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Summary 

Nitric oxide (NO) synthesis during experimental endotoxemia has been shown to have both 
deleterious and beneficial effects. In the present study, we analyzed the in vivo production and 
the regulatory role of NO in the shock syndrome induced by staphylococcal enterotoxin B (SEB) 
in mice. First, we found that intraperitoneal administration of 100/xg SEB in BALB/c mice 
induced a massive synthesis of NO as indicated by high serum levels of nitrite (NO2-) and 
nitrate (NO3-) peaking 16 h after SEB injection. The inhibition of NO2- and NO3- release 
in mice injected with anti-tumor necrosis factor (TNF) and/or anti-interferon "y (IFN-~/) 
monoclonal antibody (mAb) before SEB challenge revealed that both cytokines were involved 
in SEB-induced NO overproduction. In vitro experiments indicated that NO synthase (NOS) 
inhibition by N-nitro-t-arginine methyl ester (L-NAME) enhanced IFN-~/and TNF production 
by splenocytes in response to SEB. A similar effect was observed in vivo as treatment of mice 
with L-NAME resulted in increased IFN-3' and TNF serum levels 24 h after SEB challenge, 
together with persistent expression of corresponding cytokine mKNA in spleen. The prolonged 
production of inflammatory cytokines in mice receiving L-NAME and SEB was associated with 
a 95% mortality rate within 96 h, whereas all mice survived injections of SEB or t-NAME 
alone. Both TNF and IFN-3' were responsible for the lethality induced by SEB in L-NAME-treated 
mice as shown by the protection provided by simultaneous administration of anti-IFN-~/and 
anti-TNF mAbs. We conclude the SEB induces NO synthesis in vivo and that endogenous NO 
has protective effects in this model of T cell-dependent shock by downregulating IFN-3' and 
TNF production. 

N 'itric oxide (NO) overproduction is known to be involved 
in the pathogenesis of LPS (endotoxin)-induced arterial 

hypotension. Indeed, nitric oxide synthase (NOS) inhibitors 
were found to increase systemic vascular resistance in ex- 
perimental endotoxemia (1) and in patients with septic shock 
(2). However, the therapeutic benefit of NOS inhibitors in 
severe sepsis is controversial as these inhibitors were also found 
to promote glomerular thrombosis and liver damage and to 
increase mortality rates in animals injected with LPS (3-5). 
These observations suggest that vasodilatation and inhibi- 
tion of platelet aggregation and adhesion induced by NO 
might be critical to maintain adequate perfusion of vital organs 
during endotoxemia (6). 

Whereas the toxicity of LPS from gram-negative bacteria 
is related to macrophage activation (7), staphylococcal en- 
terotoxins exert their pathogenic effects by activating T cells 
expressing a given Vfl gene segment on their TCR (8). Thus, 
injection of staphylococcal enterotoxin B (SEB) in BALB/c 

mice induces a shock syndrome due to the release of inflam- 
matory cytokines by Vfl8-positive T cells (9). The present 
study was undertaken to determine whether NO is produced 
and has a regulatory role in this model of T cell-dependent 
shock. 

Materials and Methods 
Mice. 10-wk-old BALB/c mice purchased from Bantin and 

Kingman Ltd. (Grimston Aldbrough Hull, UK) were maintained 
in our animal facilities on standard laboratory chow. 

mAbs. The R46A2 rat anti-mouse IFN- y IgG1 mAb (10) and 
LO-DNP-2, a control rat IgG1 mAb (kindly provided by Dr. 
H. Bazin, Experimental Immunology Unit, Universit6 Catholique 
de Louvain, Belgium) were produced in ascites form. Purified 
TN3 19-12 hamster anti-mouse TNF IgG1 mAb and its isotype 
control MOPC21 (CB1) were generously provided by Cell Tech 
(Berkshire, UK). 

Nitrite~Nitrate (NO2-/NOj-) Assay. Serum samples were as- 
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sayed for NO2- and NO3- (stable end products of NO) after 
reduction of NO3- into NO2- by copper-plated cadmium (11). 
Briefly, 50 #1 of each sample was first deproteinized by incubation 
with 200 #1 ZnSO4 (75 raM) and 250 #1 NaOH (55 mM) for 10 
rain at room temperature. After centrifugation at 1,000 g for 10 
min, 200 #1 of supernatant and 200 #g of activated cadmium were 
mixed together and stirred at room temperature for 1 h. Activated 
cadmium was prepared as follows: 5 g cadmium powder (100% 
mesh; Johnson Matthey, Karlsruhe, Germany) were first plated with 
copper by stirring in 20 ml of 5 mM CuSO4. Excess metallic Cu 
was removed by extensive washing with glycine-NaOH buffer 
(pH 9.7). Copper-plated cadmium was then dried on filter paper 
and immediately used for the reduction of NOz- to NO2-. Re- 
duced samples were incubated with an equal volume of Griess re- 
agent and absorbance was measured (A450) on a microplate reader 
(Multiscan MCC/340; Labsystems, Helsinki, Finland). NO2- 
concentrations were calculated from a reduced NaNO3 standard 
curve ranging from 5 mM to 0.5 #M. The lower limit of detection 
of NO3- in this test was 50/zM. 

Determination of Cytokine Levels by ELISA. Serum samples were 
assayed for TNF by two-site ELISA using the TN3 9-12 mAb and 
rabbit anti-mouse TNF polyclonal Ab kindly provided by Dr. W. 
Buurman (University of Limburg, Maastricht, The Netherlands) 
(12). IFN-'y was also quantitated by two-site ELISA using the Ft 
and Db-1 rat anti-mouse IFN-3, mAbs, kindly provided by Dr. 
BiUian (Katholieke Universiteit Leuven, Leuven, Belgium) and P. H. 
van der Meide (TNO Health Research, Amsterdam, The Nether- 
lands), respectively (13). The lower limits of detection of TNF and 
IFN-3' were 20 and 2 U/ml, respectively. 

Analysis of TNF-ce and IFN- T mRNA Expression. Spleens were 
removed 2 and 24 h after injection of SEB or SEB plus 
N-nitro-r-arginine methyl ester (t -NAME; Sigma Chemical Co., 
St. Louis, MO). Total RNA was extracted using the guanidium 
thiocyanate method. Preparations of cDNA and PCR for TNF-ot 
and IFN-T genes and for hypoxanthine phosphoribosyl transferase 
(HPRT) housekeeping gene were performed using standard proce- 
dures (14). PCR primers used were as follows: TNF-c~ sense primer 
5'-TCTCATCAGTTCTATGGCCC-Y and antisense 5'-GGGAGT- 
AGACAAGGTACAAC-Y; IFN-3r sense primer 5'-GCTCTGAG- 
ACAATGAACGCT-Y and antisense 5'-AAAGAGATAATCTGGC- 
TCTGC-Y; HPRT sense primer 5'-GTTGGATACAGGCCAGA- 
CTTTGTTG-Y and antisense 5'-GATTCAACTTGCGCTCATC- 
TTAGGC-Y. Reactions were incubated in a DNA thermal cycler 
(Perkin-Elmer Celtus, Norwalk, CT) for 29 cycles. PCR products 
were run on a 2% agarose gel and stained with ethidium bromide. 

In Vivo Administration of SEB and NOS Inhibitor. First, we mea- 
sured NO2-/NO3- serum levels at different time points after a 
single injection of 100/~g i.p. SEB dissolved in 100/~1 RPMI (Gibco, 
Paisley, UK). In experiments designed to analyze the role of NO 
in vivo, mice received injections of 2 mg i.p. of r-NAME, a com- 
petitive inhibitor of NOS, 30 min before, simultaneously with, 
and 2, 4, and 6 h after SEB injection. This protocol of t-NAME 
administration was adapted from that of Shultz and Raij (3). To 
determine the role of TNF and IFN-3' in the induction of NO 
and in the lethality of mice coinjected with SEB and L-NAME, 
mice were pretreated with 500/zg i.p. of either anti-IFN-3' mAb, 
anti-TNF mAb, or both mAbs, 2 h before SEB challenge. As con- 
trols, mice were injected with the isotypic controls of anti-IFN-3, 
and anti-TNF mAb. Results obtained after injection of the two 
control mAbs were pooled since they did not differ significantly. 
The endotoxin levels of SEB, L-NAME, and mAb preparations were 
<15 pg/ml as determined by a Limulus amoebocyte lysate assay (LAb 
QCI.,1000; Whittaker MA, Bioproducts, Walkersville, MD). 

In Vitro Studies. After lysis of red cells, 5 x 106 spleen cells 
from normal BALB/c mice were cultured in duplicates in 0.5 ml 
complete medium consisting of RPMI 1640 supplemented with 
2% Ultroser (Gibco), 1%o sodium pyruvate, 1%o t-glutamine, 1%o 
nonessential amino acids, penicillin, streptomycin, and 5 x 10 -s M 
2-M. SEB at a concentration of 10 #g/ml was added in experimental 
wells together with increasing concentrations (0.25-2 mg/ml) of 
t-NAME. After 4 d of incubation in 6% CO2 in humidified air, 
supernatants were collected and assayed for TNF and IFN-3~ 
production. 

Statistical Analysis. Statistical comparisons were made using the 
unpaired two-tailed Mann-Whitney test except for lethality data 
which were analyzed by the two-tailed Log-Rank test. 

Results and Discussion 

Systemic Release of N O  after SEB Injection in BALB/c Mice. 
We first established that injection of 100/zg i.p. SEB in BALB/c 
mice induces a massive production of NO metabolites. In- 
deed, NO2- /NO3-  serum levels rose from 200 4- 40 pM 
(mean _+ SEM) before SEB injection to 1,876 _+ 305 #M 
16 h later while they were not influenced by injection of 
medium alone (Fig. 1). 

TNF and IFN-7 Mediate SEB-induced N O  Overproduc- 
tion. TNF and IFN-3~ are released after SEB injection (9, 
15) and both cytokines are known to induce NOS (16, 17). 
We therefore studied the respective roles of TNF and IFN-3~ 
in the in vivo production of NO2- /NO3-  in SEB-chal- 
lenged mice. For this purpose, mice were pretreated with ei- 
ther anti-TNF, anti-IFN-% or both mAbs 2 h before injec- 
tion of 100 ftg of SEB, and peak serum levels of NO2- /  
NO3- were determined 16 h later. In preliminary experi- 
ments, we ascertained that the injected amounts of anti-IFN-T 
and anti-TNF mAb efficiently neutralized corresponding 
cytokines in the circulation of SEB-injected mice (data not 
shown). As shown in Fig. 2, anti-TNF mAb pretreatment 
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Figure 1. Serum levels of NO2-/NO3- after a single injection of 100 
#g i.p. SEB in BALB/c mice (I). Controls (0) received RPMI medium 
alone. Results are represented as mean _+ SEM of at least five mice for 
each time point. (Hatched area) Detection limit of NO2-/NO3-. 
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Figure 2. Involvement of TNF and IFN-y in SEB-induced NO over- 
production. Mice were treated before SEB challenge (100/~g i.p.) with 
either anti-TNF mAb, anti-IFN-y mAb, or anti-TNF plus antMFN-3" mAbs, 
as described in Materials and Methods. The control mAb group included 
five mice injected with LO-DNP-2 rat mAb and five mice injected with 
CB1 hamster mAb. NO2-/NO3- peak serum levels were measured 16 h 
after SEB injection and are represented as mean _+ SEM of at least five 
mice in each group. (*)p <0.02; (* *)p <0.01, as compared with mice 
injected with control mAb and SEB. 

reduced by 63% peak serum levels of NO2- /NO3-  (585 • 
64 VS. 1,594 + 213 #M in mice pretreated with control mAb, 
p <0.02). Anti-IFN-3, mAb pretreatment was even more 
efficient since it reduced peak NO2- /NO3-  levels to 321 • 
83 #M ~v <0.01 as compared with mice pretreated with con- 
trol mAb). Coinjection of anti-IFN-3, and anti-TNF mAbs 
before SEB completely prevented the increase in 

NO2- /NO3-  levels. These in vivo data are in keeping with 
the in vitro observations indicating that IFN-3, and TNF in- 
teract synergistically to induce NO synthesis by macrophages 
and hepatocytes (18, 19). 

Inhibition of NO Synthesis Enhances IFN-9, and TNF Syn- 
thesis and Induces Lethality in SEB-injected Mice. After the 
demonstration that IFN-y and TNF were responsible for NO 
overproduction, we aimed to determine whether NO would 
in turn control the synthesis of those cytokines. This ques- 
tion was first addressed in vitro by analyzing the effect of 
t-NAME, a NOS inhibitor, on the secretion of cytokines by 
spleen cells stimulated with SEB. As shown in Fig. 3, the 
addition of t-NAME enhanced in a dose-dependent manner 
the secretion of TNF and IFN-3' triggered by SEB. As both 
cytokines are known to be produced by T cells in this setting 
(9, 15, 20), these data confirm and extend recent observa- 
tions made in experimental parasitic diseases demonstrating 
that NOS inhibition enhanced IFN-y production by T cells 
in vitro (21, 22). 

A similar effect of NOS inhibition was observed in vivo 
by measuring cytokine serum levels in L-NAME-treated mice. 
First, we verified that NO2- /NO3-  serum levels remained 
at basal values after coinjection of SEB and L-NAME (mean 
_+ SEM 16 h after SEB injection: 265 + 55 #M). As shown 
in Table 1, in vivo inhibition of NOS did not modify the 
peak serum levels of TNF and IFN-% but prolonged the 
period during which these cytokines persist in the circula- 
tion. In parallel, we found that IFN-3' and TNF-o~ mRNA 
expression in spleen 24 h after SEB injection was increased 
in L-NAME-treated mice (Fig. 4). Moreover, L-NAME did 
not modify the disappearance rate of radiolabeled TNF, indi- 
cating that the effect of NOS inhibition on cytokine serum 
levels was not related to impaired cytokine clearance (data 
not shown). Taken together, these results demonstrate the 
existence of a regulatory loop by which NO inhibits the 
production of TNF and IFN-3, which induce its own synthesis. 

The sustained release of TNF and IFN-3' caused by NOS 
inhibition was associated with an increased toxicity of SEB. 
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Figure 3. TNF and IFN-y secretion by spleen 
cells stimulated with SEB in the presence or ab- 
sence of the NOS inhibitor t-NAME. 5 x 106 
spleen cells were incubated with 10 #g/ml of SEB 
together with increasing concentrations of t-NAME 
(0-2 mg/ml). After 4 d incubation, TNF and 
IFN-q/production was assayed by ELISA. Hatched 
(IFN-'y) and open (TNF) columns represent means 
of duplicate samples in one representative experi- 
ment out of two. TNF and IFN-3' levels in the 
absence of SEB (200 and 20 U/ml), respectively) 
were not modified by t-NAME addition. 
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Table 1. TNF and IFN- T Serum Levels after SEB Injection in ~-NAME-treated Mice 

TNF (U/ml)* IFN-3, (U/ml)* 

Mice injected with* 90 min 24 h 4 h 24 h 

SEB 110 _+ 4 <20 300 + 30 <2 
SEB plus L-NAME 120 _+ 13 90 _+ 7S 270 _+ 60 42 + 45 

c-NAME <20 <20 <2 <2 

* Mice were injected with 100 #g SEB alone, 10 mg t-NAME alone, or 100 #g SEB and 10 mg t-NAME, as described in Materials and Methods. 
TNF and IFN-~" serum levels were measured at their peak (90 min for TNF, 4 h for IFN-3') and 24 h after SEB injection. Results were expressed 

as mean _+ SEM of at least five mice in each group. 
S p <0.01 as compared with mice injected with SEB alone. 

F i g u r e  4.  IFN-3' and TNF-c~ 
mRNA expression in spleen of 
mice injected with SEB or SEB 
plus L-NAME. Spleens (two per 
group) were removed 2 and 24 h 
after SEB or SEB plus L-NAME 
administration and analyzed by re- 
verse PCR for INF-% TNF-cx, 
and HPRT mRNA expression. 
(Lane 1) Control uninjected mice; 
(Lane 2) 2 h after SEB alone; (lane 
3) 2 h after SEB plus t-NAME; 
(lane 4) 24 h after SEB alone; and 
(lane 5) 24 h after SEB plus 
t-NAME. 

Indeed, 95% of  mice (15 of 16) coinjected with  L-NAME 
and SEB died within 96 h after SEB challenge (Fig. 5) whereas 
no lethality occurred in mice injected with SEB alone (n = 
20) or L-NAME alone (n = 20). To study the involvement 
of  IFN-y  and T N F  in the mortali ty induced by the combi- 
nation of t -NAME plus SEB, groups of animals were pretreated 

with ant i - IFN-y and/or ant i -TNF mAbs. As shown in Fig. 
5, simultaneous neutralization of I F N - y  and T N F  dramati- 
cally reduced the mortali ty induced by SEB in t - N A M E -  
injected mice whereas pretreatment with either anti-TNF mAb 
alone or anti-IFN-'y m A b  alone merely delayed animal death 
(Fig. 5). The  role of  T N F  in SEB-induced shock has previ- 
ously been demonstrated in o-galactosamine-sensitized mice 
(9) and we recently observed that IFN-'y is involved in the 
lethality induced by SEB in mice treated with anti-IL-lO mAb 
(20). The data presented herein indicate that IFN-'y and T N F  
might  act synergistically in mediating SEB toxicity as they 
do in other models of  inflammation (23). 

N O  in SEB-induced shock not only downregulates the 
production of  inflammatory cytokines as shown in this paper 
but might  also reduce their pathogenic effects. As a matter 
of  fact, the vasoactive properties of  N O  as well as its ability 
to inhibit platelet aggregation and adhesion could be impor- 
tant in counteracting the prothrombotic  properties of  T N F  
and IFN-3, (24, 25). Indeed, we observed lesions of  coagula- 
tive necrosis in the liver of  mice coinjected with  SEB and 
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Figure 5. Involvement of TNF and IFN-'y in the lethality 
. induced by SEB in L-NAME-treated mice. Mice were injected 

** a with L-NAME (total dose, 10 mg) and SEB (100 #g) after 
pretreatment with either control mAb (&, n = 54, including 
30 mice injected with LO-DNP-2 mAb and 24 mice injected 
with CB1 mAb), anti-TNF mAb (1L n = 30), anti-IFN-7 

~[ mAb (E3, n = 33), or anti-TNF plus anti-IFN-y mAbs (O, 
n = 30). Survival was 100% at 96 h in mice receiving SEB 

, alone or t-NAME alone (0, n = 20 in each group). (*)/, 
00 < 0.05, (**)p <0.005, and (***) p <0.0005, as compared 

with mice pretreated with control mAb. 

1156 Nitric Oxide Synthesis in Staphylococcal Enterotoxin B-induced Shock 



L-NAME (data not shown) similar to those described in 
animals receiving LPS and L-NAME (4). 

We conclude that NO overproduction is a major protec- 
tive mechanism in the T cell-dependent shock induced by 

SEB and that NOS inhibition might have detrimental conse- 
quences in T cell-mediated inflammatory disorders by en- 
hancing both the production and the toxicity of inflamma- 
tory cytokines. 
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