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Sumn ' l a ry  

p56 kk, a member of the src family of protein tyrosine kinases, is an essential component in T 
cell receptor (TCR) signal transduction, p56 kk contains a src homology 2 (SH2) domain found 
in a number of proteins involved in intracellular signaling. SH2 domains have been implicated 
in protein-protein interactions by binding to sequences in target proteins containing phosphorylated 
tyrosine. Using an in vitro assay, we have studied specific binding of tyrosine-phosphorylated 
proteins to a recombinant p56 ~k SH2 domain. In nonactivated Jurkat cells, two tyrosine-phos- 
phorylated proteins were detected. Stimulation with anti-CD3 monoclonal antibodies induced 
the binding of seven additional tyrosine-phosphorylated proteins to the SH2 domain of p56 ~k. 
We have identified the ~'-associated tyrosine kinase, ZAP-70, as one of these proteins. Evidence 
suggests that binding of ZAP-70 to p56 ~k SH2 is direct and not mediated by ~'. The significance 
of this interaction was further investigated in vivo. p56 kk could be coprecipitated with the 
~'/ZAP-70 complex and conversely, ZAP-70 was detected in p56 kk immunoprecipitates of 
activated Jurkat cells. The physical association of p56 k~ and ZAP-70 during activation supports 
the recently proposed functional cooperation of these two tyrosine kinases in TCR signaling. 

S timulation of the TCR induces a signal transduction cas- 
cade leading to activation of the mature T cell. One of 

the earliest biochemical events after TCR stimulation is the 
activation of protein tyrosine kinases (trrKs) 1 resulting in 
tyrosine phosphorylation of a number of cellular proteins (1, 
2). Some of these proteins identified to date are ~" (3) and 
CD3 e, % and/~ subunits (4, 5), phospholipase C (PLC) 3'1 
(6, 7), valosin-containing protein (VCP) (8), Vav (9, 10), CD5 
(11, 12), CD6 (13), mitogen-activated protein kinase (MAPK) 
(14), and ~'-associated protein (ZAP-70) (15). Accumulating 
evidence supports the involvement of two members of the 
src family of tyrosine kinases, p56 ~k and p59f~, in TCR 
signal transduction, p56 kk is stably associated with the cy- 
toplasmic portions of CD4 and CD8 (16, 17), and this inter- 
action is required for optimal antigen stimulation (18, 19). 
Expression of a constitutively active form of p56 kk enhances 
antigen-stimulated IL-2 production in a T cell hybridoma 
(20). In addition, TCR-CD3 stimulation results in an in- 
crease of p56 ~k kinase activity (21). Moreover, mutants of 
Jurkat and CTLL-2 cell lines which lack p56 ~k expression 
are defective in TCR-mediated signaling; transfection of the 
kk gene in these mutants restores a normal response (22, 23). 

1 Abbreviations used in this ~per: MBP, maltose binding fusion protein; 
PITS, phospholipase C; FrK, protein tyrosine kinase; SH2, src homology 
2; ZAP-70, ~'-assodated protein. 

p59f~ has been shown to coprecipitate with the TCR/ 
CD3 complex (24, 25). Evidence that p59~ is involved in 
TCR signaling is also provided by the correlation between 
the level of p59~ expression and the amplitude of thymo- 
cyte response to TCR stimulation in transgenic mice (26-28). 
Recently, ZAP-70, a kinase belonging to a new family of 
cytosolic PTKs and associated with the ~" chain after TCR 
stimulation, has also been implicated in TCR signal trans- 
duction (15, 29). 

It has been proposed that a key event in T cell activation 
is the formation of a multimolecular TCR signaling com- 
plex (30-32). The recruitment of PTKs in this signaling com- 
plex is supported by the presence of a kinase activity within 
the CD3/TCR complex. The use of an in vitro kinase reac- 
tion in combination with mild detergent protein extraction 
has demonstrated the association of the CD3/TCR complex 
with p56 ~k and p59~ (11, 24, 25). An association of the 
ZAP-70 kinase with CD3e in addition to the ~" chain has 
also been demonstrated to occur after TCR or CD3 stimula- 
tion (33, 34). The functional interdependence of these ki- 
nases has been studied recently by cotransfection experiments 
in COS cells and by the analysis of the phosphorylation of 
a CD8/~'chimeric molecule (29). In that study, the associa- 
tion of ZAP-70 with the cytoplasmic tail of ~'and its functional 
activity required the presence of p59~ or p56 z'k. However, 
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in T cells, the spatial and temporal course of interactions of 
these PTKs with each other and with other molecules of the 
signaling complex remain poorly understood. 

Some of the molecular interactions taking place in the sig- 
naling complex may be mediated by src homology 2 (SH2) 
domains. These domains have been implicated in mediating 
protein-protein interactions by binding to tyrosine-phos- 
phorylated proteins (35, 36). SH2 domains are found in a 
number of proteins involved in intracellular signaling, in- 
cluding the src family of tyrosine kinases and ZAP-70. The 
fact that ZAP-70 associates only with tyrosine-phosphorylated 
~" chains supports a model involving an SH2-phosphotyro- 
sine interaction of ZAP-70 with ~" (29, 37, 38). In the tyro- 
sine kinases of the src family, SH2 domains are involved in 
both negative and positive regulation of the kinase activity. The 
mechanism of SH2-mediated negative regulation of p56 ~ ki- 
nase activity can be rationalized by the general model (39) 
proposed for src family kinases involving an intramolecular 
interaction between the phosphotyrosine 505 (Y505) and the 
SH2 domain of p56 ~k. Consistent with this model, deletion 
of the SH2 domain or substitution of Y505 by phenylalanine 
(F505) results in an increase of p56 ~ kinase activity in vivo 
when transfected in fibroblasts (40-42). In addition, an in- 
creased level of phosphorylation of Y505 in a CD45-negative 
Jurkat mutant diminishes p5C k binding to a p56 ~ COOH-  
terminal peptide containing phosphorylated tyrosine Y505 
(43). The positive role of the SH2 domain has been studied 
using a constitutively active form of p56 ~k carrying phenyla- 
lanine at position 505 (p56~kF505). Ddetion of the SH2 do- 
main decreases the transforming activity of p56~kF505 in 
fibroblasts and abolishes the ability of p56~kFS05 to enhance 
the response to antigenic stimulation or to induce antigen- 
independent IL-2 production in T cell hybridomas (44, 45). 
More recently, the role of the p56 ~k SH2 domain in the sig- 
naling complex was studied by comparing the capacity of 
several CD4/p56 ~k chimeras to mediate antigen response 
(46). Specific mutations in the p56 ~k SH2 domain impaired 
coreceptor activity of the CD4/p56 ~k chimera. Altogether, 
these results support the involvement of the p56 ~k SH2 do- 
main in the interaction with specific substrates and/or regula- 
tory proteins during T cell activation. 

To better understand the mechanisms by which p56 ~k 
contributes to TCR signaling and, in particular, the role of 
the p56 ~k SH2 domain in this process, we examined the 
tyrosine-phosphorylated proteins that associate with the 
p56 ~k SH2 domain after CD3 stimulation of the Jurkat cell 
line with anti-CD3 mAbs. We show that one of the p5C k 
SH2-binding proteins is the FTK ZAP-70. Furthermore, our 
results indicate that, after activation, an interaction between 
ZAP-70 and p56 ~ takes place in vivo. We propose a model 
whereby the activated form of the TCR mediates the inter- 
action of p56 ~k and ZAP-70 tyrosine kinases. 

Materials and Methods 
Cell Lines and Antibodies. Jurkat cells, done 77-6.8 (a gift of 

Dr. K. A. Smith, Dartmouth Medical School, Hanover, NH) were 
grown in KPMI-1640 medium supplemented with 10% FCS, 2 

mM t-glutamine, penicillin, and streptomycin, mAbs used included 
antibodies to: CD3 E chain (2Ad2A2, IgM; kindly provided by 
E. Reinhertz, Dana Farber Cancer Institute, Boston, MA), phos- 
photyrosine (4G10, IgG2b; UBI, Lake Placid, NY), and p5C ~ (N- 
ter, IgG1; kindly provided by S. Fischer, Institut Cochin de G6n6- 
tique Mol6culaise, Paris, France). Rabbit polyclonal antibodies used 
induded: anti-p56 kk serum directed against a synthetic peptide cor- 
responding to amino acids 39-64 of p5C i sequence (kindly 
provided by S. Fischer); anti-p5C k serum raised against recom- 
binant human p5C ~ (kindly provided by M. Guttinger, M. Gass- 
mann, and P. Burn, Hoffmann-La Roche Ltd., Basel, Switzerland); 
anti-~" serum (a gift ofJ. Ravetch, Memorial Sloan-Kettering Insti- 
tute, New York); and anti-ZAP-70 antiserum directed against a 
synthetic Peptide corresponding to amino acids 485-499 of ZAP- 
70 sequence, which was produced in our laboratory using KLH 
as a carrier as described (29). 

Construction and Expression of Recombinant Fusion Proteins. Oh- 
gonucleotides used to amplify the human pSC ~ cDNA by PCK 
were homologous to the boundaries of the SH2 or SH3 sequence 
and contained a BamHI site extension: SH2-N 5' GCG GAT CCG 
AGA TCT GGT TCT TCA AGA ACC TGA GC 3' and SH2-C 
5' GCG GAT CCT TAC TTC TGG GTC TGG CAG GC~ CG 
3'; SH3-N 5' CGG GAT CCG AGA TCT TCG CTC TGC ACA 
GCF ATG AGC 3' and SH3-C 5' CGG GAT CCT TAT TIG GCC 
ACA AAA TTG AAG GG 3'. These sequence data are available 
from EMBL Data Bank under accession numbers: X14053, X14054, 
and X14055. PCK amplified fragments were cloned into the BamHI 
site of pPDXa vector. This vector is a derivative of the vector pMAb 
cRI (New England Biolabs Inc., Beverly, MA) where the cyto- 
phsmic maltose binding fusion protein (MBP) is under the control 
of the maltose promoter. DNA sequencing of the constructs was 
Performed to confirm that no mutations were introduced in the 
PCK amplified sequence. Fusion proteins were purified from cyto- 
plasmic extracts by affinity chromatography on a cross-linked amy- 
lose column as described (47). 

Iramunoprecipitations. Jurkat cells were washed twice in RPMI- 
1640 medium and resuspended at 10 s cells/m1 in RPMI-1640. 
Cells were preincubated for 10 min at 37"C and stimulated with 
anti-CD3 mAb (2Ad2A2 at 1/200 dilution of ascites) for the time 
indicated. Cells were harvested and solubilized at 10 s celis/ml for 
30 min at 4"C in 1% Brij 96 or 1% NP-40 lysis buffer containing 
20 mM Tris-HC1, pH 7.5, 150 mM NaC1, 1 mM MgClz, 1 mM 
EGTA in the presence of inhibitors of proteases and phosphatases: 
10 #g/m1 leupeptin, 10 #g/m1 aprotinin, 1 mM Pefabloc-sc, 50 
raM NaF, 10 mM Na4PzOT, and 1 mM NaVO4. Postnuclear ly- 
sates were precleared for 1 h with MBP-Sepharose beads and sub- 
jected to immunoprecipitation for 2 h with antibodies preadsorbed 
to protein A-Sepharose (Pharmacia, Uppsala, Sweden) or goat 
anti-mouse-Sepharose (Zymed Laboratories, Inc., South San Fran- 
cisco, CA) or covalently coupled to protein A-Sepharose (48). Im- 
mune complexes were washed twice in 1% detergent lysis buffer 
without inhibitors, and twice with 0.1% detergent lysis buffer, 
and boiled in sample buffer before electrophoresis. 

SH2-binding Assa?s. MBP, MBP-SH3, and MBP-SH2 proteins 
were coupled to CNBr-activated Sepharose beads (Pharmacia) ac- 
cording to the manufacturer's recommendations. After coupling, 
beads were washed several times with 1% Brij 96 lysis buffer con- 
raining 1 M NaC1 and 50 mM phenylphosphate and then exten- 
sively with 1% Brij 96 lysis buffer. To assay binding of proteins 
to MBP-SH3 or MBP-SH2 beads, precleared lysates from 107 cells 
were prepared as described above and incubated for 2 h with '~50 
#g of MBP-SH3, MBP-SH2, or MBP-Sepharose. The protein com- 
plexes were washed in the same conditions as the immune com- 
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plexes and eluted by boiling in presence of SDS sample buffer or, 
when indicated, by incubating 30 rain at 4~ in presence of the 
relevant peptide in 0.1% detergent lysis buffer under constant agi- 
tation. 

Filter binding assays of SH2 were performed with biotinylated 
MBP-SH2 fusion protein. MBP-SH2 was biotinylated using bio- 
tinamidocaproate N-bydroxysuccinimide ester (Sigma Chemical Co., 
St. Louis, MO) at 50 #g/rag of protein as described (49). Nitrocel- 
lulose filters were washed several times in TBST (50 mM Tris-HC1, 
pH 8, 150 mM NaC1, 0.1% Tween) and saturated in the presence 
of 0.2% gelatin for 1 h. Filters were successively incubated with 
2 #g/ml of biotinylated MBP-SH2 fusion protein overnight, with 
a 1/2,000 dilution of streptavidin-alkaline phosphatase (Boehringer 
Mannheim, Mannheim, FRG) for 1 h, with a 1/1,000 dilution of 
goat anti-mouse biotinylated antibodies (Vector Laboratories, Inc., 
Burlingame, CA) for 1 h and with streptavidin-alkaline phospha- 
tase for I h. All incubations were performed in TBST containing 
0.2% gelatin and followed by several washes with TBST. Finally, 
filters were washed in alkaline phosphatase buffer (100 mM Tris-HCl, 
pH 9.5, 100 mM NaC1, 5 mM MgCI2) and were developed with 
nitroblue tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate 
according to manufacturer's instructions (Promega, Madison, WI). 

Immunoblotting. Gels were equilibrated in transfer buffer (25 
mM Tris-base, 192 mM glycine, 20% ethanol) and transferred to 
nitrocellulose membranes at 40V overnight. Blots were blocked 
in PBST (10 mM phosphate buffer, pH 7.4, mM KCI, 137 mM 
NaC1, 0.1% Twecn 20) in the presence of 1% gelatin for at least 
1 h and incubated overnight with antibodies in PBST plus 0.1% 
gelatin. Blots were washed, incubated with a 1/2,000 dilution of 
peroxidase goat anti-mouse (Amersham International, Amersham, 
Bucks, UK) or peroxidase goat anti-rabbit antibodies (Biosys, Com- 
piegne, France) and developed with the enhanced chemilumines- 
cence detection system (Amersham International). When the same 
blot was revealed with different probes, stripping of antibodies was 
performed according to the manufacturer's recommendations 
(Amersham International). 

In Vitro Kinase Assay Immune complexes or SH2-binding pro- 
teins were prepared as described above except that an additional 
wash of the beads with kinase buffer (25 mM Hepes, pH 7.3, 10 
mM MnC12, 0.05% Brij 96) was performed. Reactions were 
started by the addition of 30 #1 of kinase buffer containing 10 #Ci 
of 3,-[32P]ATP (3,000 Ci/mM) and stopped after 15 min by the 
addition of 2 x sample buffer containing 10 raM EDTA. Samples 
were analyzed by SDS-PAGE. Gels were fixed, treated with 1 M 
KOH for I h at 55~ to remove the alkali-labile phosphate groups 
from Ser and Thr phosphorylated proteins, dried, and autora- 
diographed. 

V8 Protease Digestion. Bands were excised from the non-KOH- 
treated dried gel and rehydrated for 30 rain in V8 protease buffer 
(0.125 M Tris-HC1, pH 6.8, 0.1% SDS, 1 mM EDTA, 20 mM 
dithiothreitol, 10% glycerol). Gel slices were loaded on a 15% poly- 
acrylamide gel, overlayed with 15 #1 of 0.125 M Tris-HC1, pH 6.8, 
0.1% SDS, I mM EDTA, 0.005% bromophenol blue, 20% glycerol, 
and 1.5 #g of V8 protease (Boehringer Mannheim) in V8 protease 
buffer. Once the bromophenol blue reached the end of the stacking 
gel, the electrophoresis was interrupted for 45 min to allow the 
protein to digest. At the end of the migration, gels were fixed, 
dried, and autoradiographed. 

Results 

TFosine-phosphorylated l'~roteins from CD3-activated Jur~t Cells 
that Bind to the p56 ~k SH2 Domain. Tyrosine-phosphory- 

Figure 1. Binding of phosphorylated proteins to the SH2 domain of 
p56 kl. (A) Lysates of 107 Jurkat cells stimuhted with anti-CD3 for 1 rain 
were incubated with beads coupled to MBP alone, MBP-SH2, and MBP- 
SH3 fusion proteins as indicated. The beads were washed and the associated 
proteins were analyzed by 8% SDS-PAGE and immunoblotting with an 
antiphosphotyrosine antibody. (*) The lysate was boiled in the presence 
of 1% SDS, diluted to 0.1% SDS in lysis buffer, and precipitated by MBP- 
SH2 beads as for the nondenatured lysates. (Left) The nine major SH2- 
binding proteins with their relative molecular weight (in kilodaltons). The 
additional band at 58 kD seen among the SH2 binding proteins of the 
boiled lysate was not consistently detected. (B) MBP-SH2 bacterial fusion 
proteins were incubated with lysates of 10 ~ Jurkat cells stimulated with 
anti-CD3 for 1.5 rain (+) or unstimulated (-). SH2-binding proteins and 
tyrosine-phosphoryhted proteins present in whole cell lysates corresponding 
to 10 s ceils were identified by antiphosphotyrosine immunoblotting. B 
corresponds to a shorter exposure than that shown in A and therefore 
does not allow the detection of all the SH2-binding proteins. Note that 
slight differences in relative intensities of the bands occurred between the 
two experiments. Positions of molecular weight markers are shown in 
kilodaltons. 

lated proteins that bind to the p56 ~i SH2 domain were 
examined using MBP bacterial fusion proteins and antiphos- 
photyrosine immunoblotting (Fig. 1, A and B). Nine phos- 
phorylated proteins of apparent molecular mass of 115, 96, 
76, 72-74, 70, 65, 55 (sometimes migrating as a doublet), 
48, and 38 kD that bound to the SH2 domain of p56 ~k were 
present in lysates from CD3-stimulated Jurkat cells (Fig. 1 
A). These proteins represent only a subset of the phophorylated 
proteins present in total call lysate (Fig. 1 B). Two (55 and 
65 kD) of the SH2-binding proteins present in stimulated 
cells were also present in unstimulated cells (Fig. 1 B). No 
tyrosine-phosphorylated proteins were associated with the 
MBP-SH3 or MBP beads (Fig. 1 A). Denaturation of the 
proteins before incubation with the SH2 domain abolished 
three of these interactions (115, 96, and 48 kD), whereas the 
remaining SH2-binding proteins were, at least in part, stiU 
capable of binding (Fig. 1 A). This suggests a direct interac- 
tion of the p76, p72-74, pT0, p65, p55, and p38 proteins 
with the SH2 domain. Several p56 ~k SH2-binding proteins 
of similar molecular weight have been detected in an acti- 
vated murine T cell hybridoma expressing p56~kF505 (50). 
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Figure 2. Specific phosphopeptide elution of p56 kk SH2-binding pro- 
teins. Lysates were prepared from 10 r Jurkat cells stimuhted for 1.5 rain 
with an anti-CD3 antibody. Proteins bound to MBP-SH2 beads were eluted 
in presence ofpeptides EPQYEEIPI (YEEI) and EGQYQPQPG (YQPQ) 
at the concentration indicated in/~M or in buffer alone (0). (*) The pres- 
ence of a phosphate group. Eluates were analyzed by 8% SDS-PAGE and 
immunoblotted with an antiphosphotyrosine antibody. Positions of mo- 
lecular weight markers are shown in kilodaltons. 

The specificity of the interaction between the p56 ~k SH2 
domain and tyrosine-phosphorylated proteins was further in- 
vestigated by using peptides to elute proteins from MBP-SH2 
beads (Fig. 2). The phosphopeptide (EPQY*EEIPI) containing 
the sequence predicted to be optimal for binding to the 
p56 k~ SH2 domain (35) was capable of eluting all of the pro- 
teins from MBP-SH2 beads at 5 #M. An "~100-fold higher 
concentration of the phosphopeptide corresponding to the 
COOH-terminal sequence of p56 ~k (EGQY*QPQPG) was 
necessary to obtain complete elution. As previously reported 
(36), phosphorylation of tyrosine is essential for SH2 inter- 
action since none of the proteins bound to the SH2 domain 
were released by a nonphosphorylated peptide containing the 
YEEI sequence. 

The p56 ~k SH2 Domain Associates In Vitro with ZAP-70 
upon CD3 Activation. To determine whether some of the 
proteins associating with p56 kh SH2 domain had tyrosine ki- 
nase activity, in vitro kinase reactions were performed (Fig. 
3 A). No specific kinase activity was detectable in MBP-SH2 
precipitates from unstimulated cells. After CD3 cross-linking, 
proteins of 70, 72, and 74 kD were phosphorylated in MBP- 
SH2 precipitates. The phosphorylation of these proteins was 
resistant to KOH treatment, which suggests that they are 
phosphorylated primarily on tyrosine residues. These pro- 
reins might correspond to the SH2-binding proteins of iden- 
tical molecular weights detected by antiphosphotyrosine im- 
munoblots (Fig. 1). 

A functional association of p56 ~'k with the PTK ZAP-70 
has been recently reported (29). We therefore tested whether 
the 70-kD SH2-binding protein detected in the in vitro ki- 
nase assay might correspond to ZAP-70 by performing an 
in vitro kinase reaction in ~'immunopredpitates from lysates 

Figure 3. p56 t'i SH2 domain associates with tyrosine kinase activity. 
(A) Lysates were prepared from 3 x 10 6 Jurkat cells before ( - )  or after 
(+) stimulation with anti-CD3 for 1.5 min. Proteins associated with MBP 
alone or MBP-SH2 fusion proteins and ~'immunoprecipitates were incubated 
in an in vitro kinase assay with 3t-[32p]ATP. Phosphorylated proteins were 
analyzed by 8% SDS-PAGE, KOH treated, and autoradiographed over- 
night. (Arrow) The position of the 70-kD protein and ZAP-70 precipi- 
tated with MBP-SH2 and anti-~" antiserum, respectively, which were sub- 
jected to V8 protease digestion. (B) Bands corresponding to in vitro 
phosphorylated ZAP-70 and the 70-kD SH2-binding protein were excised 
from the gel, subjected to V8 protease digestion, analyzed on a 15% acryl- 
amide SDS-gel, and autoradiographed. (C) MBP-SH2 and anti-ZAP-70 
precipitates from activated cells were analyzed on an 8% SDS-polyacrylamide 
gel by antiphosphotyrosine immunoblotting. (Double arrow) The position 
of the ZAP-70 protein migrating as a doublet. (/9) SH2 binding proteins 
were duted from the beads with 500/*M of tyrosine-phosphorylated pep- 
tide (EPQyI~ErpI) in 0.1% Brij lysis buffer. Half of the samples were directly 
boiled with sample buffer ($H2) or reprecipitated with anti-ZAP-70 anti- 
bodies covalently coupled to protein A-Sepharose (SH2: ZAP-70). Samples 
were analyzed by 12% SDS-PAGE and antiphosphotyrosine immunoblot- 
ting. Each lane corresponds to 107 Jurkat cells stimulated with anti-CD3 
for 1.5 min (+) or unstimulated ( - ) .  (Arrow) The position of ZAP-70. 
Positions of molecular weight markers are shown in kilodaltuns. 

of unstimulated or CD3-stimulated Jurkat cells (Fig. 3 A). 
In unstimulated cells, only a trace amount of ZAP-70 was 
present in ~" precipitates. Its intensity increased dramatically 
after CD3 stimulation. ZAP-70 comigrated with the 70-kD 
phosphoprotein present in the in vitro ldnase reaction of MBP- 
SH2 precipitates from stimulated cells. In addition, a broad 
band around 30 kD and bands at 56-60 kD were detected 
in ~" immunoprecipitates from stimulated cells. 
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Figure 4. ZAP-70 is recognized directly by the p56 k~ SH2 domain. (A) Lysates were prepared from 10 ~ unstimulated Jurkat cells ( - )  or cells stimu- 
lated with anti-CD3 for 1.5 rain (+). Immunoprecipitates with anti-~'and control (anti-B-galactosidase) antisera were analyzed on a 12% SDS polyacryl- 
amide gel, transferred to nitrocellulose, and revealed with the indicated probes. (Arrows) The position of the ZAP-70 protein. (B) Lysates were prepared 
as in (A). Proteins associated with the MBP-SH2 fusion protein and ~" and ZAF-70 immunoprecipitates were run on a 12% SDS polyacrylamide gel, 
blotted, and detected by an antiphosphotyros/ne antibody. Lysates of 107, 5 x 106, and 10~ activated cells were used for preparation of the MBP-SH2, 
anti-ZAP-70, and anti-~" precipitates, respectively. On a shorter exposure, ZAP-70 present in the MBP-SH2 precipitate is clearly distinguishable from 
the other SH2-binding proteins of similar molecular weight, and its intensity is comparable to that in the other two lanes (data not shown). (Arrow) 
The position of the ZAP-70 protein. (C) Lysates of 3 x 10 r activated cells were precleared by three successive rounds of immunodepletions (//9) using 
either control (C, anti-B-gal) or anti-~" antibodies, and half of each sample was precipitated with MBP-SH2 or anti-~" antibodies as indicated. Samples 
were analyzed on an 8% SDS-polyacrylamide gel by antiphosphotyrosine immunoblotting. (Double arrow) The position of the ZAP-70 doublet. Positions 
of molecular weight markers are shown in kilodaltons. 

To establish more directly whether the 70-kD SH2-binding 
protein corresponds to ZAP-70, V8 protease mapping and 
rdmmunoprecipitation studies were performed. Identical pep- 
tide maps were obtained for the 70-kD bands comigrating 
in ~" immunoprecipitates and in MBP-SH2 precipitates (Fig. 
3 B). In activated cells, a 70-kD protein (migrating as a dou- 
blet in Fig. 3 C) present among the SH2-binding proteins 
comigrates with ZAP-70 and can be reprecipitated by anti- 
ZAP-70 antibodies as detected by antiphosphotyrosine im- 
munoblotting (Fig. 3 D). Altogether, these results demon- 
strate that the p56 kk SH2 domain associates with ZAP-70 
in vitro. 

ZAP-70 Binds Directly to the p56 ~k SH2 Domain In Vitra 
Since ZAP-70 binds to the ~" chain after TCK stimulation, 
the interaction of ZAP-70 with the p56 ~ SH2 domain de- 
scribed above could be mediated by ~'. To determine whether 
the p56 ~k SH2 domain interacts directly with ZAP-70 or ~', 
a biotinylated MBP-SH2 fusion protein was used as a probe 
to detect direct interaction with proteins immobilized on 
nitrocdlulose (Fig. 4 A). In ~" immunopredpitates of CD3- 
activated cells, ZAP-70 was readily detectable by the SH2 probe 
whereas ~" was barely detectable, even though a large amount 

of phosphorylated ~" was present, as shown by antiphospho- 
tyrosine staining of the same blot. The direct binding of the 
SH2 probe to ZAP-70 was also detectable in ZAP-70 im- 
munoprecipitates of activated cells (data not shown). 

The ratio of tyrosine-phosphorylated ZAP-70 to tyrosine- 
phosphorylated ~'in the MBP-SH2 and anti-ZAP-70 precipi- 
tates was similar and much greater than in the anti-~'precipi- 
tare (Fig. 4 B). This result further supports the direct binding 
of phosphorylated ZAP-70 to the p56 ~i SH2 domain. 

To determine whether the population of phosphorylated 
ZAP-70 bound to the p56 tk SH2 domain represents the 
~'-associated ZAP-70 population, immunodepletion experi- 
meats were performed. After three rounds ofimmunodeple- 
tion with anti-~" antibodies, no ~'-associated phosphorylated 
ZAP-70 could be detected, whereas the amount of phos- 
phorylated ZAP-70 was only slightly reduced in MBP-SH2 
precipitates (Fig. 4 C). 

Taken together, these results show that in vitro the p56 kk 
SH2 domain binds directly to the entire population of ZAP-70 
(i.e., both associated and not associated with ~. 

p56 k~ Interacts In Vivo with ZAP-70/~. To test if an in- 
teraction between p56 ~i and ZAP-70 occurs in vivo, im- 
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firmed that a small fraction of total p56 ~k was present in ~" 
immunoprecipitates (Fig. 5 B). 

In Brij 96 lysates, CD3 and ~" chains remain associated. 
Using NP-40 as a detergent to disrupt the CD3/~" chain as- 
sociation, p56 ~ was equally well detected in ~" immuno- 
precipitates from NP-40 and Brij 96 lysates (data not shown), 
indicating that p56 ~ associates directly with the ~/ZAP-70 
complex. 

In p56 ~ immunoprecipitation, two phosphoproteins of 
70 and 74 kD could be coprecipitated with p56 ~ after CD3 
stimulation (Fig. 6). The p74 protein may correspond to the 
tyrosine-phosphorylated protein of the same molecular weight 
detected in MBP-SH2 precipitates (Fig. 1). The 70-kD dou- 
blet comigrated exactly with the ZAP-70 doublet precipi- 
tated with a specific antiserum (Fig. 6). Because of the weak- 
ness of the antiserum used in this experiment, the anti-ZAP-70 
immunoprecipitate contains only a small fraction of total phos- 
phorylated ZAP-70. Under similar conditions, very small 
amounts of phosphorylated ~" chains in p56 ~i immunopreci- 
pitates were detected (data not shown). 

These results suggest that p56 ~ associates in vivo with 
the ZAP-70/~" complex during T cell activation. 

Discussion 

In this paper, we provide direct evidence that p56 ~t phys- 
ically associates in vivo with the ~/ZAP-70 complex shortly 
after stimulation of the TCK. This interaction appears to 

Figure 5. p56/'~ associates in vivo with the ~/ZAP-70 complex. (A) Ly- 
sates were prepared from 107 unstimuhted Jurkat cells ( - )  or 107 ceils 
stimulated with anti-CD3 for 1.5 min (+). Proteins associated with MBP- 
SH2, ~', p56 ~, and 13-Gal immunoprecipitates were separated on 8% SDS 
polyacrylamide gel and analyzed by antiphosphotyrosine immunoblotting. 
(Open arrowheads) The p56 ~ protein. A shorter exposure (5 s instead of 
2 min) is shown for anti-p56 t'k immunoprecipitates. (B) Lysates and 
samples were prepared as in (A) and analyzed by antiphosphotyrosine or 
anti-p56 ~k immunoblotting as indicated. For p56 k~, only 1/10 of the im- 
munopredpitate was loaded. (Open arrowheads) The p56/'k protein. Posi- 
tions of molecular weight markers are shown in kilodaltons. 

munoprecipitations of ZAP-70 and p56 ~k were performed 
with anti-~" and anti-p56 ~k antibodies and analyzed by an- 
tiphosphotyrosine immunoblotting. In CD3-activated cells, 
immunoprecipitation with anti-~" antibodies revealed two phos- 
phoproteins with a molecular mass of 56 and 60 kD in addi- 
tion to ZAP-70 (Fig. 5 A). In unstimulated cells, a small 
amount of the 56-kD protein was present in ~'immunoprecipi- 
tates. The 56- and 60-kD phosphoproteins comigrated with 
p56 ~ and p60 kl, respectively, and may correspond to the 
two isoforms of pSC k, the p60 isoform being detectable 
mainly upon TCR stimulation (51, Fig. 5). Immunoblots 
of ~" immunoprecipitates with anti-p56 ~k antibodies con- 

Figure 6. A 70-kD protein comigrating with ZAP-70 associates in vivo 
with p56 kk after activation. Lysates were prepared from unstimulated 
Jurkat cells ( - )  or stimulated with anti-CD3 for 1.5 rain (+). Im- 
munoprecipitations were performed using 107 cell equivalent with anti- 
fl-Gal and anti-ZAP-70 or 5 x 107 cell equivalent with anti-p56 ~k. 
Samples were loaded on an 8% SDS polyacrylamide gel and analyzed by 
antiphosphotyrosine immnnoblotting. (Arrow) The position of the ZAP-70 
protein. (Open arrowheads) The p56 ~ protein. Positions of molecular 
weight markers are shown in kilodaltons. 
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be mediated by a specific binding of the SH2 domain of 
p56 ~ to tyrosine-phosphorylated ZAP-70.  The direct associ- 
ation of ZAP-70 with p56 ~ SH2 domain was demonstrated 
using the p56 ~k SH2 domain as a probe to detect proteins 
immobilized on a nitrocellulose membrane. In a ~" immuno- 
precipitate, phosphorylated ZAP-70 was dearly recognized 
by the SH2 domain, whereas the ~" chain was barely detect- 
able. Thus, if a direct interaction of the p56 ~k SH2 domain 
with ~" takes place, it must concern only a very small fraction 
of total phosphorylated ~" or may be of very low affinity. 

The optimal binding sequence of the p56 k~ SH2 domain 
determined by using a random library of tyrosine-phosphory- 
lated peptides is (p)YEEI (35). Indeed, a phosphorylated pep- 
tide containing this sequence was able to elute proteins bound 
to p56 ~ SH2 about 100-fold more efficiently than a phos- 
phopeptide corresponding to the COOH-terminal sequence 
of p56 ~. Inspection of the ZAP-70 sequence did not reveal 
the presence of this exact SH2 binding motif. However, it 
cannot be excluded that sequences of ZAP-70 different from 
the optimal one described above may act as an acceptor site 
for the p56 kk SH2 domain. In this regard, it is worth noting 
that a physiological binding site of the c-src SH2 domain on 
the platelet-derived growth factor (PDGF) receptor was 
reported to be (p)YI(p)YV (52) which is only distantly related 
to (p)YEEI. 

Previous reports have suggested an association of p5C k 
with the CD3/TCK complex using a sensitive in vitro ki- 
nase labding assay. Osman et al. (53) have shown that CD3 
immunoprecipitates from stimulated Jurkat cells lysed in Brij 
96 contained proteins of 70, 21, and 18 kD in addition to 
phosphorylated bands of 59 and 56 kD. However, the ques- 
tion of whether the latter two were p56 ~i was not inves- 
tigated. In addition, Burgess et al. (11) found that the CD3/ 
TCR complex isolated from umtimnlated Jurkat cells contained 
a p56 ~ kinase activity. By anti-p56 ~ immunoblotting, we 
have shown that p56 ~i coprecipitates with the ~'/CD3/TCR 
complex and that the amount of associated p56 ~ increases 
after CD3 stimulation. In addition, we showed that p56 ~i 
coprecipitates with a polypeptide of 70 kD that comigrates, 
as a doublet, with ZAP-70 after CD3 stimulation. Our in 
vitro data demonstrate that the p56 ~ SH2 domain binds 
directly to the entire population of tyrosine-phosphorylated 
ZAP-70 (i.e., both associated and not associated with ~ and 
strongly favor the existence of a similar interaction of p56 ~ 
with ZAP-70 in vivo. Because of the low affinity and/or titer 
of our anti-ZAP-70 antibodies, we have not been able to quan- 
tify the percentage of ZAP-70 bound to p56 ~ by immuno- 
blotting. The weakness of the anti-ZAP-70 antiserum may 
also explain why we were not able to detect p56 ~ in ZAP- 
70 immunoprecipitates (data not shown). Alternatively, it 
is possible that the peptide epitope recognized by the antiserum 
is not accessible in the p56~I/ZAP-70 complex. 

After TCR stimulation, ZAP-70 associates with the CD3e 
chain in addition to the ~" chain (33, 34). Experiments are 
in progress to determine whether p56 ~ also associates with 
the ZAP-70/e complex in vivo. 

In NK ceUs, an association of p56 ~ with the ~" chain of 

the Fc'yILIII has been reported (54). The same study showed, 
using cotransfections of various src-related kinases with ~" in 
COS cells, that ~" associates specifically and directly with 
p56 ~. However, in similar cotransfection experiments in 
HeLa cells, no interaction of p56 ~ with ~" could be detected 
(55). The reason for this discrepancy is unclear but might 
be partially exphined by the use of different detection systems 
in these two studies. If a ~'/p56 ~k direct interaction exists in 
T ceUs, it might account for the presence of a small amount 
of p56 ~k in ~" immunoprecipitates from unstimulated ceils. 
This result might also be explained by the presence of low 
but detectable amounts of phosphorylated ZAP-70 associated 
with ~'in unstimulated Jurkat cells (29, and our unpublished 
observations). In view of our present results and the fact that 
ZAP-70 is expressed and associated with ~" in NK cells upon 
activation (56), it is possible that ZAP-70 is required for op- 
timal p56~k-~ " interaction in NK ceils. 

A functional interaction of p56 ~h with ZAP-70 has been 
previously suggested by cotransfection experiments in COS 
ceils expressing a CDS-~" chimera (29). In that report, a dra- 
matic increase in tyrosine phosphorylation of ceUular pro- 
teins including CD8-~" was observed ordy when ZAP-70 was 
coexpressed with either p56 ~ or p59f~. More recently, Kol- 
anus et al. (57) have provided additional evidence for such 
an interaction. They showed that cross-linking of chimeric 
constructs composed of the extracellular domain of CD16 
fused to p56 ~ or ZAP-70, coexpressed in a human CTL 
line, results in enhanced ceUular activation. 

Our data suggest that this functional interaction is medi- 
ated by a direct physical interaction of the p56 ~k and ZAP- 
70 kinases. What are the consequences of the physical inter- 
action between these two kinases in terms of signaling? At 
least two potential signaling effects can be considered: altered 
subceilular localization of p56 k~ and ZAP-70 and/or modu- 
lation of their respective kinase activities. Examples for both 
effects have been documented in the literature. Recent anal- 
ysis of the role of p56 ~t in the coreceptor activity of CD4 
using CD4/p56 ~k chimeric molecules suggests that the SH2 
domain of p56 ~k may induce the association of CD4 with 
the TCK, possibly by interactions with phosphorylated com- 
ponents of the activated TCK complex (46). In view of our 
results, tyrosine-phosphorylated ZAP-70 may mediate the 
recruitment of CD4-associated p56 ~k to the activated TCK. 
The increased activity of the src family tyrosine kinases after 
association with the PDGF or the CSF-1 receptor tyrosine 
kinases is an example of modulation of kinase activity after 
SH2-mediated interaction between two kinases (58-60). 

The interaction of the p56 ~ SH2 domain with ZAP-70 
described here is likely to represent an essential step in the 
course of antigen-mediated T cell activation. Models have 
been proposed in which one of the earliest activation events 
is the phosphorylation of ~" on tyrosine by p56 ~k or p59fr" 
in T cells (61, 62). This phosphorylation event may allow 
the recruitment of ZAP-70 to the TCK complex through 
an SH2 phosphotyrosine interaction. This may lead to the 
initial phosphorylation of ZAP-70 either by autophosphory- 
lation or by transphosphorylation of two ZAP-70 molecules 
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bound to a ~" dimer. We propose that after these initiating 
events, the SH2 domain of p56 kk binds to tyrosin~phos- 
phorylated ZAP-70. The physical interaction between these 
two kinases may regulate their respective kinase activities, 
allowing them to interact with and/or further phosphory- 

late ~" and CD3 chains and other effector molecules. Studies 
of tyrosine kinase activity of the different cellular popula- 
tions of ZAP-70 and p56 kk should give further insight into 
their functional interaction. 
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