
an anti-rat TCK-od/3 mAb (C) 
(x 150), an anti-rat CD8 mAb (/9) 
(x 200), and with the negative con- 
trol mAb OX-21 (E) (x200). 



Table 1. Role of CD8 + T Cells in the Development of Diabetes 
in Lymphopoenic Rats 

Incidence of 
Antibody treatment* T cell reconstitution diabetes 

OX-8  None 0/11 

OX-21 None 10/10 

OX-8  CD8* 7/7 
OX-8 CD8 § TCtL-cdB + 2/2 
None None 8/8 

* OX8 (anti-CD8) and OX21 (negative control antibody) ascites were 
used at a 1:5 dilution. 1 ml of antibody was administered intraperitoneally 
on the day of last irradiation and hence thrice weekly for 2 wk. Lymph 
node biopsies were taken 2 wk after cessation of antibody treatment and 
analyzed for the presence of any remaining CD8 + T cells by immuno- 
histochemistry of cryostat sections. No CD8 + T cells were observed in 
the lymph nodes of OX-8-treated Tx-X rats (data not shown). 
t 107 CD8 + cells isolated by rosette depletion (purity, 98%) were in- 
jected intravenously 2 wk after cessation of antibody treatment. CD8 + 
TCR-ot/3 + T cells were isolated by cell sorting (purity, 99.1%) and 
107 cells injected as above. 

The ability of CD8 + TCP,-cd~ + T cells alone to restore di- 
abetes in Tx-X rats pretreated with anti-CD8 mAb suggests 
that, unlike the spontaneously diabetic BB rat (46), CD8 + 
NK cells are not essential for disease in this diabetes model. 

Prevention of Diabetes by the Transfer of Syngeneic CD4 + T 
Cells from Healthy Donors. Previous studies have shown that 
autoimmunity in rodents rendered lymphopoenic by ex- 
perimental manipulation (49, 50), or genetically lymphopoenic 
as the BB rat (51), and autoimmune diabetes in the NOD 
mouse (52, 53) can be prevented by the transfer of syngeneic 
CD4 + T cells from normal nonautoimmune donors. To ex- 
amine the role of different CD4 + T cell subsets in the 
prevention of autoimmune diabetes, Tx-X rats were injected 
with TDL from syngeneic healthy donors on the day of the 
last dose of irradiation. All Tx-X rats used in the reconstitu- 
tion studies were male with the expected diabetic incidence 
of 98-100%. As shown in Table 2, the CD4 + T cell frac- 
tion of TDL at a dose of 107 cells was capable of reducing 
the incidence of diabetes to 50%. Consistent with the re- 
quirement of CD8 + T cells for induction of disease, transfer 
of CD8 + T cells did not prevent diabetes (Table 2). How- 
ever the transfer of 5 x 106 CD45tLC l~ CD4 § T ceils com- 
pletely inhibited the development of diabetes and insulitis 
(Table 2). The reconstituted rats were monitored for a 20- 
wk period after cell transfer; neither diabetes nor insulitis 
developed during this time. The transfer of CD45ILC l~ 
CD4 + T cells appears to mediate a sustained suppression of 
autoimmune diabetes. In contrast, CD45tLC hiSh CD4 + T 
cells did not protect against diabetes (Table 2) but induced 
a lethal wasting disease, with severe leukocytic infiltrates in 
the lung, similar to that seen in nude rat recipients of this 
cell type (26). 

The protective effect of CD45RC l~ CD4 + T cells was 

Table  2. Prevention of Diabetes on Injection of Syngeneic CIM + 
T Cells from Normal Donors 

Phenotype of cells No. of cells Incidence of 
injected injected intravenously diabetes 

Unfractionated TDL 3 x 107 3/6 
CD4§ T cells 1 x 107 3/6 
CD8+T cells 5 x 106 6/6 
CD45R.C high 5 x 106 2/2* 2/2 

CD4 § T cells 
CD45RC l~ 5 x 106 0/6 0/10# 

CD4 § T cells 
None - 32/32 

CD4 + and CD8 § T cells subsets were negatively selected from TDL 
by rosette depletion as outlined in Materials and Methods. The purity 
of isolated cells was >96%. The number of separated CD4 + and CD8 + 
T cells injected was proportional to the number represented in the in- 
oculum of unfractionated TDL. CD4 + T cells isolated by rosette deple- 
tion (98.2% pure) were subdivided by fluorescent cell sorting into 
CD45RChlg h and CD45RC low subsets (98.5 and 96.2% pure, respec- 
tively). 
* Six of eight rats developed a lethal wasting disease 2 wk after 
CD45Rchis h CD4 + T cell reconstitution. The rats were not diabetic but 
displayed diffuse lung pathology on histological examination. The two 
remaining animals in the group survived >3 wk postreconstitution and 
developed diabetes with hyperglycaemia. In a second experiment, two 
of two rats developed diabetes. 
* Six animals were reconstituted with CD45RC l~ CD4 + cells obtained 
by cell sorting. In a second experiment CD45RC low CD4 + cells were 
isolated directly from TDL by rosette depletion (purity, 97%), and 10 
animals were reconstituted. 

highly dependent on cell dose; 5 x 106 CD45RC low CD4 + 
T cells were capable of protection, while the transfer of 2.5 
x 106 of the same cells was insufficient (Fig. 2). This crit- 

ical dependency on cell dose may be explained by the degree 
of chimerism observed on transfer of CD45tLC l~ CD4 + T 
cells to the lymphopoenic rats. Two congenic rat strains ex- 
pressing different allotypes of CD45 were used to study the 
expansion of CD45RC l~ CD4 + T cells on transfer to 
Tx-X rats; 5 x 106 CD45RC t~ CD4 + T cells, isolated 
from healthy PVG.RT78 strain rats (RT7 b or LCA 1.2 allo- 
type), were used to reconstitute Tx-X PVG.RTF strain rats 
(KT7 a or LCA 1.1 aUotype). Fig. 3 illustrates the proportion 
of donor and host CD4 + T cells in the Tx-X recipient 5 wk 
after cell transfer. As shown, the inoculum of CD45tLC l~ 
CD4 + donor cells gave rise to 50% of the total CD4 § T 
cells in the Tx-X recipient (Fig. 3 C). In the 18-h period when 
the TDL were collected, the number of cells recovered was 
'~10s; of these, 7-8 x 106 were CD4 + T cells of donor 
origin. If the number of the donor cells recovered is propor- 
tional to the number of cells injected, then transfer of 2.5 
x 106 cells would generate a 1:2 donor-to-host CD4 + T cell 

ratio; from the dose-response curve (Fig. 2), this appears 
insufficient to suppress diabetes induction. 

To investigate the role of the thymus in the maintenance 
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F i g u r e  2 .  Dose-response curve for the suppression of diabetes by 
CD45RC ~~ CD4 + T cells. Numbers in parentheses represent the number 
of animals in each group. CD45RC l~ CD4 + T cells were negatively 
selected from TDL by rosette depletion; the purity of isolated cells was 
97%. Cells were injected intravenously into Tx-X rats on the day of the 
last dose of 3' irradiation. 

of  peripheral CD4 + T cells with the capacity to prevent au- 
toimmune disease, the protective effect of  CD4 + T cells 
from long-term thymectomized adult donors was analyzed. 
As shown in Table 3, CD45RC I~ CD4 + T cells from long- 
term thymectomized donors were at least as potent in 
preventing diabetes as similar cells from normal donors. There- 
fore, the protective CD4 + T cell subset is long lived in the 
periphery and its regulatory effect appears not to be depen- 
dent on continued replenishment by the thymus. As described 
for the prevention of  other autoimmune diseases (52, 54, 55), 
C D 4 5 R C  l~ CD4 § CDS-  mature thymocytes also gave par- 

Table 3. The CD45RC ~ CD4 + T Cell Population That 
Protects against Diabetes Is Long Lived in the Periphery 

Phenotype of cells No. of cells Incidence of 
injected injected intravenously diabetes 

CD451kC l~ CD4 + 5 x 106 0/4 

TDL 
CD45RC l~ CD4 + 5 x 106 0/5 

Tx-TDL* 

CD45RC l~ CD4 * 5 x 106 2/10 
thymocytes 

None - 6/6 

T cell subsets were negatively selected from TDL or thymus by rosette 
depletion, with the purity of isolated cells >97%. 
* Tx-TDL were obtained from healthy rats thymectomized 10 wk be- 
fore cannulation. 

tial protection from diabetes similar to the protection given 
by unseparated peripheral CD4 + T cells. Whether  the 
thymocytes themselves have the capacity to suppress autoim- 
munity or require a maturation event occurring on release 
into the periphery of  the Tx-X host is not known (see Dis- 
cussion). 

Changes in CD4 + T Cell Phenotype on Reconstitution of 
Tx-X Rats with CD45RC t~ CD4 + T Cells. The protocol 
for the induction of  diabetes results in severe lymphopoenia. 
The percentages of  T and B lymphocytes in TDL of predia- 
betic animals shown in Table 4 represent in real terms a three- 
fold decrease in B cell number and a 12-fold decrease in T 
cell number 5 wk after thymectomy and irradiation. The rate 
of  lymphocyte turnover in Tx-X rats, as measured in vivo 
by the kinetics of  incorporation of  the nucleic acid analogue 
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7.3 0.2 0.3 7.2 

RT7b ~ 92.i 0.4 RT7b} 84.9 7.6 

.... i-ta ..... TO .... 'fi * �9 7 . . . . .  i 6 2  . . . . .  i O  . . . . .  J -~ ) - . . . . .  fi 

CD4 OX-21 CD4 

Figure 3. Expansion of CD45RC l~ CD4 + cells on transfer to the Tx-X host. Dual-color immunofluorescence staining of TDL collected from 
PVG.RTIr Tx-X rats 5 wk after reconstitution with CD45RC low CD4 + T cells from congenic PVG.RTTo rats, which expressed a different CD45 
allele (RT7 b or LCA 1.2) to the PVG host (RT7" or I.CA 1.1 allotype). (A) Cells labeled with anti-rat CD4 mAb (W3/25) and the negative control 
mAb OX-21 showing the total percentage of CD4 + T cells after reconstitution. (B) Donor-derived cells labeled with the anti-rat RT7b allele mAb, 
HIS 41, and the negative control mAb revealing the total percentage of donor cells 5 wk posttransfer. (C) Labeling with anti-rat CD4 mAb and 
the anti-rat RT7 b mAb showing that the donor cells have expanded within 5 wk of ~ransfer to represent 50% of all CD4 + T cells in the reconstituted 
nondiabetic Tx-X host. Note that all the donor cells have remained CD4 +. 
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BdUr, was rapid, with 20% of cells incorporating the label 
in 18 h compared with a 1% incorporation over the same 
time period for normal rats. The persistence of lymphopoenia 
in the Tx-X rats in the face of this proliferative activity im- 
plies that many of the dividing cells died, both in prediabetic 
and in protected animals. On further phenotypic analysis, the 
majority of CD4 + and CD8 + T cells from prediabetic 
animals were large and the CD4 + T cells expressed the ac- 
tivation antigens IL-2R and OX-40 (rat CD4 + T cell blast 
antigen [37]) and high levels of MHC class II (Table 4). That 
the majority of both CD4 + (Table 4) and CD8 + T cells 
were CD45KC l~ is also consistent with the cells being ac- 
tivated, as the expression of the OX-22 epitope is lost on 
activation in vitro (7). Further, a significant proportion of 
the B cell population were blasts. On culturing lymph nodes 
in vitro from these animals, it was found that there was a 
high level of cell proliferation in the mesenteric nodes but 
not the cervical lymph nodes (Els Meussen, personal com- 
munication), suggesting that lymphocyte activation was driven 
predominantly by antigens in the gut. As Table 4 also illus- 
trates, on transfer of CD451LO ~ CD4 + T cells, the number 
of activated IL-2R + OX-40 + CD4 + T cells in the Tx-X host 
was reduced by 50%, indicating a general dampening down 
of the highly activated state of lymphocytes in prediabetic 
Tx-X rats. 

Phenotypic and Functional Heterogeneity within the CD45- 
R C  t~ CD4 § T Cell Population. The CD45RC l~ CD4 + T 
cell population can be further subdivided by the expression 
of Thy-1, RT6, Ib2R,  and OX-40 antigens (5). The subsets 
defined by the differential expression of these antigens repre- 

sent CD4 + T cells in different stages of maturation (56) and 
activation (37). The phenotypic differences were found to 
be accompanied by differences in the ability to suppress the 
development of diabetes in lymphopoenic rats (Table 5). Deple- 
tion of RT6 + cells left a CD45RO ~ CD4 + T cell sub- 
population that was incapable of protecting against diabetes 
(Table 5). In an independent experiment it was shown that 
the depletion of RT6 + cells left a mixed population that 
contained mainly activated cells (OX-40 + and/or II.-2P,. +) 
together with some Thy-1 + cells representing recent thymic 
migrants (56) and some null cells of undefined phenotype. 
The complementary depletion of the activated IL-2tL + and 
OX-40 + cells resulted in a CD45RO ~ CD4 + T cell in- 
oculum containing four subsets: RT6+Thy-1 - , RT6+Thy- 
1 +, RT6-Thy-1 +, and RT6-Thy-1- (null cells). Cells 
within this population retained the capacity to suppress the 
development of autoimmune diabetes, and removal of the Thy- 
1 + cells also left the protective effect of the CD45tLO ~ 
CD4 + T cell population intact. Thus, the CD45RO ~ 
CD4 + T cell subpopulation that mediated protection was 
TCR-od/3 + RT6 + Thy-1- IL-2R- OX-40-. These data do 
not exclude the possibility that some protective RT6 + cells 
expressed Thy-1, IL-2R, or OX-40; however, activated T cells 
downregulate tLT6 antigen expression (57), and cells ex- 
pressing both RT6 and IL,2R/OX-40 are infrequent in rat 
TDL (data not shown). Consistent with the established func- 
tional activities of unfractionated CD45RC l~ CD4 + T cells 
(7, 10), the subpopulation of these cells that prevented dia- 
betes was shown to mediate help for secondary antibody re- 
sponses and to produce II:2 protein and mRNA for Ib4, 
but no IFN-'y protein, on in vitro activation (data not shown). 

Table 4. Phenotypic Changes on Reconstitution of Tx-X Rats 
with CD45RC t~ CD4 + T Cells 

Percent positive cells 

C D 4 5 K O  ~ CD4 § 

TDL Normal Prediabetic T cell reconstituted 

Bcells  47 __ 2 73 _ 4 82 _+ 3 

CD4 § T cells 33 + 2 15 _ 4 14 .4- 4 

CD8 § Tcel l s  18 _+ 2 9 + 3 7 _+ 2 

CD4 § T cells 

CD45R.C high 70 __ 6 7 _+ 1 24 _+ 7 

IL-2R + 8 _+ 4 41 _+ 8 22 +_ 5 

OX-40 + 12 +_ 6 56 • 4 24 _+ 4 

M H C  class II ~sh 5 +- 1 40 +_ 5 32 +_ 2 

TDL were collected from CD451LO ~ CD4 + T cell-reconstituted Tx-X 
rats and prediabetic Tx-X rats 5 wk after the last dose of irradiation. 
Normal TDL were from age- and sex-matched control PVG.RT1 u rats. 
The figures represent the mean percentage of positively labeled cells in 
whole TDL or the CD4 + T cell fraction thereof from four animals in 
each group. TDL output in 18 h was an average 10 s cells from both 
prediabetic and reconstituted animals compared with an average 3.5 x 
10 s cells from normal rats. 

Tab le  5. Functional Heterogeneity within the CD4 5R C ~w CD4 + 
Cell Subset in the Ability to Suppress Diabetes 

No. of cells 
Phenotype of injected Incidence of 
CD4 + cells injected intravenously diabetes 

Unfractionated CD45KC l~ 5 x 106* 0/18 

CD45RC l~ TCR.-ct//3- 5 x 106* 3/3 

CD45KC l~ TCR-cr 2 x 10 s~ 2/2 
CD45KC l~ TCK-ot/3 + 5 x 106# 0/2 
CD451LC l~ Thy-1- 5 x 106* 0/7 
CD45RC l~ KT6- 5 x 1@* 3/4 
CD45KO ~ KT6- 3 x 106. 2/2 
CD45KC l~ RT6 + 3 x 106* 0/3 
CD45KC 1~ O X - 4 0 - I L - 2 - R -  5 x 106. 1/7 

None - 36/36 

* Cells were negatively selected from TDL by rosette depletion (purity, 
>96%). 
t CD45RO ~ CD4 + T cells were negatively selected from TDL by 
rosette depletion and further subdivided by fluorescent cell sorting. The 
purity of sorted populations was always ~98%. 
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Discussion 

The most direct interpretation of the results presented in 
this paper is that autoreactive T cells are to be found in animals 
that show no tendency to develop autoimmune disease, and 
that these autoimmune T cells are normally inhibited in some 
way from expressing their autoimmune potential by other 
T cells. These conclusions, if correct, indicate that self-tolerance 
does not rest solely on the deletion from the T cell repertoire 
of autoreactive cells but depends, in part, on some homeostatic 
mechanism in which the immune system plays a crucial regula- 
tory role. There are other data that support this conclusion 
(49, 50, 52, 53) but alternative explanations can be proposed 
for the present results. The protocol for the induction of dia- 
betes results in rats that are relatively T cell deficient, and 
it may be argued that these animals are rendered prone to 
some diabetogenic infection. Infection alone cannot account 
for the diabetes because CD8 + T cells are required for dis- 
ease to occur but, in principle, the CD8 + T cells could be 
killing virus-infected B cells of the pancreas. If this is so then 
one may ask why such a protocol leads specifically to the in- 
fection of the same cells as those affected by autoimmunity 
in the BB rat and nonlymphopoenic individuals, such as NOD 
mice and human diabetics. Using the same protocol as de- 
scribed here, Penhale et al. (44) have shown that in a different 
rat strain both thyroiditis and diabetes can occur in the same 
individual, and we have observed the same effect in a few 
of our own Tx-X rats; these two endocrinopathies arise spon- 
taneously in humans and are considered to be autoimmune 
in origin. However, until the etiology of these diseases in 
humans and experimental animals is understood the role that 
infection plays in them will remain undefined. Attempts to 
identify environmental factors that account for the <40% 
concordance for diabetes in monozygotic twins have not 
yielded a clear result, and studies in experimental animals have 
produced conflicting data on the effects of intercurrent infec- 
tion on the incidence of autoimmune disease (reviewed in 
reference 58). It may well be that infection does play a part 
in these autoimmune diseases, and does so by perturbing the 
homeostatic mechanism rather than by any direct pathogenic 
effect. Our own data, while by no means conclusive on this 
point, are not at variance with this possibility. A high fre- 
quency of T cells recovered from the thoracic duct of diabetes- 
susceptible Tx-X rats expressed activation markers and were 
in cell cycle. Given the high mitotic activity of lymphocytes 
from the mesenteric nodes (but not the cervical nodes) of 
Tx-X animals, these T cells probably originate in the gut- 
associated lymphoid tissue, suggesting that the antigenic 
stimulus for proliferation comes from the gut, from either 
dietary or gut flora antigens. It has been observed by Penhale 
and Young (59) that the incidence of thyroiditis in Tx-X rats 
reared under specific pathogen-free conditions was lower than 
that in conventionally reared animals but could be augmented 
by the transfer of intestinal material from the latter. Further- 
more, it has been shown that splenocytes from a diabetes- 
resistant BB rat subline, if depleted of RT6 + CD4 + T cells 
and activated in vitro with Staphylococcal enterotoxins, are 
able to transfer diabetes to young diabetes-prone BB rats, in- 

dicating that bacterial products can activate diabetogenic T 
cells (60). 

As the data presented in this paper show, CD4 + T cells, 
of the phenotype CD45RC l~ TCR-odf l  + KT6 + Thy-1- 
OX-40-, when transferred from healthy, syngeneic donors 
into Tx-X rats, were able to prevent the autoimmune T cells 
from causing diabetes. Cells of this phenotype have been shown 
to produce II-2 and I1-4 but not IFN-% although we cannot 
say that individual cells make both of the named lymphokines 
since our studies have not been carried out at the single cell 
level. In addition, preliminary studies have shown that mKNA 
for I1-10 was detectable from the CD45RO ~ but not the 
CD45RC high CD4 + T cell subset after in vitro activation 
(A. Beyers and D. Fowell, unpublished results). Consistent 
with these results, RT6 + CD4 + cells have also been impli- 
cated in the protection from diabetes in the BB rat (61), though 
these cells have not been extensively characterized. Both I1-4 
and II.,10 have been shown to inhibit cell-mediated immu- 
nity in vivo, partly by the downregulation of the production 
of IFN-3, (15, 16, 62). Given the importance of IFN-y in 
the induction of diabetes in other rodent models (63, 64), 
the protective T cells that we have characterized may inhibit 
the development of diabetes by producing these inhibitory 
lymphokines. An observation compatible with this interpre- 
tation of our data is the demonstration that in vivo adminis- 
tration of ri1-4 facilitates remission of collagen-induced cell- 
mediated autoimmune arthritis (65). It is also notable that 
some susceptibility genes for diabetes in the NOD mouse 
have been mapped to the regions encoding certain cytokines, 
including IL-4 and I1"2 (66). Combining these data with those 
presented herein suggests that insulin-dependent diabetes mel- 
litus develops spontaneously in individuals who, in addition 
to possessing the appropriate MHC alleles, suffer a degree 
of immune dysregulation through the inheritance of a par- 
ticular set of alleles for polymorphic genes involved in the 
regulation of cytokine expression. That such variation in 
cytokine expression can occur is illustrated by the finding of 
different mouse strains whose T cell responses are charac- 
teristically either Thl- or Th2-1ike (67). Work is in progress 
to establish the changes in cytokine synthesis produced in 
vivo by the injection of the protective CD45RC l~ CD4 + 
T cells. 

A striking feature of the prevention of diabetes by the in- 
jection of CD45RC l~ CD4 + T cells was the change in sur- 
face phenotype of T cells recovered from the thoracic duct 
lymph of Tx-X rats (Table 4). The percentage of CD4 + T 
cells that expressed activation markers was reduced to about 
half of that found in prediabetic animals, while there was 
a marked increase in CD45RChig h CD4 + cells. It appears 
that injection of the CD45RC l~ CD4 + T cells produces a 
CD4 + T cell subset distribution that more closely approxi- 
mates that of a normal rat. However, there were significant 
differences between the CD45KChig h CD4 + cells in recon- 
stituted Tx-X rats and the CD45RChig a CD4 + cells of 
normal rats. Preliminary results in PVG.RT1 c rats using 
KT7 allotype congenic strains indicate that the majority of 
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CD45R.Chig h CD4 + T ceils in reconstituted Tx-X rats are 
of donor origin and are larger than the calls of this pheno- 
type found in normal rats. They represent, therefore, a popu- 
lation that must be relatively rare in normal T cell develop- 
ment, and their function is not known at present. Although 
the BdUr data indicated a high frequency of proliferating cells 
in prediabetic and reconstituted rats, these animals remained 
relatively lymphopoenic compared with normal animals in 
which far fewer cells were in cell cycle. It is apparent that 
in Tx-X rats there is a high rate of lymphocyte death although 
the cause of this is not known; this question merits further 
study. 

Finally, we note that CD4 + CD8-  thymocytes were also 
able to inhibit diabetes in our Tx-X rats. Thymocytes of this 
phenotype in mice have been shown to produce Ib4 and IL- 
l0 (and some IFN-7) on activation (68), suggesting that they 
resemble, at least to some degree, peripheral CD4 + T cells 
of the Th2 type. This resemblance may explain why thymo- 
cytes were protective against cell-mediated autoimmune dia- 
betes in our experiments, and it is a notable finding in this 
context that mature CD4 + thymocytes from spontaneously 
diabetic NOD mice are incapable of producing IL-4 on in 
vitro activation by TCR crosslinking (69). The Th2-like prop- 
erties of mature thymocytes from normal animals suggest 
that recent thymic migrants may also have the same charac- 
teristics. If so the question arises (68) as to whether they re- 
tain this cytokine repertoire if they encounter antigen before 
they mature into naive T cells that produce only I1--2 on pri- 
mary activation (8, 9). Such a mechanism would serve to 
generate cells with the ability to suppress cell-mediated au- 
toimmune disease if the relevant antigen was already present 
in the periphery when the CD4 + T cells left the thymus. 
It is recognized that the CD45RC l~ compartment of pe- 

ripheral CD4 + T cells contains at least three cell types: re- 
cent thymic migrants that are downregulating their expres- 
sion of Thy-1 and upregulating RT6 as they mature towards 
naive cells that are RT6+CD45RChig h (56); RT6 + 
CD45RC l~ memory cells that have derived from mature 
naive CD45RChig h precursors and that mediate secondary 
helper activity for B cells (25; and D. Fowell unpublished 
results); and activated T cells that have downregulated the 
expression of RT6 but express IL-2R, OX-40 antigen, and 
Thy-1 (37, 56, 57). In principle the RT6+Thy-I-OX-40 - 
cells that protect against diabetes could be either recent thymic 
migrants in a late stage of maturation towards RT6 + 
CD45RChig h naive cells or mature resting T cells that are 
progeny of cells that have already encountered antigen. How- 
ever, as CD45RC l~ CD4 + T cells from rats that had been 
thymectomized 10 wk earlier were able to protect against 
diabetes, it is evident that recent thyrnic migrants play no 
essential role in the protection, and it seems that the protec- 
tive cells in the periphery are not naive. It is evident that 
this conclusion does not exclude the possibility that the pro- 
tective cells encountered their specific antigen at an earlier 
time when they were recent thymic migrants. This hypoth- 
esis presupposes that the protective T cell is specific either 
for the autoantigen or for some extrinsic antigen that evokes 
a tolerance-breaking response. Our data have no bearing on 
this point, but studies of induced tolerance to alloantigens 
in rats have provided evidence for an active CD4 + T 
cell-mediated tolerogenic mechanism that appears to be al- 
loantigen specific (70). The involvement of CD4 + T cells 
in induced tolerance raises the possibility that therapeutic pro- 
tocols may allow the acceptance of allografts by evoking es- 
sentially the same mechanism as that mediating self-tolerance. 
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