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Summary 
Bacterial lipopolysaccharide (LPS) has been reported to induce immunoglobulin (Ig)G2b class 
switching, yet we observed strain differences in IgG2b secretion in response to this mitogen. 
Specifically, BALB/c B cells, unlike those from DBA/2, synthesized relatively low amounts of 
IgG2b relative to IgG3, IgG1, or IgM. This report demonstrates that transforming growth factor 
(TGF)31, previously shown to induce IgA dass switching, selectively stimulates IgG2b secretion 
by BALB/c resting B cells activated with LPS. This activity was specifically reversed with a 
neutralizing anti-TGF-31 antibody. The ability of TGF-3~ to act directly on highly purified 
membrane (m)IgM+mlgG2b - cells to stimulate IgG2b production, stimulate an increase in 
IgG2b-secreting cells, and selectively increase the steady-state levels of germline "/2b RNA, suggests 
that it promotes IgG2b class switching. In this regard, addition of anti-TGF-3 antibody to cultures 
of DBA/2-derived resting B cells activated by LPS, alone, led to selective reduction in IgG2b 
secretion, indicating that endogenous TGF-31 accounts for the high IgG2b secretory response 
observed in that strain. Finally, TGF-3~ failed to stimulate IgG2b secretion by B cells activated 
with dextran-conjugated anti-IgD antibody. We propose that TGF-31 is a switch factor for the 
murine IgG2b subclass for appropriately activated B cells. In combination with other data, this 
would show that all six non-IgM, non-IgD isotypes in the mouse can be selectively induced 
by specific cytokines. 

T GF-3, is a pleiotropic cytokine whose primary func- 
tions include stimulation of wound healing (1) and sup- 

pression of multiple immune cell types (2-4). TGF-31 can 
be released by a number of cell types including B cells, T 
cells, macrophages, and platelets (1-3, 5-8). TGF-~x was re- 
cently shown to stimulate IgA production by LPS-activated 
murine B cells in vitro by inducing an IgA class switch (9-13). 
Similar results were recently obtained using human B cells 
(14-16). 

LPS stimulates large amounts of IgM and induces class 
switching to IgG3 and IgG2b (17, 18). We observed that 
the ratio of secreted IgG2b to that of IgG3, IgG1, or IgM 
upon LPS activation varied dramatically depending upon the 
strain of mouse from which the B cells were derived. Thus, 
B cells derived from BALB/c mice secreted relatively low 

amounts of IgG2b, upon LPS stimulation, relative to cells 
obtained from DBA/2 mice. Since no cytokine has been de- 
scribed which regulates IgG2b secretion in a positive manner, 
we used LPS-activated B cells from BALB/c mice to screen 
for cytokines that selectively stimulate the expression of this 
Ig isotype. We now show that TGF-31 selectively induces 
IgG2b secretion by LPS-, but not anti-IgD-dextran-, acti- 
vated B cells. This data supports our previous contention that 
the nature of the B cell activator plays a pivotal role in deter- 
mining cytokine-directed Ig isotype production (19, 20) and 
further indicates, in combination with other data, that three 
cytokines can selectively regulate two of the six non-IgM, 
non-IgD murine Ig isotypes in a positive manner: II:4:IgG1 
(21) and IgE (22); IFN-y: IgG2a (23) and IgG3 (20); and 
TGF-31: IgG2b and IgA (9, 10). 
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Materials and Methods 

Mice. Female BALB/c and DBA/2 mice were obtained from 
the National Cancer Institute (Frederick, MD) and were used at 
7-9 wk of age. 

Medium. RPMI 1640 (Biofluids, Inc., Rockville, MD) sup- 
plemented with 10% fetal bovine serum (GIBCO BILL, Gaithers- 
burg, MD), t-glutamine (2 mM), 2-ME (0.05 mM), penicillin (50 
/~g/ml), and streptomycin (50/,g/ml) were used for culturing cells. 

Preparation and Culture of B Cells. Enriched, T-depleted popu- 
lations of small splenic B cells were obtained as described (24). Func- 
tional assays were carried out in 96-well flat-bottomed plates (Costar 
Corp., Cambridge, MA). Cultured cells were incubated at 37~ 
in a humidified atmosphere containing 6% CO2. 

Reagents. LPS W, extracted from Escherichia coli 0111:B4, was 
obtained from Difco Laboratories, Inc. (Detroit, MI). Purified por- 
cine and bovine natural TGF-fll were obtained from g & D 
Systems, Inc. (Minneapolis, MN) and Cdtrix Pharmaceuticals (Santa 
Clara, CA), respectively. Dextran-conjugated monodonal anti-IgD 
(H~ffl) (r 1 was prepared as previously described (25). rib5 
was prepared in the baculovirus system and was a kind gift from 
Dr. Richard Hodes (National Institutes of Health, Bethesda, MD). 
PE-labeled polyclonal goat anti-mouse IgM was obtained from 
Southern Biotechnology Associates (Birmingham, AL). Monoclonal 
rat IgG1 anti-mouse IgG2b was obtained from Pharmingen (San 
Diego, CA). Monoclonal mouse IgG1 anti-TGF-fl (11311.16.8) 
(26) and a control mAb, mouse IgG1 anti-mouse IgMb-allotype 
(MB86) (27) were purified from ascites. B cells from BALB/c and 
DBA/2 mice express IgH of the a-allotype and hence do not bind 
MB86 (27). 

Electronic Cell Sorting. Highly purified (>99%) membrane 
(m)IgM§ - B cells were obtained by electronic cell sorting 
of B calls stained with PE-anti-IgM plus FITC-anti-IgG2b using 
a FACStar Plus | (Becton Dickinson & Co., Mountain View, CA) 
as described (28). 

Quantitation ofSecretedlg Isotypex Ig isotype concentrations were 
measured by an ELISA assay as described (24). Briefly, Immulon 
2, %-well flat-bottomed ELISA phtes (Dynatech Laboratories, Inc., 
Alexandria, VA) were used, and a fluorescent product was gener- 
ated by cleavage of 4-methyl umbilliferyl phosphate (Sigma Im- 
munochemicals, St. Louis, MO) with specifically bound alkaline 
phosphatase-conjugated antibodies. Ig isotype concentrations were 
determined by extrapolation from standard curves. 

Quantitation of lg Isotype-secreting Cells. Ig isotype-secreting cells 
were quantitated by an ELISPOT assay (29). Briefly, flat-bottomed 
Immulon I microtiter plates (Dynatech Laboratories, Inc.), were 
coated with goat anti-mouse Ig and blocked with 1% BSA in PBS. 
Serial dilutions of single cell suspensions, starting with 2 x 105 
cells/well, were incubated on anti-Ig-coated plates for 7 h at 37~ 
in a 5% COs in air incubator. The cells were washed away with 
PBS/0.05% Tween 20, and the plates were overlaid for 2 h with 
phosphatase-conjugated isotype-specific antibodies to mouse Ig 
(Southern Biotechnology Associates). The antibodies produced by 
individual B cells which bound to the plate were visualized by ad- 
dition of a 5-bromo-3-chloroindolyl phosphate solution (Sigma Im- 
munochemicals). 

Detection of Steady-state Levels of Germline C.9/3 and C.T2b 
RNA. Steady-state levels of germline C.~/3 RNA were measured 
by Northern blot analysis. 20/xg of total RNA, extracted from 
cultured cells, was separated, by dectrophoresis, in a formaldehyde- 
containing 1% agarose gel and blotted onto a nylon membrane 

1 Abbreviations used in this paper: et~-dex, dextran-conjugated anti-lgD anti- 
bodies; m, membrane. 

according to standard protocols. The blot was then hybridized with 
a eDNA specific for I3'3 (30) that was labeled with 32p-deoxy- 
cytidine by the random hexamer method, and was subsequently 
exposed to X-ray film. In addition, 20 #g of total RNA, extracted 
from the same cell populations that were uti l ized to measure germ- 
line "y3 transcripts, was hybridized to a 32p-labeled probe specific 
for germline 3~2b transcripts to assay for steady-state levels of 
germline C.3,2b RNA by the $1 nuclease protection assay as de- 
scribed (31). 

Results and Discussion 
In initial experiments we observed that the relative amounts 

of IgG2b, IgG3, IgG1, and IgM secreted in response to LPS 
stimulation in vitro differed between B cells from BALB/c 
vs. DBA/2 mice. In four experiments BALB/c-derived B cells 
secreted 6-10-fold less IgG2b than DBA/2-derived B cells, 
whereas their secretion of IgG3, IgG1, or IgM was either 
comparable or somewhat higher (Table 1). Thus, BALB/ 
c-derived B cells were used to search for cytokines which selec- 
tively stimulated IgG2b secretion in response to LPS. 

We observed that purified bovine TGF-fll stimulated a 
dose-dependent increase in IgG2b and IgA secretion by LPS- 
activated B cells in vitro (Fig. 1). Maximal IgG2b and IgA 
secretion typically occurred between 0.3-1.0 ng/ml, a dose 
range similar to that reported by others for maximal IgA en- 
hancement (9, 10). Optimal stimulation of IgG2b was ob- 
served when TGF-fll was added 24 h after addition of LPS 
and when cells were cultured at relatively high cell densities 
(2.5-10 x 10S/ml). The TGF-fll-induced enhancement in 
IgG2b secretion was observed in six separate experiments. 
In contrast, similar concentrations of TGF-B1 failed to stim- 
ulate, and variably inhibited, LPS-induced IgM, IgG3, and 
IgG1 production (Fig. 1). Addition of TGF-B1 >1.0 ng/ml 
typically led to a decrease in all Ig isotypes, and this was as- 
sociated with a marked reduction in viable cell yields relative 
to that observed with LPS activation alone. This was consis- 
tent with the antiproliferative effect of TGF-fll described by 
others (2, 3). Similar results were obtained using purified por- 
cine TGF-fll (data not shown). Although it has been 
reported that the addition of either I1-5 or II.-2 can selec- 
tively enhance TGF-fll-mediated induction of IgA secretion 
by LPS-activated B cells (10), we observed no selective in- 
duction of IgG2b secretion by either I1.-2 or Ib5 on LPS plus 
TGF-fll-activated cells (data not shown). 

Addition of increasing amounts of a neutralizing mono- 
clonal anti-TGF-fll antibody to B cell cultures stimulated 
with LPS and 1.0 ng/ml of TGF-fll resulted in a selective 
reduction in IgG2b secretion, whereas an isotype-matched 
control mAb had no significant effect (Table 2). This indicated 
that the IgG2b-enhancing activity was due to TGF-fl~ and 
not some contaminant in the TGF-fl~ preparation. 

To determine whether the TGF-fll-mediated increase in 
IgG2b secretion was due to an increase in the number of 
IgG2b-secreting cells, or the amount of IgG2b secreted per 
cell, the number of Ig isotype-secreting cells generated in 
response to LPS and TGF-fll was determined using an 
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Table 1. LPS-activated BALB/c-derived B Cells Synthesize Relatively Low Levels of IgG2b 

Ig secretion Ratio 

Strain IgG2b IgG3 IgG1 IgM 3'3/3'2b 71/3'2b /t/3,2b 

ng/ml 
BALB/c 85 5,000 310 52,500 59 3.6 620 

DBA/2 850 1,750 24 125,000 2.1 0.03 147 

B cells from each strain were cultured at 10S/ml in the presence of LPS for 4 d. Cells were then washed three times in medium to remove mAbs 
(murine IgG1), which would otherwise be measured in the IgGl-specific ELISA, and resupended in medium for an additional 2 d to allow for Ig 
secretion to occur. Culture supernatants were then removed for measurement of Ig isotype concentrations by ELISA. This data is representative 
of four similar experiments. 

ELISPOT assay (Fig. 2). Cells were analyzed 4.5 d after initi- 
ation of  culture. W h e n  expressed as the percentage of  total 
Ig-secreting cells at a given concentration of  TGF-fll, a 
dose-dependent increase (maximal: 30-fold at 1.0 ng/ml of  
TGF-fl0 was observed for IgG2b-secreting cells. By contrast 

the percentage of  calls secreting IgM, IgG3, or IgG1 either 
remained stable or decreased. 1.0 ng/ml  of  TGF-fll induced 
a 5.4-fold increase in the absolute number of  IgG2b-secreting 
cells relative to that observed with LPS alone. By contrast, 
the absolute numbers ofceUs secreting IgM, IgG3, and IgG1 
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Figure 1. TGF-fll selectively stimulates IgG2b 
and IgA secretion by LPS-activated B cells. 
BALB/c-derived B cells were cultured for 24 h with 
LPS (40/zg/ml) at 5 x 10 s cells/ml in a total of 
100/zl of medium upon which varying concen- 
trations of TGF-fll were added in 100 #1 of 
medium to achieve the final concentrations illus- 
trated in the figure. Culture supernatants were re- 
moved 6 d after initiation of culture and Ig iso- 
type concentrations were measured by an ELISA. 
All groups were established in triplicate. 

Table 2. Anti-TGF-fl mAb Specifically and Selectively Inhibits IgG2b Secretion by B Cells Activated with LPS Plus TGF-fll 

Ig secretion 

IgG2b IgM IgG3 

LPS 

LPS plus TGF-fll 

LPS plus TGF-fll plus anti-TGF-fl 
LPS plus TGF-fl plus control mAb 

ng/ml 
130 47,900 1,250 

1,260 28,900 2,810 

265 53,900 2,140 
1,650 29,400 3,500 

BALB/c-derived B cells were stimulated for 24 h at 5 x 10S/ml in the presence of LPS (40/~g/ml). 24 h later T.GF-fll (final concentration 1.0 
ng/ml) with or without anti-TGF-fl (10/zg/ml final concentration) or control mAb (MB86) (10/zg/ml final concentration) were added to culture 
in an equal volume. Culture supernatants were removed 6 d after initiation of culture for measurement of Ig isotype concentrations by ELISA. 
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declined at 1.0 ng/ml of TGF-~I by 5.5-, 14.8-, and 4.2- 
fold, respectively. Further addition of 1.0 ng/ml of TGF-B1 
to LPS-activated cultures led to a reduction of 2.5-fold in viable 
cell yields. Thus, TGF-B1 increased IgG2b secretion by LPS- 
activated B cells primarily by increasing the number of cells 
secreting Ig of that isotype. 

To determine whether TGF-~/1 acted directly on B cells 
and stimulated class switching, highly purified (>99%) 
mlgM + mlgG2b- cells were isolated by electronic cell sort- 
ing and stimulated with LPS in the presence or absence of 
TGF-~I (Table 3). TGF-~/1 selectively induced IgG2b secre- 
tion by LPS-activated mlgM+mlgG2b - cells indicating its 
direct action on the B cell and suggesting that it promoted 
a class switch to IgG2b. 

An increase in the steady state levels of germline C. RNA 
specific for a particular C, gene typically precedes class 
switching to the expression of that gene (32, 33). To further 
assess whether TGF-~I acted as a switch factor for IgG2b 
we determined whether it selectively induced germline 
C.~/2b RNA in LPS-activated B cells (Fig. 3). TGF-B1 in- 
duced a 2-2.5-fold increase in the steady-state levels of germ- 
line C,'y2b RNA in LPS-activated B cells while concomi- 
tantly reducing, by 2-2.5-fold, the levels of germline C.'y3. 
The enhancement in steady-state levels of germline C,3'2b 
RNA by TGF-~I was 2-3-fold lower than the associated in- 
duction of IgG2b secretion. However, steady-state levels of 
germline C.'y2b RNA may underestimate the degree of 
transcriptional activation of the C.'y2b gene, the relation- 
ship between germline C. gene transcription and Ig class 
switching may not be a linear one, and/or other parameters 

in the response of B cells to TGF-~I may further regulate 
IgG2b synthesis. 

Additional experiments demonstrated that a neutralizing 
anti-TGF-B1 antibody specifically and selectively reduced 
IgG2b secretion by LPS-activated DBA/2-derived B cells (Fig. 
4). Thus, it appears that endogenous TGF-~I accounted for 
the ability of DBA/2-derived B cells to synthesize relatively 
high amounts of IgG2b in response to LPS. 

We previously determined that cross-linkage of the antigen 
receptor of small B cells by dextran-linked anti-IgD (cz6-dex) 
provided a powerful costimulus for cytokine-directed Ig iso- 
type production (34). Yet, o~6-dex was unable to costimulate 
an IgE response in the presence of even high concentrations 
of IL-4 (19). We further observed a distinct lack of IgG2b 
secretion by ol&dex-activated B cells in the presence of 
cytokines contained within either activated CD4 § Thl or 
Th2 supernatants (19). To determine whether TGF-B1 could 
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Figure 2. TGF-B1 selectively stimulates an increase in IgG2b-secreting 
cells in the presence ofLPS. BALB/c-derived B cells were cultured for 24 h 
with LPS (40/~g/ml) at 5 x 10 s cells/ml in a volume of 5 ml of medium 
upon which varying concentrations of TGF-B1 were added in 5 ml of 
medium to achieve the final concentrations illustrated in the figure. Cells 
were harvested 4.5 d after initiation of culture for quantitation of Ig isotype- 
secreting cells by an ELISPOT assay. 
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Figure 3. TGF-~I selectively stimulates an increase in steady-state levels 
of germline C~3'2b RNA by LPS-activated B cells. BALB/c-derived B cells 
were cultured for 24 h in the presence of LPS (40 #g/m1) and either anti- 
TGF-B1 mAb (11911.16.8) (10 #g/m1) to neutralize any endogenous 
TGF-/31, or an isotype-matched control mAb (MB86) (10 #g/ml) at 5 x 
10S/ml in 25 ml of medium upon which medium alone or TGF-Bt (2.0 
ng/ml), respectively, were added in 25 ml of medium, Cells were har- 
vested 3 d after initiation of culture and total KNA was extracted for quan- 
titation of steady-state levels of germline C.3"2b by the $1 nuclease pro- 
tection assay or C.3'3 by Northern blot analysis. Ethidium bromide (EtBr) 
staining of RNA is included to show essentially equal quantities of RNA 
used from each group. 



Table 3. TCF-/9 Acts Directly on mlgM+mlgG2b - B Cells to Stimulate IgC2b Secretion 

Ig secretion 

Nonsorted mlgM*mlgG2b- 

IgM IgG2b IgG3 IgM IgG2b IgG3 

ng/ml 
LPS 119,000 86 1,800 175,000 290 2,150 
LPS +TGF-31 46,250 500 3,000 106,000 2,600 4,250 

Small splenic B cells were stained with FITC-anti-IgG2b plus PE-anti-IgM, mlgM+mlgG2b - cells were isolated by electronic cell sorting to >99% 
purity and stimulated with LPS (40 #g/ml) at 5 x 10 s cells/ml. 24 h later, an equal volume of medium with or without 1.0 ng/ml of TGF-31 
was added. Culture supernatant was removed 6 d after initiation of culture with LPS, and IgM, IgG3, and IgG2b concentrations were measured by ELISA. 
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Figure 4. Anti-TGF-B1 selectively inhibits 
IgG2b secretion by DBA/2-derived, LPS-activated 
B cells. DBA/2-derived, B cells were cultured at 
1.5 x 10 s cells/ml in LPS (20/~g/ml) in the pres- 
ence or absence of either anti-TGF-31 mAb 
(1Dl1.16.8) (1 #g/ml) or an isotype-matched con- 
trol mAb (MB86) (1 #g/ml), Culture supematants 
were harvested 6 d after initiation of culture for 
measurement of Ig isotype concentrations by 
ELISA. All groups were established in triplicate. 
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Figure 5. TGF-B1 stimulates IgG2b secretion by LPS- 
stimulated, but not ot~-dex plus IL-S-activated B cells. 
BALB/c-derived B cells were cultured with LPS (40 #g/rnl) 
or oeS-dex (6 ng/ml) plus IL-5 (300 U/ml) for 24 h in 
100 #1 of medium upon which varying concentrations of 
TGF-31 were added in 100 #1 of medium for the final 
concentration illustrated in the figure. Culture superna- 
tants were removed 6 d after initiation of culture for mea- 
surement of IgM and IgG2b concentrations by ELISA. 
All groups were established in triplicate. 

induce IgG2b secretion by oe~-dex-activated B cells, we added 
varying amounts of  TGF-31 to B cells induced to secrete Ig 
by c~&dex plus IL-5 (Fig. 5). Although TGF-3,  dearly acted 
on c~r plus IL-5-activated cells by virtue of  its ability 
to inhibit IgM secretion in a dose-dependent fashion, it failed 
to stimulate detectable secretion of  IgG2b. This further 

supported our model that the nature of  the B cell activator 
plays a pivotal role in cytokine-directed Ig isotype produc- 
tion (19, 20). 

Thus, our data strongly suggests that TGF-flt stimu- 
lates IgG2b class switching by LPS-activated B cells in that 
TGF-31: (a) selectively stimulates the secretion of only IgG2b 
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and IgA; (b) selectively increases the number of IgG2b- 
secreting cells; (c) acts on mlgM+mlg2b - cells to induce 
IgG2b secretion; and (d) increases the steady-state levels of 
germline C,3,2b RNA. 

In light of our findings, it is of interest that an earlier study 
demonstrating the ability of TGF-~l to selectively stimulate 
IgA production found that TGF-B1 inhibited the secretion 
of IgM, IgG3, IgG1, and IgG2a, but did not inhibit the syn- 
thesis of IgG2b (10). The failure to see a significant induc- 
tion in IgG2b secretion may have reflected, in part, the rela- 
tively high levels of IgG2b secretion induced by LPS alone, 
perhaps due to endogenous TGF-B1. In this regard, we ob- 
served that although DBA/2-derived B cells made substan- 
tial amounts of IgG2b in response to LPS alone (secondary 
to endogenous TGF-/81), they secreted only modest amounts 
of IgA (comparable with that seen utilizing B cells from 
BALB/c mice). This could in part reflect the need for some- 
what higher concentrations of TGF-B1 for optimal IgA vs. 
IgG2b secretion as is suggested in Fig. 1. 

Another group, which earlier reported the ability of joint 
fluids from rheumatoid arthritis patients to selectively stimulate 
IgG2b-secreting murine B cells when cultured by LPS in vitro 
(35), found no affect of TGF-~I on IgG2b induction (36). 
Although the reason for this is presently unclear, the failure 
of human TGF-~I at 1 and 2 ng/ml, to diminish the 
number of IgM-, IgGl-, and IgG3-secreting cells over that 

seen with LPS alone calls into question the activity of their 
TGF-31 preparation. Nevertheless, the IgG2b-inducing ac- 
tivity in joint fluids was ascribed to a 50-60 kD molecule, 
suggesting that a factor in addition to TGF-B1 may also be 
capable of enhancing the secretion of IgG2b. 

We are currently investigating the basis for the strain-related 
differences in magnitude of in vitro LPS-induced IgG2b 
secretory responses. Preliminary work from our laboratory 
suggests that LPS-activated DBA/2-derived B cells secrete 
TGF-/31. Whether the differences in IgG2b secretion among 
B cells derived from other strains of mice reflect differences 
in the amount of endogenous TGF-31 produced, or whether 
these B cells have differing sensitivities to TGF-31 action, 
needs to be determined. It is interesting that we recently 
observed that BALB/c mice immunized with LPS produced 
lower levels of serum, LPS-specific IgG2b, relative to IgM 
and IgG3, when compared with similarly immunized DBA/2 
mice (Snapper, C. M., unpublished observations). Whether 
TGF-31 plays a physiologic role in the in vivo IgG2b re- 
sponse to LPS immunization is being investigated. Finally, 
it will be interesting to determine whether the constitutive, 
selective expression of germline C,3'2b transcripts and C.3'2b 
rearrangement typically seen in murine Abelson virus-trans- 
formed pre-B cell lines (33) is also due to endogenous produc- 
tion of TGF-3I. 
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