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S u m m a r y  

IP-10 is a member of the -C-X-C- chemokine superfamily of proinflammatory cytokines whose 
secretion is induced by interferon 3' (IFN-y) and lipopolysaccharide (LPS). To date no function 
has been described for IP-10. We have genetically engineered tumor cells to secrete high levels 
of murine IP-10 and demonstrate that while IP-10 has no effect on the growth of these tumor 
cells in culture, it elicits a powerful host-mediated antitumor effect in vivo. The IP-10 antitumor 
response is T lymphocyte dependent, non-cell autonomous, and appears to be mediated by the 
recruitment of an inflammatory infiltrate composed of lymphocytes, neutrophils, and monocytes. 
These results document an important biologic property of IP-10 and raise the possibility that 
some of the T cell-directed effects of IFN-3, and LPS may be mediated by this chemokine. 

T he observation that some cancer patients who developed 
concurrent bacterial infections also experienced remis- 

sions of their malignant disease led Coley over 100 years ago 
to treat cancer patients with a preparation of heat-kiUed Gram- 
negative and Gram-positive bacteria, now commonly referred 
to as "Coley's toxins" (1, 2). The study of this phenomenon 
in animal models led to the identification of LPS as an active 
component of the toxins that induces a cytokine-mediated 
antitumor response in vivo (3). As IP-10 is a cytokine that 
is dramatically induced by LPS and IFN-y, we sought to de- 
termine if IP-10 could elicit an antitumor effect in vivo. 

IP-10 was originally isolated as a predominant mRNA in- 
duced by IFN-3/(4) or LPS (5, 6) in monocytes, and its ex- 
pression has been detected in vivo during the development 
of a delayed-type hypersensitivity cellular immune response 
by keratinocytes, endothelial cells, and infiltrating mononuclear 
cells (7). In addition, IP-10 expression has been seen in the 
epidermis and dermis in cutaneous lesions of psoriasis (8), 
tuberculoid leprosy (7), and fixed DRUG eruptions (9). 

IP-10 is a member of the chemokine superfamily and is 
,v30% homologous to IL-8 and platelet factor (PF4). 1 The 
chemokines are secreted proteins induced by inflammatory 
stimuli and are involved in orchestrating the selective migra- 
tion, diapedesis, and activation of blood-borne leukocytes that 
mediate the inflammatory response (10, 11). This superfamily 
has been subdivided into two classes based on the positions 
of the four invariant cysteine residues found in the primary 
structure of these molecules. IP-10 belongs to the so-caUed 
o~, or -C-X-C-, class of chemokines that map to a cluster 

1Abbreviations used in this paper: M, murine; MCP-1, monocyte 
chemotactic protein 1; MIP-I~/, macrophage inflammatory protein 1B; 
PF4, platelet factor 4. 

on human chromosome 4 (q12-21), and includes IL-8, GRO, 
and the platelet ol-granule basic proteins PF4 and ~/-thrombo- 
globulin (flTG). The fl, or -C-C-, class maps to human chro- 
mosome 17 (q11-32), and includes monocyte chemotactic pro- 
tein 1 (MCP-1), R.ANTES, macrophage inflammatory protein 
lfl (MIP-I~), and 1-309. The chemokines seem to affect 
different, yet overlapping, leukocytes subsets. For example, 
IL-8 is specific for neutrophils (12) and CD45RO + memory 
T cells (13, 14), RANTES is specific for monocytes, eosinophils 
(15), and a subset of CD4 + T cells (16); MIP-lfl is specific 
for monocytes and CD8 + T cells (17); and MIP-loe is 
specific for monocytes, basophils, and mast cells (18). Although 
IP-10 was one of the first chemokines to be identified, its 
physiologic function remains unknown. We therefore under- 
took the present study to gain insight into the biological ac- 
tivities of IP-10 by analyzing the cells that respond to IP-10 
in vivo and to determine if IP-10 possesses an antitumor effect 
in vivo. 

Materials and Methods 

Cell Lines and Cell Culture. J558L is a heavy chain loss variant 
of the BALB/c plasmacytoma line J558 (19). The K485 mammary 
adenocarcinoma line was derived from a mammary tumor in a trans- 
genic mouse carrying an activated c-myc oncogene (20). TheJ558L 
cell line was grown in RPMI 1640 supplemented with 10% FCS, 
50 U/ml penicillin, 50 #g/ml streptomycin, 2 mM t-glutamine, 
and 57 #M 2-ME. K485 and RAW 264.7 cell lines were main- 
tained in DME supplemented with 10% FCS and penicillin and 
streptomycin in the concentrations noted above. 

Construction of Ig-IPlO and Moloney (Mo)LTR-IPIO Expression 
Vectors. The murine (m)IP-10 cDNA was cloned from the mu- 
rine macrophage cell line RAW 264.7 (American Type Culture Col- 
lection, Rockville, MD). RNA was isolated from RAW 264.7 cells 
that were treated for 3 h with 200 U/m1 rmIFN-3, (Genentec, Inc., 
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San Francisco, CA). This RNA was then used as a template for 
first-strand cDNA synthesis. The complete mlP-10 coding sequence 
was cloned from this cDNA using Taq DNA polymerase, standard 
PCR conditions, a 5' sense oligonucleotide AAGCGCTTCATC- 
CACCG, and a 3' antisense oligonucleotide GCGTGGCTTCTC- 
TCCAG based on sequences 1-17 and 362-379, respectively, from 
the sequence of mlP-10 (5). The PCR product was purified by 
agarose gel electrophoresis, blunt-ended with Klenow, phos- 
phorylated with T4 DNA kinase, and then blunt-end ligated into 
the XhoI site of pIgTE/N and the EcoRI site of a MoLTR-SV40 
I/pA expression vectors that had been flushed with Klenow. Se- 
quence analysis of the cloned PCR product confirmed the sequence 
of mlP-10. The Ig control sequences used in the generation of the 
plasmid plgTE/N were derived from the plasmid pTARY (22), placed 
5' of the Ig promoter at the unique XbaI site in pBluescript 
(Stratagene, La Jolla, CA). Both vectors contain an SV40 intron 
and splice and polyadenylation signals (23) after the cDNA cloning 
site. The MoLTR was isolated as a 0.6-kb ClaI-XmaI fragment 
of pZip-NeoSV (X)-I plasmid (24), which includes the 3' LTR of 
the Moloney murine leukemia virus. 

Transfection of Tumor Cell Lines. Transfection of J558L ceils was 
performed by electroporation (25). 20/~g of linearized Ig-IP10 or 
MoLTR-IP10 expression vector plasmid DNA and 1/~g of linear- 
ized neomycin resistance plasmid pSV7Neo (26) were used per trans- 
fection of 5 x 106 cells. After 48 h in RPMI, cells were cen- 
trifuged and resuspended in selective media containing 0.8 mg/ml 
of G418 (as calculated for 100% antibiotic activity; Genticin; 
GIBCO BRL, Gaithersburg, MD) and plated in serial dilutions 
into 288 wells (6.4-ram diameter) to clone by limiting dilution. 
G418-resistant cells from single wells were expanded, and a second 
round of cloning by limiting dilution in selective media was per- 
formed to ensure donality. Transfection of K485 cells was performed 
by electroporation using 30/~g of linearized MoLTR-IP10 expres- 
sion vector DNA and 1.5 #g ofpSV7Neo DNA per 100-mm plate 
containing 6 x 10 s cells. 24 h after transfection, cells were split 
1:3 in DME; G418 at a concentration 0.4 mg/ml was added after 
an additional 24 h. Individual G418-resistant colonies were picked 
after 10-12 d, and then to insure clonality, single cell clones were 
then isolated by limiting dilution in selective media. In vitro dou- 
bling times were determined by serial cell counts using a 
hemocytometer over 96 h. 

R N A  Blots. RNA was isolated by lysing cells in guanidine hy- 
drochloride and pelleting the RNA through a 5.7-M CsC12 
cushion (27). RNA was fractionated on a 1.2% agarose gel con- 
taining 0.2 M formaldehyde and then transferred to gene screen 
(DuPont Co., Wilmington, DE) and hybridized with [32p]dCTP 
Klenow-labeled mlP-10 cDNA or a [32p]dCTP Klenow-labeled 
plasmid containing a 279-bp XholI-DraI fragment encoding the 
ribosomal protein rp L32 (28) as a control for RNA loading. 

Protein Expression and Purification. rmlP-10 beginning with the 
putative mature NH2-terminal Ile and terminating with the 
COOH-terminal Pro was expressed in the Escherichia coli strain M15 
using the Qiaexpress vectors pQE12 and pQE8 (Qiagen Inc., Chats- 
worth, CA). Expression of IP-10 in pQE12 results in a fusion pro- 
tein containing a six-histidine COOH-terminal tag, and expres- 
sion of IP-10 in pQE8 results in a fusion protein containing an 
NH2-terminal six-histidine tag. IP-10 was purified to apparent 
homogeneity (a single peak on HPLC) by sedimentation of inclu- 
sion bodies through sucrose, affmity chromatography on nickel 
agarose (Qiagen Inc.), and then FPLC on the cation exchange resin 
Mono-S (Pharmacia Biotech Inc., Piscataway, NJ) eluting with a 
NaC1 gradient or reverse-phase HPLC (Waters Associates, Milford, 
MA) eluting with an acetonitrile gradient. The concentration of 

purified protein was determined using a Bradford assay (Bio-Rad 
Laboratories, Richmond, CA) with IgG or bovine gamma globulin 
as the known standard. 

AntibodyPretmration. For immunizations, IP-10 was purified as 
above except that the eluent from the nickel-agarose chromatog- 
raphy column was separated on a denaturating SDS-polyacrylamide 
gel. The region of the gel containing IP-10 was then emulsified 
with CFA for the primary immunization and with IFA for subse- 
quent immunizations. Approximately 200 /xg of the COOH- 
terminal-tagged protein (IP-10-[His]6) was injected subcutaneously 
into each of three, 8-wk-old, female New Zealand white rabbits. 
The rabbits were boosted twice, at l-too intervals, with 100/~g 
of the NH2-terminal-tagged protein ([His]6-IP-10) per rabbit to 
ensure the generation of antibodies recognizing the native NH2 
and COOH-termini of IP-10. 10 d after the second boost, the three 
rabbits were bled and serum was isolated and pooled for further 
studies. 

Immunoprecipitation. 107 cells were metabolically labeled in 1 
ml for suspension cells and 2 ml for adherent cells of methionine- 
free DME supplemented with 5% dialyzed serum and 0.5 mCi 
of [3SS]methionine for 6 h at 37~ The media were collected, cen- 
trifuged at 1,000 g, and the protease inhibitors (Boehringer Mann- 
heim Biochemicals, Indianapolis, IN) at the following concentra- 
tions were added to the supernatant: leupeptin (0.3 ng/ml), aprotinin 
(10 ng/ml), PMSF (20 ng/ml), and pepstatin (0.8 ng/ml). The su- 
pernatant was then centrifuged at 10,000 g for 30 min at 4~ and 
then precleared for 2 h at 4~ with 10/~1 of pooled normal rabbit 
serum and 100/xl of a 1:1 slurry of protein A-Sepharose (PAS; Phar- 
macia Fine Chemicals, Piscataway, NJ). The PAS was then spun 
out at 10,000 g in eppendorf tubes, the supernatant was split and 
transferred to new tubes, and then 2/xl of pooled immune serum 
or preimmune serum was added to each sample for 3 h at 4~ 
50/~1 of a 1:1 slurry of PAS was added to each sample, incubated 
another 4 h at 4~ and then centrifuged at 10,000 g for 10 rain. 
The PAS beads were then washed three times with 1 ml of RIPA 
buffer (0.15 M NaC1, 1% NP-40, 0.1% SDS, 0.5% deoxycholate, 
0.05 M Tris, pH 8.0) transferred to new tubes and then boiled for 
3 rain in 50/,1 of sample buffer containing 0.3 M 2-ME, 4% SDS, 
and 0.01% Pyronin Y. 15/~1 was then analyzed on a 15% SDS- 
polyacrylamide gel using a Tris/Tricine buffer system (29) that has 
good resolution in the low molecular weight region. 

ELISA. Conditioned medium was collected for 48 h from 2 
x 106 cells/ml in serum-free medium and 100/~1 was then ad- 

sorbed in duplicate to microtiter wells (3911 Micro Test III; Falcon 
Labware, Oxnard, CA) for 4 h. Nonspecific binding sites were 
blocked for 2 h at room temperature with 200/~l/well of a PBS 
solution containing 2% goat serum and 2% BSA (blocking solu- 
tion). This was followed by 100 ttl/well of anti-IP-10 antiserum 
at a 1:1,000 dilution in blocking solution for 2 h at room tempera- 
ture. The plates were then washed four times with water, incubated 
for I h at room temperature with a 1:10,000 dilution of an alkaline 
phosphatase-conjugated goat anti-rabbit IgG (Jackson Im- 
munoResearch, West Grove, PA), washed four more times with 
water, and treated with 100/~l/well of the substrate p-nitrophenyl 
phosphate in diethanolamine (Pierce, Rockford, IL). The o ~  
mOD405/min was measured on a Om~ kinetic microplate reader 
/Molecular Devices, Menlo Park, CA). 

Animal Studies. Tumor cell injections were carried out using 
freshly prepared suspensions at a concentration of 107 cells/ml in 
PBS. The total number of tumor cells injected was 2 x 106, ex- 
cept in mixed tumor transplantation experiments, in which 2 x 
106 cells of each type were mixed and injected. All injections were 
performed subcutaneously in the right lower abdominal quadrant 
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via 25- or 27-gauge needles. BALB/c, BALB/c nu/nu, Swiss nu/nu, 
and FVB mice were obtained from Taconic Farms (Germantown, 
NY) and were cared for according to the guidelines provided by 
the Harvard Medical Area Animal Research Center. 

Histology. Tissue at the site of tumor cell inoculation was fixed 
in OptimalFix (American Histology Reagent Co., Stockton, CA). 
Standard paraffin-embedding, sectioning, and staining with hema- 
toxylin and eosin was performed by the Transgenic Pathology Lab- 
oratory (University of California, Davis, CA). 

Results 
Generation of  IP-lO-expressing Tumor Lines. To establish 

tumor  ceil lines expressing mlP-10, the mIP-10 c D N A  was 
cloned by P C R  based on the mouse sequence and the coding 
sequence was ligated into two expression vectors (Fig. 1 a). 
One  vector, Ig-IPl0,  places IP-10 under the control of  the 
human and mouse Ig heavy chain promoter/enhancer (E#P#); 
the other, MoLTR-IP-10,  places IP-10 under the control of 
the routine Moloney leukemia virus LTR. The MoLTR-IP10 
vector was used with a neomycin resistance plasmid to cotrans- 

fect the J558L plasmacytoma cell line and the K485 mam-  
mary  adenocarcinoma cell line. The J558L cell line is a heavy 
chain loss variant of  the BALB/c-derived plasmacytoma cell 
line J558. The K485 cell line was derived from a breast tumor  
that arose in a transgenic mouse harboring an activated c-m?c 
oncogene. Because of  its lymphoid-specific expression prop- 
erties, the Ig-IPl0 vector was used wi th  a neomycin resis- 
tance plasmid to cotransfect only the J558L cell line. 

Between 15 and 20 individual G418 resistant clones from 
each transfection experiment were analyzed for IP-10 expres- 
sion by Northern blot analysis. High-level IP-10-expressing 
clones were subdoned by limiting dilution to ensure donality, 
and the subclone from each of  the transfection experiments 
that secreted the most IP-10, as determined by ELISA, was 
selected for further studies. These cell lines are referred to 
as J558L-MoLTR-IP10, J558L-Ig-IP10, and K485-MoLTR- 
IPl0. A Northern blot  demonstrating the level of IP-10 
m R N A  in these transfected lines compared with  their pa- 
rental lines is shown in Fig. 1 b, The IP-10/SV40 transcript 

Figure 1. Expression and secretion 
of IP-10 in transfeeted tumor lines. (A) 
Diagram of the IP-10 expression vectors 
used in the generation of IP-10- 
expressing tumor cell lines. (E#) 1.0- 
kb fragment of the mouse Ig heavy 
chain enhancer; (P/~) 0.6-kb fragment 
of the human Ig heavy chain promoter. 
MoLTR was isolated as a 0.6-kb frag- 
ment of the 3' LTR from Moloney mu- 
rine leukemia virus. (IP-IO) The entire 
mlP-10 coding sequence; (8 V40 l/pA) 
a fragment of the SV40 genome that 
contains an intron and polyadenylation 
signal (Arrows) The direction of tran- 
scription. (b) Northern blot analysis of 
transfeeted and control tumor cell lines. 
10 #g of total RNA isolated from the 
parental J558L plasmacytoma call line 
(J558L-control), J558L transfected with 
the neomycin resistance gene alone 
(J558L-NeoR), J558L cotransfected 
with the neomycin resistance gene plus 
the MoLTR-IP10 or Ig-IPl0 expression 
vectors (J558L-MoLTR-IPlO or J558L- 
Ig-IPlO, respectively), K485 mammary 
adenocarcinoma cells transfected with 
the neomycin resistance gene alone 
(K485.NeoR), or with the neomycin 
resistance gene plus the MoLTR-IPl0 
expression vector (K485-MoLTR-IPIO), 
RAW 264.7 macrophage cell line un- 
stimulated (control), or stimulated with 
200 U/nil ofrmlFN-3, for 3 h. The blot 
labeled IP-10 was hybridized with a 
32p-labded mIP-10 cDNA probe and 

exposed for 2 h at -70~ with a Lightening Plus intensifying screen (DuPont Co.), and the lower blot, labeled rp L32, was hybridized with a 32p_ 
labeled ribosomal protein L32 probe and exposed for I h at room temperature as a control for RNA loading. The positions of 18S and 28S ribosomal 
RNAs are indicated on the upper blot. (c) Immunoprecipitation of secreted IP-10. Control J558L and K485 tumor lines and those lines transfected 
with either the MoLTR-IPl0 or Ig-IPl0 expression vectors, and control and IFN-q,-stimulated (3 h, 200 U/ml) RAW 264.7 cells, were biosynthetically 
labded with [3SS]methionine for 6 h. The media were then immunopreeipitated with either preimmune rabbit serum (P), or immune serum (/) iso- 
lated from rabbits immunized with purified rmlP-10. The immunoprecipitates were fractionated by SDS-PAGE on a 15% gel. The gel was then treated 
with EN~HANCE (DuPont Co./NEN Research Products, Boston, MA), dried, and then exposed at -70~ with an intensifying screen for 18 h. 
Molecular mass markers in kilodaltons are indicated. 
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present in cells expressing the transfected Ig-IP10 gene is larger 
than the transcript seen in cells expressing the transfected 
MoLTIk-IP10 gene. This is presumably due to a more prox- 
imal site of RNA transcription initiation as determined by 
the different promotors. 

To ensure that these clones secreted authentic IP-10 pro- 
tein, secreted IP-10 was visualized by immunoprecipitation 
and SDS-PAGE (Fig. 1 c). Since the previously characterized 
rabbit anti-human IP-10 antiserum (30) does not recognize 
the murine homologue, mlP-10 was expressed and purified 
from E. coli and used to generate a monospecific polydonal 
rabbit antiserum. Various control and IP-10-expressing J558L 
and K485 cell lines were metabolically labeled with [3SS]me- 
thionine, and IP-10 was immunoprecipitated from the media 
using this rabbit anti-murine IP-10 antiserum. The protein 
immunoprecipitated from the transfected tumor cell lines and 
from the IFN-~/-treated murine macrophage cell line, RAW 
264.7, used as a positive control, migrated as a doublet be- 
tween 6 and 7 kD under reducing conditions (Fig. 1 c). A 
doublet of the same size had been seen when human IP-10 
was immunoprecipitated from endothelial cells, keratinocytes, 
and monocytes (30). This size heterogeneity probably reflects 
proteolytic processing. In fact, IP-10 purified from a stimu- 
lated tumor line revealed heterogeneity at the NH2 terminus 
(31). This type of NH2-terminal processing is a character- 
istic feature of the ot chemokines. Several NH2-terminally 
processed forms of IL-8 (32) and ffl'G (33) have been identified 
that differ in their biological activities. The IP-10 protein im- 
munoprecipitated from the transfected tumor cell lines 
comigrated with the protein immunoprecipitated from IFN- 
3,-stimulated RAW 264.7 cells (Fig. I c). This confirms that 
the transfected tumor cells are constitutively secreting authentic 
IP-10. 

To quantify the amount of IP-10 secreted from these trans- 
fected tumor cell lines, a solid-phase ELISA was developed 
using the rabbit anti-murine IP-10 antiserum. The amount 
of IP-10 collected in serum-free media was compared with 
a standard curve generated using known amounts of IP-10 
purified from E. coli (data not shown). The IP-10-expressing 
J558L and K485 clones used in this study secreted *20 and 
-150 ng/ml/2 x 106 cells per 48 h, respectively (Table 1). 
Comparable amounts of IP-10 are secreted from equivalent 
numbers of transfected tumor cells and from IFN-~/-stimulated 
RAW 264.7 ceils (Fig. 1 c). IP-10 expression could not be 
detected in the parental J558L cell line by Northern blot, 
immunoprecipitation, or ELISA. Although the ELISA did 
not detect IP-10 in the medium collected from the parental 
K485 cell line (lower limit of detection, - 5  ng/ml), low levels 
of baseline IP-10 mRNA could be detected by Northern blot 
and immunoprecipitation (at least 100-fold less than after trans- 
fection with the MoLTK-IP10 vector). 

Inhibition of Tumor Growth In Viva Both parental cell lines 
chosen for this study readily form tumors when injected sub- 
cutaneously into appropriate inbred strains of mice, with a 
latency of 10-14 d for J558L in BALB/c and m28 d for K485 
in FVB. The transfection and expression of IP-10 in the J558L 
and K485 cell lines did not alter their growth properties in 
culture as assayed by doubling time or morphology (data not 

Table  1. Quantitation of Secreted IP-IO by ELISA 

Cell line m O D / m i n  Concentration 

ng/ml 
J558L transfected with: 

None 3.54 _+ 0.1 - 
MoLTR.-IP10 29.03 _+ 0.5 ~20 
Ig-IP10 24.31 _+ 1.4 ~20 

K485 transfected with: 
None 9.08 _+ 0.8 - 
MoLTR-IP10 91.01 _+ 1.3 ~150 

The approximate concentration of secreted IP-10 from stably transfected 
cell lines was determined by comparing the ELISA value obtained from 
the media of 2 x 106 cells grown for 48 h in serum-free conditions to 
a standard curve obtained using purified rmlP-10. 

shown). However, the expression of IP-10 did have a pro- 
found effect on the growth of these tumor cells in vivo. As 
is shown in Fig. 2 A and Table 2, the IP-10-producing J558L 
tumor cells failed to grow when they were injected subcutane- 
ously into BALB/c mice. In contrast, both the parental J558L 
line and clones ofJ558L transfected with the neomycin resis- 
tance gene alone grew rapidly and formed large local masses 
10-14 d after subcutaneous injection into BALB/c mice. The 
antitumor effect was observed with both the MoLTR-IP10 
and Ig-IP10 vectors, demonstrating that the effect is not vector 
specific. 

That the effect is not restricted to a single tumor type, 
or to a single inbred genetic background of mice, was shown 
by demonstrating IP-10's antitumor effect on the K485 mam- 
mary adenocarcinoma cell line in FVB mice. Fig. 2 B and 
Table 3 demonstrate the inhibition of tumor formation of 
a K485 clone cotransfected with MoLTR-IP10 and a neomycin 
resistance gene, compared with a control K485 clone trans- 

Table  2. Tumorigenicity of J558L Control and Transfectants in 
Syngeneic BALB/c and Nude Mice 

J558L transfected with: 

Tumor occurrence 

BALB/c nu/nu 

None 21/21 7/8 
Neo g done 4/5 5/5 
MoLTR-IP10 0/14 12/16 
Ig-IP10 2/16 12/16 

Mice were autopsied 10-14 d after 2 x 106 cells were injected subcutane- 
ously into the right lower abdominal quadrant. The weight of the extir- 
pated tumor or residual scar was determined and a tumor mass was 
considered positive if it weighed ~0.5 g. This table is a compilation of 
seven different experiments; control and experimental animals for any 
given experiment were always autopsied on the same day. 
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Figure 2. Mice injected with control 
and IP-10-secreting tumors. (A) 12 d 
after subcutaneous fight lower quadrant 
injection of control (untransfected), 
MoLTR-IFI0, and Ig-IP10J558L tumor 
lines into syngeneic BALB/c mice. (B) 
28 d after subcutaneous fight lower 
quadrant injection of control (Neo R 
alone) and MoLTR-IP10 K485 tumor 
lines into FVB mice. 2 x 10 ~ tumor 
cells were injected per animal. 

fected with the neomycin resistance gene alone. K485 con- 
trol tumor cells subcutaneously injected into FVB mice ini- 
tiaUy grew as a local tumor mass that, by 1 mo after injection, 
locally invaded through the peritoneum and led to malig- 
nant ascites (Fig. 2/3). However, IP-10-expressing K485 tumor 
cells were inhibited from growing and did not invade and 
metastasize, even though a small (<0.5-g) tumor mass was 
occasionally present at 1 mo. 

IP-10's Antitumor Effect Is Thymus Dependent. The in 
vivo antitumor effect of IP-10 was dependent on thymus- 
derived cells as was evidenced by the rapid growth of all tumor 
lines (IP-10 expressors and nonexpressors) in both BALB/c 

Table 3. Effect of lP-lO on the Tumorigenicity of Mammary 
Adenocarcinoma Cells in FVB Mice 

K485 transfected with: Tumor  occurrence 

Neo R alone 5/6 

MoLTR-IP10 0/8 

nu/nu and Swiss nu/nu mice (Table 2). This implies that the 
antitumor response evoked by IP-10 was T cell mediated. 

Coinjection of lP-I O Producers and Nonproducers Demonstrates 
the Non-cell Autonomous Effect of lP-lO. Mixing producer 
and nonproducer cells and transplanting them in a 1:1 ratio 
into syngeneic mice demonstrated that the effect of IP-10 was 
non-ceU autonomous (that is, did not require that IP-10 be 
produced by all tumor cells). As shown in Table 4, when 
a J558L neomycin resistant IP-10 nonproducer clone was in- 
jected subcutaneously into BALB/c mice, it formed tumors 

Table 4. IP-lO's Effect in Mixed Tumor Cell Transplantation 

Cell Tumor  occurrence 

J558L-Neo R alone 4/5 

1:1 mix of J558L-Neo ~ and 

J558L transfected with 

MoLTR-IP10 0/5 

Ig-IP10 1/5 

Mice were autopsied 28 d after 2 x 10~ cells were injected subcutane- 
ously into the fight lower abdominal quadrant. Tumors were associated 
with a tense bloody malignant ascites. 
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Figure 3. Histology of control and IP-10-secreting tumors. Representative hematoxylin and eosin stains of control and IP-10-secreting J558L tumors 
12 d after subcutaneous injection into BALB/c mice. (A) A control J558L tumor, x400; (B) a J558L IP-10-secreting tumor, x400; (C) a J558L IP-10- 
secreting tumor, x 1,000; (D) a blood vessel in a J558L IP-10-secreting tumor, x 400. Note the characteristic appearance of the malignant plasmacytoma 
cells in the control with the absence of a host response (.4). In contrast, in the IP-10-secreting tumor (B and C), note the infiltration of neutrophils, 
monocytes, and lymphocytes that tends to separate the tumor cells into clusters containing tumor giant cells (B and C, bottom left). Note the accumulation 
of lymphocytes and neutrophils in and around the blood vessel shown in the IP-10-secreting tumor (D). 

comparable to the parental clone. However, when a non- 
producer clone was mixed in a 1:1 ratio with J558L clones 
that secrete IP-I0 (either theJ558L MoLTR-IP10 or theJ558L 
Ig-IP10) and injected subcutaneously into BALB/c mice, both 
IP-10 producer and IP-10 nonproducer cells were rejected. 

Histology of Tumor Rejection. Histologic analysis of the in- 
jection site at sequential time points was performed to evaluate 
the host cellular response induced by local IP-10 production. 
After the injection of the parental J558L tumor  cells, histo- 
logical analysis of  the injection site at 1, 2, 3, 6, 10, and 14 d 

1062 IP-10 Elicits a Thymus-dependent Antitumor Response In Vivo 



revealed progressive growth of the characteristic malignant 
plasmacytoma cells with large pleomorphic hyperchromatic 
nuclei, prominent nudeoli, and abundant amphophilic cyto- 
plasm (Fig. 3 A). Abundant mitotic figures were usually evi- 
dent. An occasional peripheral neutrophil, monocyte, or thin 
connective tissue capsule was seen. In contrast, the injection 
site of IP-10-expressing J558L cells, analyzed at the same time 
points as the controls, revealed the infiltration of monocytes, 
lymphocytes, and neutrophils by day 3 after injection. At later 
time points, relatively more neutrophils were observed, and 
by day 12, this leukocytic infiltrate seemed to invade and sep- 
arate the tumor cells into clusters, with a tendency of the 
residual tumor cells to form tumor giant cells (Fig. 3, B and 
C). Lymphocyte and neutrophil accumulation was seen sur- 
rounding blood vessels in the IP-10-secreting tumors, sug- 
gesting recent diapedesis (Fig. 3 D). In addition, a dense con- 
nective tissue response surrounding the infiltrated residual 
tumor was evident by day 12 (data not shown). In accor- 
dance with these histological changes, the gross appearance 
of these injection sites often consisted of a small white patch 
of scar tissue. At no time point were eosinophils observed, 
unlike the antitumor infiltrate elicited by J558L and K485 
cells that were transfected with IL-4, which contained pre- 
dominantly eosinophils (34). Of  note, however, IL-2 induced 
an inflammatory infiltrate that also showed a predominance 
of neutrophils even though its antitumor effect in tumor cell 
gene transfer experiments was also T cell dependent (35). 

In marked contrast to this vigorous cellular infiltration 
mounted by a syngeneic immunocompetent host, histolog- 
ical analysis of IP-10-producing tumors in congenitally athymic 
nu/nu mice revealed essentially no host inflammatory response 
(data not shown). There was no appreciable difference in the 
histological appearance of the IP-10 producers and non- 
producers. This correlated with the gross appearance of pal- 
pable tumors in these mice. In the few cases (1/26 for J558L 
into BALB/c, 1/6 K485 into FVB, and 1/13 J558L into nudes) 
in which no tumors formed after the injection of control tumor 
cells, no evidence of scar or histologic evidence of a host re- 
sponse was seen, suggesting the leakage of cells from the in- 
jection site. Likewise, in the 8 of 32 instances when IP-10 
producers failed to grow in nude mice, there was no evidence 
suggesting rejection. While we cannot rule out a partial effect 
in nude mice, we feel the data are most consistent with failure 
to successfully implant the tumor. Contrarily, in the rare in- 
stances (total of 3/48) when IP-10 producers formed tumors 
>0.5 g, histologic analysis revealed one area of the tumor 
with a typical inflammatory infiltrate, but another area without 
the infiltration of host-immune cells. This may have been 
due to the inability of the inflammatory response to reach 
that part of the tumor, or to the outgrowth of IP-10 nonex- 
pressors in that area. 

Discussion 

An analysis of the growth properties and immune response 
to transplanted tumor cells overexpressing a cytokine gene 
is a useful approach for exploring and biological potential 
of a cytokine with unknown function and unknown cell 
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targets, such as IP-10. This approach is also useful for studying 
better characterized cytokines, since their in vitro activities 
do not always predict their predominant in vivo effects. For 
example, the fact that IL-4 elicits an antitumor infiltrate that 
is dependent on eosinophils (36) was not predicted by in vitro 
studies. In this study we demonstrate that IP-10 can elicit 
an antitumor inflammatory response that is capable of in- 
hibiting the growth of a plasmacytoma and mammary ade- 
nocarcinoma in immunocompetent mice. This effect was 
shown to be thymus dependent, providing the first indica- 
tion that IP-10 might act on T lymphocytes. The neutro- 
phil, monocyte, and lymphocyte accumulation, seen as a re- 
sult of the in vivo production of IP-10 in immunocompetent 
mice, is not seen in nu/nu mice. It has previously been demon- 
strated in G-CSF tumor cell gene transfer experiments, how- 
ever, that neutrophils from nu/nu mice are capable of inducing 
an antitumor response (37). This suggests that the neutro- 
phil and monocyte accumulation seen after implantation of 
IP-10-secreting tumor cells in immunocompetent mice may 
be the result of secondary T cell product(s) induced by IP- 
10. The fact that IP-10 appears to have no direct effect on 
neutrophils in vivo was quite unexpected, since all other 
-C-X-C- chemokines have been shown to be chemotactic for 
neutrophils. IP-10's inability to affect neutrophils has recently 
been corroborated in vitro using chemically synthesized IP- 
10. (38) 

To date, one member of the -C-X-C- family, IL-8 (13), 
and two members of the -C-C- family, tLANTES and MIP- 
1~, have been shown to be chemotactic for T cells. R.ANTES 
has been shown to be specific for CD4+/CD45RO +- 
prestimulated memory T ceils (16), and MIP-I~8 has been 
shown to attract and induce binding of CD8 + T ceils to the 
vascular cell adhesion molecule (VCAM-1) (17). It is an in- 
triguing possibility that, in addition to controlling the selec- 
tive migration of monocytes and granulocytes, the chemokine 
superfamily is also involved in controlling the trafficking of 
T cell subsets. In this regard, the T cell-directed effects of 
LPS and IFN-3' may be mediated by IP-10. For example, it 
has been demonstrated in gene transfer tumor cell transplan- 
tation experiments that IFN-'y elicits an antitumor response 
that is T cell dependent (39). Furthermore, although paren- 
teral administration of endotoxin causes hemorrhagic necrosis 
of tumors, complete tumor regression after endotoxin injec- 
tion was shown to be indirect, T cell dependent, and limited 
by severe toxicities (40). 

The chemokines may be useful clinically as combination 
anticancer agents because they seem to have different antitumor 
mechanisms and seem to be well tolerated at high doses. For 
example, intralesional injection of PF4 has been shown to 
inhibit the growth of the B-16 melanoma in syngeneic mice 
and the HCT-116 human colon carcinoma in nu/nu mice, 
without direct inhibitory activity on either cell type (41). 
PF4 has been shown to inhibit angiogenesis in a chorioallan- 
toic membrane assay and inhibit proliferation of endothelial 
cells in culture (42). It has therefore been proposed that the 
in vivo antitumor mechanism for PF4 is suppression of an- 
giogenesis. Another chemokine, MCP-1, a member of the 
-C-C- family, has been shown to elicit an antitumor response 



with a different mechanism of action than either IP-10 or 
PF4. The MCP-1 antitumor response is effective in nude mice 
and seems to be mediated by the recruitment of an inflam- 
matory infiltrate composed of eosinophils and monocytes, with 
a striking absence of neutrophils and lymphocytes (43). It 
is interesting to note that both MCP-1 and IP-10 are induced 
by LPS, an active component of Coley's toxins. Mice har- 
boring tumor cells secreting IP-10 or MCP-1 show no signs 
of systemic toxicities or cachexia. This is in contrast to the 
cachectic state induced in mice injected with tumor cells 
secreting another LPS-inducible cytokine, TNF (44). 

A greater understanding of cytokine control of the im- 
mune response will lead to more efficacious and better toler- 
ated anticancer immunotherapy. One can envision combina- 
tion cytokine therapy using cytokines with synergistic 
anticancer action to improve upon the antitumor effects of 
Coley's toxins but with fewer toxic side effects. The chemo- 
kines may be good candidates since they seem to lack the 
systemic toxicities of LPS, TNF, IL-1, IL-2, and IL-4, and 
have the potential of recruiting many types of leukocytes into 
the inflammatory process. 
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Note added in proof Recently, Tanb et al. (45) demonstrated that human IP-10 is a chemoattractant for 
human T lymphocytes and monocytes, and promotes T cell adhesion to endothelial cells. 
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