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Summary 
The mouse thymus contains a mature T cell subset that is distinguishable from the mainstream 
thymocytes by several characteristics. It is restricted in its usage of T cell receptor (TCK) Vfl 
genes to V~8, V~7, and V~2. Its surface phenotype is that of activated/memory cells. It carries 
the natural killer NKI.1 surface marker. Furthermore, though it consists entirely of CD4 + and 
CD4-8-  cells, its selection in the thymus depends solely upon major histocompatibility complex 
(MHC) class I expression by cells of hematopoietie origin. Forced persistence of CD8, in fact, 
imparts negative selection. Here, we have studied the TCK repertoire of this subset and found 
that, whereas the B chain V-D-J junctions are quite variable, a single invariant c~ chain V~14- 
J281 is used by a majority of the TCRs. This surprisingly restricted usage of the V~14-J281 
ot chain is dependent on MHC class I expression, but independent of the MHC haplotype. In 
humans, a similar unusual population including C D 4 - 8 -  cells can also be found that uses a 
strikingly homologous, invariant c~ chain V~24-JQ. Thus, this unique V~-J~ combination has 
been conserved in both species, conferring specificity to some shared nonpolymorphic MHC 
class I/peptide self-ligand(s). This implies that the T cell subset that it defines has a specialized 
and important role, perhaps related to its unique ability to secrete a large set of lymphokines 
including interleukin 4, upon primary stimulation in vitro and in vivo. 

T he development and function of the minor subset of 
C D 4 - 8 -  double negative (DN) 1 TCK-c~/fi + T cells 

and their relationship to the mainstream CD4 + or CD8 + 
T cells have been elusive issues (1). In the mouse thymus, 
a set of mature CD4 + (2-7), but not CD8 + (4), cells has 
recently been described that is strikingly similar to the DN 
thymocytes because it shares the membrane expression of ac- 
tivated/memory and NK markers and the restricted use of 
Vo8, V~7, and V~2 TCK-~ chains. This population has the 
unique potential to secrete a large set of lymphokines, in- 
cluding IL-4, upon primary stimulation in vitro (2, 3, 7) and 
in vivo (8), thus its physiological role may be to influence 
the Thl /Th2 differentiation of an immune response (9). It 
is surprising that the selection element for both these CD4 + 
(4) and DN (4, 10) cells has been shown to be an MHC class 
I molecule presented by cells of hematopoietic origin. In ad- 
dition, and equally surprising, was the finding that such se- 
lection is largely CD8 independent and that the persistence 
of CD8 instead imparts negative selection on these cells (4). 

Based on these findings, we suggested that this subset of T 
cells might express a particular set of TCKs with a level of 
affinity for the MHC class I ligand that was sufficient for 
CD8-independent positive selection, the negative selection 
threshold for CD8 + cells being reached as the TCR level in- 
creased later during the developmental process, after the 
CD4+8 + double positive (DP) precursor stage (4). 

We have thus analyzed the TCR repertoire used by these 
cells. We show here that their Vo~ usage is even more re- 
stricted than their V~ usage. In fact, they use a single invar- 
iant ol chain, V~14-J281, whereas their V/~8, V~7, and VO2 
TCR-/~ chains have diverse V-D-J junctions. Moreover, this 
c~ chain is virtually identical to a human c~ chain, V~24-JQ, 
that is expressed as an invariant chain by a related subset of 
DN T cells. Thus, the restricted repertoire of these cells is 
not likely to be due to an interaction with some putative su o 
perantigens, but instead to the recognition of a restricted set 
of MHC class I- peptide ligands that is conserved in both 
mice and humans. 

1 Abbreviations used in this paper: [J2m, /~2-microglobulin; DN, double 
negative; DE double positive; HSA, heat stable antigen. 

Materials and Methods 
Mice. 7-9-wk-old, specific pathogen-free C57BL/6, MHC-I- 

(~2-microglobulin- [B2m-]) (11), originally provided by Dr. R. 
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Jaenisch (Massachusetts Institute of Technology, Cambridge, MA) 
and backcrossed eight times to C57BL/6, B10 (H-2b), B10.D2 
(H-2d), B10.A (H-2~), B10.BR (H-2k), B10.M (H-2f), B10.RIII 
(H-2~), B10.S (H-2'), B10.Q (H-2q), B10.SM (H-2~), B10.P (H-2P), 
and B10.PL (H-2 u) mice were obtained from the National Insti- 
tute of Allergy and Infectious Diseases barrier facility (Bioqual, 
Frederick, MD). MHC-II- (Aa b- [12], backcrossed four times to 
C57BL/6) were obtained from GenPharm International (Moun- 
tain View, CA). CD8.1 transgenic mice (13) were obtained from 
B.J. Fowlkes (National Institutes of Health) after eight backcrosses 
to B10.BR. 

Cell Preparation and FACS | Sorting. Mature mouse thymocyte 
subsets were purified after one-step killing at 37~ with Jlld.2 
(anti-heat stable antigen [HSA]) mAb and rabbit complement fol- 
lowed by centrifugation over a density gradient (Lympholyte; 
Cedarlane, Hornby, Canada) and by three-color staining (as indi- 
cated in figure legends, using antibodies obtained from Pharmingen, 
San Diego, CA) for cell sorting with a FACStar PtUs| (Becton 
Dickinson & Co., Mountain View, CA) equipped with an argon 
and a dye laser. After sorting, cell samples were divided into dupli- 
cates and digested for genomic DNA analysis or extracted for 
mRNA analysis as described below. 

Human PBL were isolated from healthy volunteers after cen- 
trifugation over Ficoll gradient (Ficoll-Paque; Pharmacia, Uppsala, 
Sweden), and treated with a cocktail of anti-CD19, CD14, CD4, 
and CD8 coated paramagnetic beads (Miltenyi Biotec, Bergish Glad- 
bach, Germany) and passed through magnetic columns (magnetic 
cell separation [MACS] system; Miltenyi Biotech) to enrich for DN 
T cells. The cell preparation was subsequently stained with anti- 
CDS-PE (Amac, Inc., Westbrook, ME), anti-TCR-a/~FITC (T 
Cell Sciences, Inc., Cambridge, MA) and biotinylated anti-CD4 
(Caltag Laboratories, San Francisco, CA) followed by streptavidin- 
RED613 (Caltag Laboratories) and FACS | sorted to purify TCR- 
or//3 + DN PBL. 

T Hybridoma Generation. CD44 hi mature thymocytes were 
obtained from 9-wk-old C57BL/6 mice after depleting thymo- 
cytes with J11d.2 (anti-HSA) and 3.155 (anti-CDS) mAbs plus 
rabbit complement, removing 3Gll § and leukocyte cell adhesion 
molecule 1-positive cells with biotinylated mAb 3Gll (7), MEL-14, 
and streptavidin-coated paramagnetic beads (Miltenyi Biotec) using 
the MACS system, staining with anti-CD5-APC, anti-CD44-FITC, 
and anti-CD4-PE, and sorting CDShiCD44hiCD4§ and CD5 hi 
CD44hiCD4- (DN) cells. 106 cells of each subset were stimulated, 
in the presence of 4 x 106 "y-irradiated (30 Gy) low density (Per- 
coll 55% fraction) spleen cells, with soluble anti-TCR-c~/j8 TCR 
mAb (H57) at 1 #g/ml and recombinant mouse IL-7 (Genzyme, 
Cambridge, MA) at 20 ng/ml in culture medium containing 10% 
FCS as described elsewhere (3). Recombinant mouse IL-2 (25 U/ml) 
(Biosource, Camarillo, CA) was added at day 2 of the culture. At 
day 4, 106 blast cells were fused with 106 aminopterin-resistant 
TCR-ot/~- BW5147 thymoma cells using standard procedures 
(14), plated at 1,000 and 3,000 cells per well in 96-well microplates, 
and selected in HAT medium. 27 TCR-ot//3 + hybridomas were 
studied: 19 derived from CD4 and 8 from DN. 

Oligonucleotides. All probes and primers were obtained from 
Bioserve Biotechnologies (Laurel, MD) and used without further 
purification. Probes were digoxigenin-labeled using the digoxigenin 
oligonucleotide Y-end labeling kit as indicated by the manufac- 
turer (Boehringer Mannheim, Indianapolis, IN). The following 
primers were used, modified from Casanova et al. (15): 3'C,~: 
GAAGCTTGTCTGGTTGCTCCAG, 5' V,~14: CTAAGCACAG- 
CACGCTGCACA, 5' V,~11: CCCTGCACATCAGGGATGCC 
for the V~ amplification; and 5' Ca: CCCTCTGCCTGTTCACC- 

GACTT and 3' C~: CTCGGTCAACGTGGCATCACA for C~ 
amplification. V~14-J281 rearrangements were quantified using the 
above V,~14 primer with the 3' J281 primer: CAGGTATGACAAT- 
CAGCTGAGTCC. For Va-specific amplifications, 5' V~8:GCA- 
TGGGCTGAGGCTGATCCA, 5' VO7: TACAGGGTCTCACGG- 
AAGAAGCG, and 5' Vt~2: TCACTGATACGGAGCTGAGGC 
were used with a 3' Co primer: GACCCCACTGTGGACCTC- 
CTT. For sequencing of the PCR products, nested primers on Co: 
CCAAGCACACGAGGGTAGCCTT and C~: TCGGTGAAC- 
AGGCAGAGGGTG were used. The probes used for quantitation 
of PCR products were TGTCATCCAGCAGGGTGG for V~14- 
J281, TCCAAGAGCAATGGGGCC for V~-C~, and GAGACC- 
AACGCCACCTAC for C~-C~. 

For human PBL samples, the primer pair used for PCR 
amplification was V~24: CACAAAGCAAAGCTCTCTGCACA 
and C~: GCCACAGCACTGTTGCTCTTG; sequencing was per- 
formed using a nested C,~ primer: TAGGCAGACAGACTTGTC- 
ACTGGAT. 

Nucleic Acid Preparation. DNA was prepared by lysing 2 x 104 
(unless specified otherwise) cells in 10 mM Tris-HC1, pH 9, 50 
mM KC1, 2 mM MgC12, 0.1% Triton X-100, 0.5% Tween 20, 
and 100 #g/ml Proteinase K at 56~ for 2 h and at 95~ for 20 min. 

Total RNA was extracted with the RNAzole kit (TelTest, Austin, 
TX) and ethanol-precipitated with addition of 5 #g of glycogen 
(Boehringer, Mannheim), and resuspended in 20/zl of Di-ethyl- 
pyro-carbonate (DEPC) water. Reverse transcription was carried 
out as described (16): briefly, 5 #1 of RNA was denatured for 5 
rain at 65~ quickly chilled on ice, and incubated in 20 #1 reverse 
transcription buffer (100 mM KC1, 20 mM Tris-HC1 (pH 9.0 at 
25~ 7 mM MgC12, 1 mM dNTP, 2 mM dithiothreitol, 100 
/xM hexanucleotides, 5 U/reaction RNase inhibitor, and 4 U/reac- 
tion of avian myeloblastosis virus reverse transcriptase (Promega, 
Madison, WI). Incubation was for 10 rain at room temperature 
and 1 h at 42~ Reverse transcription was stopped by incubation 
at 95~ for 5 min and at 99~ for 1 min. 

Quantitative PCR. Quantitative PCR amplification was carried 
out as previously described (16). 1/~1 of cDNA was added to 50 
#1 of amplification mixture (50 mM KC1, 10 mM Tris-HC1 (pH 
9.0 at 25~ 2 mM MgC12, 0.2 mM dNTP, 0.01% gelatin, and 
0.1% Triton X-100) containing 0.25 #M 5' and 3' primers with 
1.25 U/reaction Taq polymerase and overlaid with mineral oil (Sigma 
Chemical Co., St. Louis, MO). Temperature was initially at 94~ 
for 4 rain, followed by cycles at 94 ~ for 45 s, 60 ~ for 1 rain, and 
72 ~ for I rain in a thermal cycler (model PTC-100; M-J Research 
Inc., Watertown, MA). At sequential cycle numbers, 5/~1 of the 
reaction mixture was sampled through oil and transferred onto 
avidin-coated microtiter plates containing 95/~1 of TE buffer for 
quantitation of the amplified products in a liquid-hybridization- 
ELISA assay with luminometry readings (16). 

Single CellAnalysis. Mature thymocytes enriched as described 
above were stained with anti-CD4-gED613 (GIBCO BRL, 
Gaithersburg, MD), anti-CD44-FITC, and anti-TCR-ot//3-biotin 
(H57) followed by Streptavidin-PE. TCR-ot//3+CD44~~ +, 
TCR-ot/~ § CD44hiCD4 +, and TCR-~/~8 § CD44 hi DN cells were 
sorted and plated into 96-well plates, using an autoclone unit, at 
1 or 10 cells per well filled with 100 #1 of PBS. After centrifuga- 
tion, PBS was replaced with 10 #1 oflysing solution and individual 
wells amplified with a V~14-J281 primer pair for 46 cycles before 
quantitation of the amount of PCR products with a V~14-specific 
probe. 

Sequencing. The following polyclonal sequencing of TCR-ot 
chains was performed. After reverse transcription, cDNAs from 
fresh sorted populations were amplified with V,~14-C,, (mouse) or 
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l Vc~ 1 1 Figure 1. Increased expression of 
Va14 mRNA in mature CD44 hi 
thymocytes. Mature thymocytes 
(obtained after anti-HSA plus C 
killing) were stained with anti- 
CD4-PE, anti-CD44-FITC, and 
anti-CDS-APC and sorted to obtain 
the CD441~ +, CD44hiCD4 +, 
and CD44hIDN subsets. 10 s sorted 
cells were divided into duplicate 

I I I I samples of 0.5 x 10 s cells and 
processed for quantitative RT-PCR 
of C,~, V~14, and V~11 mRNAs. 

V~24-C~ (human) primers for 40 cycles, purified (Magiclean; 
Promega), and sequenced using a nested primer in the constant 
region and the Cyclist kit (Stratagene, La Jolla, CA) with 
[33p]dATP. Data were digitalized with a phosphoimager (Molec- 
ular Dynamics, Inc., Sunnyvale, CA) and background was subtracted 
using the National Institutes of Health Image 1.52 software with 
the vertical 1D subtraction procedure. 

The following hybridoma TCR-c~ and -~ chain sequencing was 
performed. After characterization of V0 usage by flow cytometry 
using a panel of anti-Va antibodies (Pharmingen), V0-specific PCR 
amplification was carried out on cDNA using a Co primer and 
V~8-, V~7-, or V~2-specific primers. PCR products were cycle se- 
quenced using a nested primer in the Co region. For TCR-c~ 
chains, V~14-J281 rearrangements were scored by amplifying 
genomic DNA extracted from 10 s hybridoma cells with the V~14- 
J281 primer pair and ethidium bromide staining of agarose gel elec- 
trophoresis. DNA from eight individual V~14 + hybridomas was 
amplified with the V~14-J281 primer pair and sequenced with the 
same V~14 primer as used for amplification. 

R e s u l t s  

A Single TCR-cr Chain Is Used by CD44 hi NKI .1  + TCR- 
cr/fl  + Mature Thymocytes. To analyze the T C R  V~ reper- 
toire of the CD44hSNKl.1 + TCR-o t /~  + thymocytes, we iso- 
lated them from the mature thymic population based on their 
expression of the activated, CD44 hi phenotype. Using the 
few available anti-V~ antibodies, we found that although 
~ 2 0 %  of  the mainstream (CD44 l~ cells expressed one of  
the V,~2-, V,~8-, or V~11-TCIL-ot chains by FACS | analysis, 
virtually none of these V~ chains were expressed among 
CD44 hi cells (data not shown), These results indicated that 

CD44 hi cells might use a rather restricted set of V~. To 
identify these V~, we compared the expression of different 
TCR-o~ mRNAs in CD44 hi and CD441~ mature thymocytes 
by quantitative reverse polymerase chain reaction (RT-PCR) 
using V~-specific primers (15, 16). We found (Fig. 1) that 
V,~14 cDNA was strikingly increased in FACS| 
CD44hiCD4 + as well as DN ceils, as compared with CD441~ 
cells, as judged by the difference in the number of amplification 
cycles necessary to generate similar amounts of P C R  prod- 
ucts. This increase was estimated to be in the range of 24- 
fold, using an external standard scale (data not shown). Quan- 
titation of a panel of other V~ mRNAs  showed a moderate 
decrease, usually in the range of two to three fold, as seen 
in Fig. 1 for V~11. This relative conservation of  V~11 
m R N A  in CD44 hi cells most likely represents nonallelically 
excluded and/or out of frame mRNAs (17), since FACS | anal- 
ysis of  V~11 expression showed a 14-fold decrease (0.5% in 
CD44 hi vs 7% in CD44 l~ cells; data not shown). When  the 
CD44 hi cells were sorted according to their V~ expression, 
the large increase in V~14 m R N A  was seen in all of  the sub- 
populations studied (VaS.2 +, V~7 +, or VaS.2-) (Fig. 2), 
suggesting that TCRs with different V~ nevertheless use 
V~14. In addition, direct polyclonal sequencing from the C,~ 
end of the P C R  products obtained with a C,~-V,A4 primer 
pair, generated a readable sequence for CD44 hi but not 
CD44 l~ cells (Fig. 3), showing that the V~14 + CD44 hi cells 
use predominantly one J region, J281, and that they do not 
display significant heterogeneity in their V-J junction. Ex- 
periments where CD44hLderived products were diluted into 
CD441~ products before polyclonal sequencing indi- 
cated that at least 50% of  the amplified products need to 
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Figure 2. Va14 is paired with various 
Va in mature CD44 hi thymocytes. Mature 
CD44 hi thymocytes were enriched as de- 
scribed in Materials and Methods and sorted 
as CD5 hi (anti-CD5-APC), CD44 hi (anti- 
CD44-FITC) cells, and V~8.2 positive or 
negative (anti-V08.2-biotin plus avidin-PE) 
or V~7 positive (anti-V~7-biotin plus 
avidin-PE) cells. Quantitation of C~, 
V,~14, and V,~11 mRNAs was carried out 
on duplicate samples of 3 x 10 s (V~8.2 + 
and V;78.2-) and 7.5 x 104 (V#7 +) cells 
and is represented as averaged values at se- 
quential cycles of RT-PCR amplification. 
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Figure 4. Presence of the V,~14-J281 rearrangement at the single cell 
level in CD44 hi mature thymocytes. The left set of dots in each panel 
represents control wells without cells. Each dot represents an individual 
well where the presence of V,~14-J281 DNA rearrangement was assayed 
by PCP.. 

Figure 3. Polyclonal sequencing of V,~14 TCR-c~ chain in 
CD4+CD44 Jo, DN CD44 hi, and CD4+CD44 hi mature thymocytes. At 
the bottom of the sequencing gel, the constant region is readable for the 
CD44 l~ as well as the CD44 hi samples, whereas above, the J (]281) and 
V (V~,I4) regions are readable only for the CD44 hi samples. 

be identical to generate such a readable sequence reaction (data 
not shown). 

To measure the frequency of V,~14-J281 TCK + cells in 
vivo, we sorted CD44 hi cells into 96-well plates at 1 
cell/well and amplified genomic DNA with a specific V~14- 
J281 primer pair. 64 of 91 and 27 of 79 of the wells were 
positive in the CD44hiDN and CD44hiCD4 + sets, respec- 
tively (Fig. 4). In contrast, only 1 of 84 wells was positive 
among the mainstream CD441~ § cells plated at 10 
cells/well. Thus, at least 34-70% of the CD44 h~ cells had 
rearranged V,~14 to J281. Furthermore, because only 55% 
of the wells scored positive in parallel plates amplified with 
a Ca-specific primer pair (data not shown), the frequency of 

V,~14-J281 rearrangements is probably underestimated by 
this method because of the technical limitations in handling 
single cell plated wells. 

To analyze the V,, and V~ junctional regions, we gener- 
ated T cell hybridomas from either CD4 + or DN FACS | 
sorted mature CD44 hi thymocytes. These hybridomas were 
representative of the flesh CD44 hi cell population because 24 
of 27 expressed either VO8, Va7, or Va2 TCR chains (Table 
1). 23 of these 24 (96%) hybridomas had rearranged their 
V~14 segment to J281 confirming that CD44 hi cells use this 
V,~14-J281 TCR-ot chain almost exclusively. The ex chains 
from eight of these hybridomas were sequenced and their 
V-J junctions found to be nearly monomorphic, with a gly- 
cine in position 93 and an aspartate in position 94, with a 
single exception in which a valine replaced glycine 93 (Table 
2). Glycine 93 was either coded by a GGC corresponding 
to the genomic sequence of the V region, or by GGG or 
GGT, indicating trimming of the 3' end of the V region with 
at least one N addition. In one instance, aspartate 94 was 
coded by a GAC instead of a GAT implying that the 5' end 
nucleotides (TAGAT) of the J region were trimmed and 
replaced by TGAC. The invariant size of the junctional re- 
gion and the tendency to conserve the glycine 93-aspartate 
94 sequence, despite nucleotide changes, unambiguously in- 
dicates that the ot chain CDK3 region is selected at the amino 
acid level, most probably in order to maintain the specificity 
of the TCR. In contrast (Table 1), the Va chains used many 
different J regions (10 of the 12 available J~ genes) and dis- 
played a large variety of D /N  regions of different sizes, sug- 
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Table 1. TCR-fl Chain V.D-J Junctional Amino Acid Sequences and Frequency of V,~14-J281 Rearrangements in T Cell Hybridomas 
Derived from DN and CD4 § Mature TCR-oJfl + CD44 hi Thymocytes 

Hybridoma Origin Va V~ N/D J~ J~ V~ 14-J281 

DN13H1 DN 2 CTC KAAGGD TEVFFG 1.1 + 

411D1 CD4 2 CTCSA DWEG S A E T L Y F G  2.3 + 

414A2 CD4 7 CASS SDRAD TGQLYFG 2.2 + 

431Gll  CD4 8.1 CASS RR SAETLYFG 2.3 + 

432F6 CD4 8.2 CASG ATGAT NTEVFFG 1.1 + 

431D12 CD4 8.2 CASGD AGQGPA NTEVFFG 1.1 + 

DN14F9 DN 8.2 CASG GQG NSDYTFG 1.2 + 

DN32H6 DN 8.2 CAS RE SNERLFFG 1.4 + 

432G7 CD4 8.2 CASGD AGTGRVN NPAPLFG 1.5 + 

431All CD4 8.2 CASGD KG FRPLYFA 1.6 - 

431G5 CD4 8.2 CASGD AGG TGQLYFG 2.2 + 

DN32D3 DN 8.2 CASGD PD I QNTLYFG 2.4 + 

DN31E12 DN 8.2 CASGD AWTGSG QNTLYFG 2.4 + 

DN14C9 DN 8.2 CASG PDWAG NTLYFG 2.4 + 

432B9 CD4 8.2 CASG WGG QDTQYFG 2.5 + 

411B10 CD4 8.2 CASGD YGERMGGR QDTQYFG 2.5 + 

431F10 CD4 8.2 CASGD GLG QDTQYFG 2.5 + 

DN32F3 DN 8.2 CASG PPGLGL YEQYFG 2.6 + 

431 E13 CD4 8.3 CAS RDGRGH TEVFFG 1.1 + 

432B8 CD4 8.3 CAS KHEGTAR APLFG 1.5 + 

DN13A1 DN 8.3 CASSD GWGGA A E T L Y F G  2.3 + 

411G1 CD4 8.3 CASSD AE DTQYFG 2.5 + 

432 E4 CD4 8.3 CASS EEVDWG YEQYFG 2.6 + 

432F5 CD4 8.3 CASSD PTVP YEQYFG 2.6 + 

Others DN (3) 2- ,  7-, 8- - (3) 

Table 2. Nucleotide and Amino Acid Sequences of V, d4-J281 Junctions from Eight T Cell Hybridomas Derived from DN and CD4 + 
Mature TCR-oz/fl + CD44 hl Thymocytes 

Germline V,14 TGT GTG GTG GGC G c a c  
c t g t gTA GAT AGA GGT TCA GCC Germline J281 

V~ Sequences 

93 94 
5/8 TGT GTG GTG GGC GAT AGA GGT TCA GCC 

C V V G D R G S A 

1/8 . . . . . . . . .  GGG* GAT . . . . . . . . . . . .  

- - - G D . . . .  

1/8 . . . . . . . . .  GTA GAT . . . . . . . . . . . .  

- - - V D . . . .  

1/8 . . . . . . . . .  GGT GAC . . . . . . . . . . . .  

- - - G D . . . .  

* N additions are in bold characters, and are underlined. 
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gesting an absence of gross structural constraints in the CDR3 80 
regions. Altogether, these results suggest that the CD44 hi 
NKI.1 + TCR-c~/3 + thymocytes do not constitute a distinct 8 60 
lineage using a genetically programmed TCR gene rearrange- ~" 
ment (such as, for example, the Vs3+'r/(~ T cells; 18, 19) 

(1) 4 0  but rather that they are selected after recognition by their 
TCR of thymic MHC-peptide complexe(s). It is interesting 
to note that V,14-J281 invariant ol chains have previously "~ 

2 0  

been described in KLH-specific suppressor hybridomas and 
subsequently reported in various mouse tissues in vivo using 
RNase protection assays and quantitative PCR analysis 0 
(20-22). Although neither the cellular subset that expresses 
V~14-J281, nor the associated 3 chains had been character- 
ized, it is likely that the NKI.1 + TCK-od3 + population 
studied by us is the main source of the V,14-J281 rearrange- 
ments identified by these authors. Gut lymphocytes have also 
been reported to contain cells bearing a modified version of 
this invariant (x chain with a deletion of aspartate 94 (23), 
emphasizing the importance of the CDR3 region in the se- 
lection process and suggesting that a slightly different 
MHC/peptide ligand is expressed in the gut. 

The M H C  Ligand. To characterize the MHC ligand re- 105 
quired for selection of these cells, we performed a systematic 
analysis of their TCR repertoire in a panel o f M H C  congenic 
B10 mice. Surprisingly, we found the same frequencies of 4 
cells bearing V~8, Vt37, and V~2 positive TCRs, as well as lo 
a similar increase of V~14-J281 rearrangements in all mice 
tested (Fig. 5). Using MHC knockout mice (11, 12), we ~: 
confirmed that MHC class I but not II expression is required _J'-~ 

3 for the selection of these V~14-J281 + cells (Fig. 6). We also 10 
confirmed that CD4 + but not CD8 + thymocytes include 
V~14-J281 + cells and that forced (transgenic) expression of 
CD8 results in deletion of the V~14-J281 + cells from the 
CD44 hi thymocyte population (Fig. 6). This suggests that 12 
TCRs made of a V~14-J281 o~ chain and of a V~8, Va7, or 
Va2 3 chain have a particular affinity for their MHC class 
I ligand and that they bind it in a classical way, allowing 
the interaction between CD8 and MHC class I (24, 25). Al- 
together, these data suggest that the putative selecting ele- 
ment for the CD44hiNKl.1 + T C R - a / 3  + thymocyte popu- 
lation may be a nonpolymorphic MHC class I molecule, 
located either inside or outside the MHC complex region, 
a hypothesis previously put forward (4, 10) because, like CD1 
or Tla (26, 27), it is selectively expressed on bone marrow- 
derived but not epithelial thymic ceils. Alternatively, though 
less likely, this ligand could be a nonpolymorphic peptide 
degenerately presented by polymorphic MHC molecules 
(28-31). 

A Subset Similar to the Mouse NKI .1  + TCR-ce/f l  + Popula- 
tion Exists in Humans. There are some striking homologies 
between human and mouse TCR usage in DN T cell popu- 
lations. For example, among the V~ chains found in human 
DN lymphocytes (Va2, V~8, V~11, and V~13 [32-34], V~11 
and Va13 are closer in sequence to the mouse Va8 and V~7 
chains expressed in CD44hiNK1.1 + mouse thymocytes than 
to other mouse Va (34, and data not shown). Even more 
striking is the similarity that we found between the et chains. 
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Figure 5. TCR-3 and -a repertoire of mature CD44 hi thymocytes in 
MHC congenic mice. (Left) Percentage of V~8 + , V~7 + , and V~2 + cells 
determined by FACS | analysis among CD44 hi and CD441~ subsets of B10 
(H-2b), B10.D2 (H-2d), B10.A (H-2~), B10.BR (H-2k), B10.M (H-2~), 
B10.RIII (H-2r), B10.S (H-2'), B10.Q (H-2q), B10.SM (H-2v), B10.P 
(H-2p), and B10.PL (H-2 u) mice. (Right) Quantitation of V~14-J281 rear- 
rangements among FACS| CD44 hi and CD44 lo subsets of B10, 
B10.D2, B10.BR, B10.M, B10.RIII, and B10.S mice. Values are averaged 
fkom duplicate samples of 2 x 104 cells. 
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Figure 6: Role of MHC and CD8 molecules during the selection of 
V,~14-J281-positive thymocytes. V~14-J281 rearrangements are measured 
as average values from duplicate samples of 2 x 104 sorted cells. (/t) 
CD44 hi or CD44 I~ mature TCR-ct/3 + thymocytes obtained from Aa b- 
(MHC.II-) and 32m- (MHC-I-) mice. (B) CD4 +, CD8 +, or CD44 hi 
mature TCR-tx//] + thymocytes from normal B10.BR mice (note that 
24% of the CD4 + and 1.5% of the CD8 + population were CD44 hi) and 
CD44 hi mature TCR-tx/3 + thymocytes from CD8.1 transgenic B10.BR 
mice. 
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Figure 7. The human homologues of mouse V,~14 and J281 gene products. (A) Alignments of mouse V,A4-J281 and human V,~24-JQ. (B) Pustell 
matrix comparison (43) of V~14 and V,~24, V~14 and the closest mouse V,~ (V~,15), V,~24 and the closest human V~ (V,~5.1). In Pustell matrix, each 
dot represents a similarity above 60% in a window of eight amino acids centered on the x and y coordinates as calculated with the Mac Vector program, 
using a PAM250 scoring matrix (IBI, New Haven, CT). 

It has been reported that V~24-JQ is expressed as an invar- 
iant (without junctional variability) chain in some human 
DN PBL and clones (32, 33). According to GenBank, the 
human V,~24 has more homology to mouse V~14 than any 
other mouse V~ has and the closest protein sequence to 
mouse J281 is that of human JQ (Fig. 7, A and B). Using 
the Blast analysis software (35), the homology score between 
V~14 and V~24 was 316 whereas the closest other mouse or 
human V~ was at 180 (mouse V~15) and 223 (human 
V~,5.1), respectively; most of the other V,, are below 160 
(identity would be 480 and homology scores are considered 
significant above 50). The closest protein sequence to the 
mouse J281 recorded in GenBank is that of human JQ (score 
= 80 and identity is at 107) whereas all other mouse or human 

J regions have a score below 61. In accordance with the mouse 
data, we found a readableJQ sequence after direct potyclonal 
sequencing (from the C~ end) of V~24-C~ PCR amplified 
products from freshly isolated human peripheral blood DN 
cells (Fig. 8), confirming their predominant use of JQ without 
junctional polymorphism. The importance of the junctional 
region for the selection of this cell population is indicated 
by the conservation of the unique W G  (or S) DRGS sequence 
in the CDR3 of both mice and humans. 

Figure 8. The human homologue of mouse NKI.1 + TCtk-ct/~ + cells. 
Polyclonal sequencing of V=24 + TCR tx chains from human DN and un- 
separated PBL TCR-tx/B + DN cells (0.6% of human PBL), were 
FACS| and compared with whole PBL (80% of which are 
TCP,-c~/~ +). 

Discuss ion 

Do NKI.1 + V~14 + Thymocytes Originate from Mainstream 
Thymocyte Precursors or Do They Constitute a Distinct Lin- 
eage? Altogether, these results suggest that a unique recom- 
bination of one V~ and one J~ TCR gene, and a corre- 
sponding nonpolymorphic MHC class I molecule/peptide(s) 
for which this TCR-cz chain has affinity, have been conserved 
in both mice and humans. The rare occurrence of such a V~- 
J ,  recombination and its selection at the amino acid rather 
than the nucleotide level, suggest that this population does 
not represent a separate lineage that is genetically programmed 
to rearrange this particular set of TCR genes. The possibility 
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that this population is composed of cells that have escaped 
the "classical" positive selection process and are expanded as 
mature thymocytes by the recognition of self or environmental 
antigens is also unlikely, because, if this were the case, one 
would not expect to see a TCR repertoire that is solely re- 
stricted by nonpolymorphic MHC  class I/peptide ligand(s). 
Rather, we favor a model where mainstream thymocyte DP 
precursors expressing the appropriate V~14-J281/V08, V~7, 
or Va2 TCRs recognize nonpolymorphic MHC class I/pep- 
tide ligand(s) selectively displayed on the surface of bone 
marrow-derived thymic cells. They undergo a stochastic down- 
modulation of CD4, CDS, or both CD4 and CDS. The 
resulting CD4 § and D N  cells, because of their intrinsic 
(CD8 independent) affinity for the selecting ligands, are res- 
cued at the second stage of the positive selection process, fol- 
lowing a model similar to the one proposed by Chan et al. 
(36), whereas the CD8 + cells, after upregulation of their 
TCR level, reach the negative selection threshold and are elim- 
inated. The particular CD44 +NKI.1 § surface phenotype 
and the unique lymphokine secretion potential of this subset 
could be related to the particular affinity of the TCKs for 
the MHC class I molecule and/or the type of APC involved 
in presenting the selecting ligand. 

The MHC Class I Ligand. Two findings suggest that a 
potential candidate for this conserved MHC molecule may 
lie in the Qa-1 family of genes. First, anti-Qa-1 CD8 + 
mouse T cell clones predominantly use the same Vt~ chains 
(Vt~8, V~7, and V~2) as the NKI.1 + TC R -o J3  + T cells 
(37). Second, although most M H C  genes, whether poly- 
morphic or not, have diverged widely between species, Qa-1 
molecules are very homologous to the rat RTBM.1 mole- 
cule and share unique features of their peptide binding cleft 
with both the rat RTBM.1 and the human HLA-E mole- 
cules (38). As for the peptides involved in the selection of 

this cell subset, the evidence that these cells can be obtained 
in long-term fetal thymic organ culture (4) suggests that they 
must be self-antigen(s). In line with the observation that 
tryptic digests of heat shock proteins stabilize the surface ex- 
pression of Qa-1 (39), one may speculate that the selecting 
peptides are members of the widely conserved family of stress 
proteins. Once in the periphery, these cells might respond 
to upregulated levels of these same peptides or, alternatively, 
to foreign antigens that are structurally related, in an analo- 
gous manner to the 3~/~ T cells that respond to heat shock 
proteins (40). 

What Is the Function of the NKI.1 + Vc~14 + Thymocytes? 
The conservation through speciation events of such an un- 
usual T cell subset bearing an invariant TCR-oe chain associated 
with the recognition of nonpolymorphic MHC class I/self 
peptide(s) strongly argues for an important, though yet un- 
characterized, function for these cells. Since their particular 
TCRs are unlikely to recognize most foreign pathogens, 
they could be recruited after upregulation of their self-ligand(s) 
or recognition of variant, foreign peptides. Alternatively, 
their reactivation may result from downregulation of the NK- 
like molecules (or of their ligands), as it was recently sug- 
gested that some of these may bind MHC class I molecules 
and transduce inhibitory signals (41). One potential role for 
the NK1.l+Va14 + thymocytes is hinted at by their unique 
property of being able to produce large quantities of IL-4 
upon primary stimulation in vitro (3, 7) and within minutes 
of TCR cross-linking in vivo (8). Because the early secretion 
of IL-4 appears to be critical for the generation of Th2-type 
humoral immune responses over Thl-type cell-mediated re- 
sponses, the NKl.1+V~14 + T cells may play a role in de- 
termining the Thl/Th2 phenotype of some immune responses 
to particular pathogens or to self-antigens (9, 42). 
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Note added in proof'. In the same issue of the Journal, P. Dellaboua et al. (44) report a detailed analysis 
of the human blood Vc~24-JQ + T cells that further demonstrates the similarity to the mouse NKI.1 + 
Vc~14-J281 § T cell subset. 
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