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Summary 
Tumor dormancy can be induced in a murine B cell lymphoma (BCL1) by immunizing BALB/c 
mice with the tumor immunoglobulin (Ig) before tumor cell challenge. In this report, we have 
investigated the immunological and cellular mechanisms underlying the induction of dormancy. 
BCL1 tumor cells were injected into SCID mice passively immunized with antibody against 
different epitopes on IgM or IgD with or without idiotype (Id)-immune T lymphocytes. Results 
indicate that antibody to IgM is sufficient to induce a state of dormancy. Antibodies against 
other cell surface molecules including IgD and CD44 (Pgpl) had no effect on tumor growth. 
Id-immune T cells by themselves also had no effect on tumor growth in SCID mice. However, 
simultaneous transfer of anti-Id and Id-immune T cells enhanced both the induction and duration 
of the dormant state. In vitro studies indicated that antibody to IgM induced apoptosis within 
several hours and cell cycle arrest by 24 h. Hyper cross-linking increased apoptosis. The FcqcRII 
receptor played little or no role in the negative signaling. Antibodies that did not negatively 
signal in vitro did not induce dormancy in vivo. The results suggest that anti-IgM plays a decisive 
role in inducing tumor dormancy to BCL1 by acting as an agonist of IgM-mediated signal 
transduction pathways. 

C ancer dormancy is a well-recognized clinical phenomenon 
in which tumor cells are present but the population does 

not increase for long periods of time. However, tumor cells 
can regrow many years or even decades later. Cancer dor- 
maney therefore represents an important clinical problem. At 
a basic level, it is also intriguing that malignant cells (charac- 
terized by uncontrolled growth) can survive for decades in 
vivo without apparent expansion of the cell population. 

In an effort to gain more insight into the mechanisms un- 
derlying tumor dormancy, we have used a well-characterized 
B cell lymphoma, BCL11 (1, 2), in mice immunized with 
the BCL1 idiotype-positive (Id +) IgM (3). We have shown 
that the major outcome of such immunization and challenge 

1 Abbreviations used in this paper: BCL1, B cell lymphoma; CCA, cell cycle 
arrest; DLC, dormant lymphoma cell; GAILIg, goat anti-rabbit IgG; Id § 
idiotype positive; MA BCL1 Id, polyclonal mouse anti-BCL1 Id; MARK, 
mouse anti-rat g; MFI, mean fluorescence intensity; R.tAM)~, rat 
anti-mouse X; RtAM~, rat anti-mouse ~; tLAGM1, rabbit anti-asialo 
GM1; 7-AAD, 7-amino actinomydn D. 

is a state of dormancy in which dormant lymphoma cells 
(DLC) persist in stable numbers for the 200 d of observation 
and are maintained in the majority of animals throughout 
life as evidenced by cell transfer experiments (4, 5). Isolation 
of DLC by multiparameter flow cytometry indicates that they 
are different from the growing BCL1 cells with regard to 
size, morphology, and cell cycle status. We therefore sug- 
gested that signals induced by cross-linking of mlg with an- 
tibodies to BCLt Id are responsible for the induction and 
maintenance of the dormant tumor state. 

In the present studies, we have explored the roles of anti~ 
IgM, anti-IgD, and Id-specific T cells in inducing tumor dor- 
mancy by passively immunizing SCID mice. We have also 
analyzed the mechanisms underlying the antibody-induced 
dormant state by use of an in vitro-adapted cell line derived 
from the BCLt tumor (designated BCL1 3B3) (6). We pre- 
sent evidence that anti-# antibodies act as agonists rather than 
via conventional effector mechanisms to induce and main- 
tain tumor dormancy. They do this by inducing both apop- 
toffs and cell cycle arrest (CCA). Anti-IgM but not anti-IgD 
induces these antitumor effects and the Fc'yRII plays little 
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or no role. Id-specific T cells cannot by themselves induce 
dormancy, but they synergize with anti-IgM to induce a more 
long-lived dormant state. 

Materials and Methods 
BCLI 3B3 Tumor. The BCL1 tumor and its 3B3 subline were 

maintained in vivo by i.v. and i.p. passage in BALB/c or SCID 
mice. 5 wk after inoculation of 5-10 x 105 spleen cells from a 
tumor-bearing animal, mice were killed and their splenocytes were 
used as a source of tumor cells. Alternatively, BCL1 3B3 cells 
were maintained in vitro and 3 x 104 cells were injected directly 
into each SCID mouse. Tumor cells in the spleens of dormant 
mice were determined by flow cytometry and by adoptive transfer 
of graded numbers of splenocytes from dormant mice into naive 
BALB/c mice. Splenomegaly was determined by palpation as pre- 
viously reported (4). 

BCLI Id-KLH Conjugation and Immunization. Conjugation of 
the Id § BCL~ IgM to KLH and the immunization of BALB/c 
mice have been described previously (4). 

Antibodies. Hybridoma cells secreting rat IgG2a anti-BCL~ Id 
(KtA Id) (6A5) were a gift from Dr. Freda Stevenson (Southampton, 
UK). The Id § IgM~, was purified from the ascites of C5D5 hy- 
bridoma which was generated by fusing BCL~ cells with SP2/0 
myeloma cells (7). Rat anti-mouse ~, (RtAMh) (B1.1) was gener- 
ated in our laboratory and previously described (8). Rat anti-mouse 
r (RtAMS) (JA12.5) was produced by Abbott Biotech, Inc. Normal 
rat IgG (NRt IgG) and normal mouse IgG (MIgG) were prepared 
from pooled normal sera by chromatography on Sephadex A-50. 
Rat anti-mouse CD44 (IM7) (KtAM CD44), RtAMr (JA 12.5), 
and rat anti-mouse IgM (RtAM#) (Bet-2) were purified from the 
supernatants of hybridomas obtained from the American Type Cul- 
ture Collection (Rockville, MD). Polyclonal mouse anti-BCL~ Id 
(MA BCL1 Id) ascites was produced by intraperitoneal injection 
of pristane into Id-immune mice followed 1-2 wk later by intra- 
peritoneal injection of SP2/0 myeloma cells. Polyclonal rabbit anti- 
BCL1 Id (RA BCL1 Id), rabbit anti-mouse # (RA/.t), rabbit anti- 
ovalbumin (KAOVA), goat anti-mouse ~5 (GAr goat anti-mouse 
# (GA/~), goat anti-ovalbumin (GAOVA), and goat anti-rabbit IgG 
(GARIg) were produced and affinity purified as previously described 
(2). Aggregation of RAOVA was performed by heating it at 60~ 
for 10 min until the solution became slightly turbid. 

lmmunofluorescent Staining and Cytofluorometry of Cells. For mul- 
ticolor flow cytometry on a FACScan | (Becton Dickinson Im- 
munocytometry Systems USA, San Jose, CA), the fluorochromes 
FITC, PE, Red 670, and Red 613, were used. The following pro- 
cedure was employed to stain the cells for cytofluorometric anal- 
ysis. 106 cells were incubated with either RtAM~,, KtA Id, or 
their biotinylated conjugates. The binding of these antibodies was 
detected using a secondary FITC-conjugated mouse anti-rat K 
(MARK) or a fluorochrome bound to streptavidin (SA), respec- 
tively. Cells were examined directly on the FACS | or residual 
MARK binding sites were blocked with NRt IgG and the cells 
were further incubated with antibodies coupled to PE or biotin 
before FACS | analysis. The final incubation included Red 670-SA 
or Red 6D-SA (GIBCO BRL, Gaithersburg, MD). 

To determine the cycle status of the BCL, 3B3, cells were fixed 
in 0.5% paraformaldehyde and then incubated with the DNA- 
binding fluorochrome Hoechst 33342 (Sigma Chemical Co., St. 
Louis, MO) (220/zl of 15 /zM Hoechst in 5% Tween 20) over- 
night. The DNA content of single cells was determined in a spe- 
cially prepared FACStar Plus | (Becton Dickinson) (320 and 488- 
nm excitation) by measuring the blue light emission of DNA-bound 

Hoechst. Cell doublets and large aggregates were excluded from the 
analysis using appropriate gating on pulse process signals from the 
Hoechst emission (signal width vs. area). Apoptotic cells were iden- 
tified as above except that cells were stained with 400/zM 7-amino 
actinomycin D (7-ADD) (Molecular Probes, Inc., Eugene, OR) 
in PBS at 4~ for 30 min before fixation (9). For tumor cells from 
spleens of BCLl-bearing mice, splenocytes were stained for sur- 
face markers using RtAM)~ and FITC-MARK with or without 
additional PE-conjugated antibodies, stained with 7-AAD and 
Hoechst, and analyzed as described above. 

Flow cytometry data were analyzed by "Paint-a-Gate" software 
as described (10). This analysis enables a multi-dimensional 
identification of cells reactive with the antibodies as well as the 
determination of their relative sizes (small vs. large) based on the 
position of the cells in the correlative display of forward vs. or- 
thogonal light scattering. 

FH]Thymidine Incorporation. 3 x 104 cells were incubated in 
RPMI 1640 5% FCS (GIBCO) at 37~ for 8 h with antibody 
in 0.2 ml of medium before the addition of 1 #Ci [3H]thymidine 
(Amersham Corp., Arlington Heights, IL). Cells were harvested 
after a 16-h pulse. All values are presented as the mean of triplicate 
samples. 

Purification of T Cells. B and Fc'yR.II + cells were depleted by 
two methods: (a) GARIg magnetic beads (Advanced Magnetics 
Inc., Cambridge, MA); or (b) a mouse T cell enrichment column 
(R & D Systems, Inc., Minneapolis, MN). Briefly, spleens from 
normal BALB/c or Id-immune BALB/c mice were removed, teased 
into a single cell suspension, and the RBCs were lysed by incubating 
the resuspended pellet in lysis buffer (0.1 M ammonium chloride, 
0.7 mM KH2PO4) for 5 min at 20~ The cells were washed in 
HBSS and resuspended at 2.5 x 107 cells/ml HBSS. 10/zg of 
rabbit anti-mouse Ig (RAMIg)/ml was added and the cells were 
incubated on ice for 40 min. 0.7 ml of GARIg magnetic beads 
was washed in HBSS and added to the spleen cells in a 25-cm flask. 
A magnet was attached to the bottom of the flask and the cells 
were incubated for 10 min at room temperature. The flask was gently 
inverted, decanted, an additional 0.7 ml beads was added, and the 
procedure was repeated. The depleted cells were then pelleted, 
pooled, and resuspended at 10 s per ml. Alternatively, spleen cells 
with lysed RBCs were adjusted to 1.5-2 x 10 s cells/ml and B 
cells and Fc~/RII § cells were removed by use of mouse T cell en- 
richment columns. Cells from each spleen were purified on a single 
column. Aliquots of cells were sampled before and after both 
purifications and the numbers of B and T cells were determined 
by FACS | analysis. The two methods gave similar results. 

Agarose Gel Electrophoresis of DNA. 107 cells were treated with 
proteinase K (1 mg/ml) in 50 mM Tris-HC1, pH 8.0/100 mM 
NaC1/100 mM EDTA/1% SDS, and the DNA was isolated by 
phenol/CHC13, 1:1 (vol/vol) extraction and ethanol precipitation. 
DNA isolated from 3 x 105 cell equivalents was treated with 
RNase A (1 mg/ml) and resolved in 2% agarose gels with lx  TAE 
buffer (40 mM Tris acetate, 2 mM EDTA) (11). 

Elimination of NK Cells from SCID Mice. Rabbit anti-asialo 
GM1 (RAGM1) (Wako Pure Chemical Industries, Inc., Osaka, 
Japan) was used to eliminate NK cells from SCID mice. 25/zl of 
this antibody was calibrated by Wako and found to diminish NK- 
mediated killing of YAC-1 at an E/T ratio of 50:1 by 97% when 
injected into mice. 25 gtl of this antibody was injected into SCID 
mice and the NK activity was measured by lung clearance of 12sI- 
UdR-labeled YAC-1 cells as previously described (12). A sixfold 
reduction in NK function was demonstrated in the SCID mice 
treated with RAGM1. 
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R e s u l t s  

Antibody-induced Dormancy in SCID BCLI Mice. The ca- 
pacity of antibody to induce dormancy in the absence of 
BCLl-specific cytotoxic T cells was studied by passive im- 
munization of SCID mice. A series of polyclonal and mono- 
clonal antibodies specific for various epitopes on Ig were in- 
jected into the mice before injection of BCL1 or BCL1 3B3 
cells. Dormancy was defined as the absence of splenomegaly 
at 60 d since in virtually all control mice, splenomegaly was 
detected by 35-45 d after challenge with BCL1 or BCLl 3B3 
cells. As shown in Table 1, 53-79% of BCLt-inoculated 
mice developed dormancy depending upon the particular anti- 
Ig antibody used. The polyclonal antibodies were more effec- 
tive as judged by the duration of dormancy. Essentially similar 
results were obtained using BCL1 3B3 cells (Table 2) except 
that the tumor cells grew slightly faster (controls had spleno- 
megaly by 25-35 d) and the incidence of dormancy was lower 
and duration shorter than those observed when the parent 
BCL1 tumor cells were used (data not shown). 

When the spleens from dormant SCID/BCL~ mice in- 
jected with BCL1 3B3 were stained with RtAMX and ex- 
amined by flow cytometry, DLC were identified by staining 
with anti-X (Fig. 1). These cells represented 0.1-1% of the 
spleen cells and were few in number ("~10 s DLC) because 
of the small size of the SCID mouse spleens and because only 
3 x 104 BCLt 3B3 cells were inoculated. In the 66 mice 

Table 1. Dormancy in Antibody-treated Mice Injected with 
BCLI Tumor Cells 

Antibody 

Percent dormant 
(No. of mice injected 

with tumor) 

Average day of 
onset of 

splenomegaly _+ SD 

% 

- -  0 (8) 36 ___ 5.9 
MIgG 0 (12) 32 _+ 7.2 
GAOVA 0 (3) 28 _+ 0 
RtAM CD44 0 (10) 35 _+ 7.0 
RtAM~5 0 (3) 35 _+ 1.6 

MA BCL1 Id 77 (35) 85 _+ 21 
GA/x 53 (19) 75 +_ 5.1 
RtAM~k 60 (5) 60 + 11 
RtAM# 67 (9) 76 + 22 
RA BCL1 Id 79 (14) 153 _+ 60 
RA# 62 (13) 99 _+ 16 

SCID mice were injected intravenously with 50/tg of antibody on day 
0 and weekly thereafter for 7 wk. On day 1, mice were injected with 
3 x 104 BCL, tumor cells intraperitoneally and palpated twice weekly 
for splenomegaly (4). Animals without splenomegaly on day 60 were 
considered dormant. 

injected with either BCL1 cells or BCL1 3B3 cells and classi- 
fied as dormant based on the lack of splenomegaly at 60 d, 
all the mice harbored tumor cells as evidenced by ddayed tumor 
growth, FACS | analysis, or by cell transfer. Hence, these mice 
had not been cured of their tumor by treatment with anti- 
Ig. Because of the small number of tumor cells present, we 
were unable to evaluate their cell cycle status. 

We considered the possibility that the role of antibody was 
to divert the tumor cells from the spleen to another organ 
and/or to deplete them by Fc-mediated effector mechanisms, 
e.g., opsonization or ADCC. To test these possibilities, RtAM 
CD44 and RtAM~, were administered to SCID mice chal- 
lenged with BCL1 3B3 ceils. These antibodies bind to BCL1 
3B3 cells without affecting their growth in vitro. Mice treated 
with these antibodies showed no antitumor immunity. GAg, 
which has little or no affinity for the FcyRII (13), was highly 
effective in inducing dormancy. In addition, when mice were 
first injected with BCL1 cells and 3-7 d later with anti-# 
(to allow the tumor cells to home to the spleen before treat- 
ment with antibody) antibody was completely effective 3 d 
and moderately effective 1 wk after BCL1 chaUenge, despite 
the 3-7 d of tumor growth before treatment (anti-# injected 
at - 1, + 3, and + 7 d later showed dormancy in six of nine, 
four of five, and three of five mice, respectively). These results 
make it unlikely that anti-Ig diverts the tumor cells to an- 
other anatomical site. 

SCID mice lack T and B ceils but have normal or above 
normal levels of NK cells (14). To test the possibility that 
NK cells contributed to the induction of dormancy, SCID 
mice were treated with 25 #1 of RAGM1 antibody 3 d be- 
fore injection of BCL1 cells and 4 and 11 d thereafter. A 
single injection of 25/zl of RAGM1 reduced NK function 
in SCID mice more than sixfold. MA BCL1 Id was injected 
on day 1 and weekly thereafter for 7 wk. The results demon- 
strated that RAGM1 had no significant effect on the ability 
of MA BCL1 Id to induce dormancy. Anti-asialo GM1 in- 
jected with anti-# induced dormancy in four of five mice (av- 
erage of 84 _+ 15 d before splenomegaly appeared); injection 
of anti-# alone induced dormancy in five of five mice (av- 
erage 91 _+ 13 d before splenomegaly appeared). This sug- 
gests that antibody-mediated effector mechanisms do not con- 
tribute to the induction of dormancy in a major way, and 
this result is consistent with our working hypothesis that 
the antitumor effects of MA BCL~ Id are caused by signal 
transduction. 

The Effect of Id-immune T Cells on Dormancy in SCID 
Mice. In prior experiments using SCID mice injected with 
antibody and challenged with BCL1 3B3 or BCL1 cells, the 
duration of dormancy was usually less than that previously 
reported for BALB/c Id-immune mice (3, 5, 15). A possible 
explanation is that Id-specific T cells contribute to the in- 
duction and maintenance of dormancy. Therefore, Id-immune 
T cells were injected into SCID mice with or without anti- 
Id to determine if T cells had any role in the induction of 
dormancy. To facilitate the detection of an additive effect by 
Id-immune T cells, SCID mice were treated with suboptimal 
doses of MA BCL1 Id, which alone induced dormancy in 
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T a b l e  2. Dormancy in Mice Injected with the BCLI 3B3 Cell Line Tumor 

Antibody injected into 
SCID mice* BALB/c Mice* 

Exp. 
No. Control RA BCL~ Id RA# GA# Control Id immune 

1 0/4 4/4 - - -  0/5 2/10 
2 0/2 3/3 5/5 0/5 1/5 3/5 
3 0/2 0/3 0/5 2/4 0/5 4/5 
Total 0/8 7/10 5/10 2/9 1/15 9/20 

* Animals received 50 #g each of antibodies intravenously on day 0 and weekly thereafter for an additional 7 wk. 3 x 104 BCL1 3B3 were injected 
intraperitoneally on day 1. Animals were then palpated twice weekly for splenomegaly. Control animals received BCL1 3B3 but not antibodies. 
Animals without splenomegaly at 60 d were considered to have dormant tumor. Number of dormant mice/total number of mice is presented. 
* BALB/c mice were immunized with BCLt Id, injected intraperitoneally with 106 BCL1 3B3 cells and followed for splenomegaly by biweekly pal- 
pations. Naive BALB/c mice injected with BCL1 3B3 cells served as controls. 

only 50% of the mice (vs. 77% observed with optimal doses 
of this antibody). As shown in Table 3, MA BCL1 Id alone 
induced dormancy in 5 of 10 mice which lasted an average 
of 72 d. Idlimmune T cells did not by themselves induce 
dormancy. However, when administered with anti-Id anti- 
body, all 10 mice developed dormancy with an average dura- 

Figure 1. Flow cytometric analysis of dormant lymphoma cells (BCL1 
3B3) in spleens of SCID mice. 3 x 104 BCL1 3B3 cells were injected into 
SCID mice. 7 d after injection of tumor cells, animals received weekly 
injections of 50/~g RA BCL1 Id for 8 wk. 66 d after the administration 
of BCL1 cells, a dormant mouse and a naive mouse (no Ab) with growing 
tumor were killed along with a naive SCID mouse without tumor. The 
splenocytes were stained for FACS | The animal harboring growing tumor 
cells (middle) had 67% ~,+ cells (BCL1 3B3 tumor shown in black), the 
dormant animal had 0.5% X + cells (bottom), and no •+ cells were de- 
tected in splenocytes from a control mouse (top). Forward scatter (FSC) 
and side scatter (SSC) indicate the size of the cells. Staining with Thy-1 
shows that the X + population is distinct from NK cells in the spleen. 

tion of 164 d. The differential onset of splenomegaly in mice 
treated with MA BCL1 Id and Idlimmune T cells compared 
to antibody alone was statistically significant. By contrast, 
there was no statistical difference in dormancy between mice 
treated with antibody alone and antibody together with 
normal T cells. These results indicate that although T cells 
from Id-immune animals cannot by themselves induce dor- 
mancy under the above conditions (107 cells/SCID animal), 
they can enhance the incidence and duration of dormancy 
achieved with anti-Id. 

Effect of Polyclonal Antibodies on [3H]Tkymidine Incorporation 
in BCLI 3B3 Cells In Vitra To analyze the mechanisms un- 
derlying the induction of dormancy, in vitro, studies using 
BCL1 3B3 were undertaken. Fig. 2 demonstrates that poly- 
clonal antibodies proven to induce dormancy of BCL1 3B3 in 
SCID mice (see Table 2) also significantly reduced [3H]thy- 
midine incorporation in BCL1 3B3 cells in vitro. R.tAM 
CD44 and B, tAM8 antibodies that were ineffective in vivo 
had no effect on thymidine incorporation in vitro (to be 
discussed below). 

The reduction in [3H]thymidine incorporation induced 
by RA BCL1 Id is related to receptor occupancy (Fig. 3). 
Receptor occupancy was measured by determining the mean 
fluorescence intensity (MFI). As can be seen, MFI reached 
a plateau at 1/zg/106 cells at which point [3H]thymidine in- 
corporation diminished incrementally up to the highest con- 
centration used (8/~g/106 cells). The continued decrease in 
[3H]thymidine uptake after saturation of surface IgM (mlgM) 
could be explained by continued cross-linking of newly ex- 
pressed mlgM molecules when an excess of anti-Id was pre- 
sent. It is unlikely that dissociation of antibody from mlgM 
could account for this finding since hyperimmune polyvalent 
antibodies (which have a high affinity and low rate of dis- 
sociation) were used. These results indicate that antibodies 
that induce dormancy in vivo, have antiproliferative effects 
in vitro and that these effects occur when receptor occupancy 
is complete and continued for many hours. 

Cell Cycle Arrest and Apoptosis Are Induced by Cross-linking 
IgM. The above experiments demonstrate that anti-/~ or anti- 
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Table  3. Effect of Purified T Cells on Dormancy in SCID Mice 

MA BCL~ Id 
50 # g / w k  Source of Number of dormant mice Average day to 
for 5 wk* T cells (10~)~ Total No. of mice splenomegaly _+ SDS 

_ II _ 0/8 45 _+ 3.9 

- Normal spleen 0/10 49 _+ 7.4 

- Id-immune spleen 0/10 52 _+ 8.7 

+ - 5/10 72 _+ 13 

+ Normal spleen 6/10 88 _+ 30 

+ Id-immune spleen 10/101 164 _+ 96 

* This regimen of MA BCL1 Id gives suboptimal dormancy of BCL1 cells. Eight injections each of 50 pg (one injection per week) gives 77% dor- 
mancy with an average day to loss of dormancy of 85 _+ 21 d when a total of 35 animals were followed. 
* B cells and Fc receptor positive cells were depleted either by magnetic beads (Advanced Magnetics Inc.) or by a T cell column. In the two experi- 
ments represented in this table, contamination of B cells and Fc receptor positive cells were <2% (magnetic beads) and <0.1% (T cell column). 
S The time to onset of splenomegaly in mice treated with MA BCLI Id plus Id-immune T cells is statistically different by the t test from mice receiving 
only MA BCL1 Id ~ <0.02). There is no statisical difference between mice treated with MA BCL1 Id or MA BCL~ Id plus normal T cells. 
I I -  = None. 

One dormant animal died at day 175 and two animals were killed at day 350. Both animals had small spleens and these splenocytes passed tumor 
into naive BALB/c mice indicating the presence of DLC. 

Id antibodies induce antiproliferative activity in BCL~ 3B3 
cells. To determine the cellular mechanisms underlying this 
inhibition, treated cells were analyzed by flow cytometry for 
cell permeability (death) vs. DNA content (cell cycle). As 
shown in Fig. 4, 45% of the BCL1 3B3 cells treated with 
RAp were dead as compared to 3.3% of the RAOVA-treated 
cells. Cell death was a result of apoptosis, since gel analysis 
of DNA from treated cells revealed the typical nucleosomal 
ladder (data not shown). 
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Figure 2. The effect of anti-p on DNA synthesis in BCL1 3B3 cells. 
3 x 104 BCL1 3B3 cells were plated in triplicate into a 96-well plate with 
GAp (O), RAp (I-q), RA BCL1 Id (O), MA BCL1 Id (A), or with each 
of their control Ig antibodies (closed symbols, respectively). After 8 h of 
incubation, 1 pCi [3H]thymidine was added to each well for the next 
16 h. The cells were then harvested and thymidine incorporation mea- 
sured. Results represent the average of three experiments. Thymidine in- 
corporation is presented as the percent of incorporation in cells treated 
with medium alone. All values are the mean of triplicate samples. Error 
bars represent _+ 1 SD. 

The RAp-treated cells also showed a marked decrease in 
the proportion of viable cells in S, G2, and M phases of the 
cell cycle as compared to RAOVA-treated cells (9.3% vs. 
24.3%, respectively) (Fig. 4). To prove that the decrease in 
the proportion of cycling cells was due to CCA, cells were 
treated with vinblastine which inhibits mitosis by interacting 
with the microtubular protein, tubulin (16). If cells are ar- 
rested in G0/G1, then the observed increase in the G0/gl 
fraction will be maintained after vinblastine treatment, whereas 
if the cells are cycling more slowly as a result of anti-Id treat- 
ment, then the G0/G1 fraction will decrease as the cells 
progress to the block in mitosis. In these experiments, cells 
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Figure 3. The relationship of mlg occupancy to the inhibition of growth. 
106 cells were incubated for 15 min at 4~ with RAOVA (closed symbols) 
or RA BCL1 Id (open symbols). This was performed in a volume of only 
20-30 pl because the large number of cells and titrations performed re- 
quired a large quantity of antibody. The cells were washed twice in BSS- 
Eagle, stained with FITC-GARIg, and the MFI (triangles) was determined. 
Duplicate samples were plated in triplicate and DNA synthesis measured 
by [3H]thymidine uptake (circles). 
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Figure 4. Flow cytometric analysis of membrane integrity and DNA 
content. 106 BCL1 3B3 cells were treated with either KAOVA (top) or 
KA# (bottom) at a concentration of 35 #g/ml and analyzed by flow cytom- 
etry for membrane integrity using 7-AAD and for DNA content using 
Hoechst 33342. Viable cells exclude 7-AAD and bind intermediate to high 
amounts of Hoechst dye, including cells in the G0/G1 and S/G2/M phases 
of the cell cycle. Apoptotic cells (down arrow) have relatively low Hoechst 
fluorescence primarily due to induced DNA fragmentation, and most show 
a loss of membrane integrity (7-AAD +). The percentage of cells that is 
apoptotic is indicated in the upper right hand comer of 7-AAD vs. Hoechst 
fluorescence plots (left). Hoechst fluorescence gating only on viable cells 
is indicated in histograms (right), and the percentage of cells in S/G2/M 
phases (horizontal arrow) of the cell cycle is indicated. 

were incubated with KA BCLt Id for 24 h before 5 ng/ml 
of vinblastine (Sigma Chemical Co.) was added. The cells 
were then analyzed by flow cytometry 24 h later. As shown 
in Fig. 5, the elevated proportion of cells in G0/G1 after 
treatment with anti-Id and vinblastine was not affected. In 
contrast, exposure of KAOVA-treated cells to vinblastine 
resulted in a marked decrease in the percentage of G0/G1 
cells. These results indicate that treatment with anti-Id itself 
arrests cells in G0/G1. 

Kinetics of Cell Death and CCA in anti-BCLt H-treated 
BCLt 3B3 Cells. Signal transduction by anti-Ig in lym- 
phoma or immature B cells results in CCA or apoptosis or 
both (17-23). We investigated the kinetics of induction of 
CCA and apoptosis by flow cytometry. Fig. 6 represents a 
compilation of four experiments in which cell death and CCA 
were induced with RA BCL1 Id. Loss of membrane in- 
tegrity and DNA degradation in apoptotic cells was detect- 
able as early as 2 h after treatment and their percentage con- 
tinued to increase throughout the time course of 24 h. In 
contrast, CCA was not detectable until 8 h after antibody 
treatment and increased in the residual viable cells at 24 h. 
These results indicate that a poruon (or all) the cell death 
observed can occur independently of CCA. These findings 
are consistent with the existence of at least two partially in- 
dependent signal transduction pathways in BCL1 3B3 cells 
after mlg cross-linking, that is, one leading directly to apop- 
tosis/necrosis and one leading to CCA (11). 

The Effect of "Hyperaggregation" of Surface IgM. The cross- 
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Figure 5. Effect of vinblastine on the cell cycle status of BCLt 3B3 cells 
treated with anti-Id. Samples were treated with RAOVA (top) or RA 
BCL1 Id (bottom) for 48 h. Duplicate cultures (right) were incubated with 
vinblastine (5 ng/ml) for 24 h before analysis. The cells were then stained 
with Hoechst 33342 and 7-AAD and analyzed by flow cytometry. The 
percentage of cells in the combined Go and G1 phases (arrow) of the cell 
cycle is indicated in the upper right hand corner of each panel. 

linking of IgM is required for signaling in BCLI 3B3 cells. 
The question therefore arose as to whether increased cross- 
linking of occupied receptors can increase negative signaling, 
and whether such a putative increase in signaling would have 
equivalent effects on CCA and apoptosis. To test this, BCL1 
3B3 cells were treated for 15 min at 4~ with 1 #g RA 
BCL1 Id per 106 cells (a concentration that causes 90-95% 
receptor occupancy but inhibits [3H]thymidine incorpora- 
tion by only 5-10% because the time of exposure was very 
short before excess antibody was removed). An aliquot of 
the cells was then treated with 10 #g/ml of GARIg to in- 
duce "hyper cross-linking". As shown in Fig. 7, superaggre- 
gation of mlgM more than doubled the percentage of dead 
cells observed after treatment with KA BCL1 Id alone (25.1 
vs. 11.8%, respectively). Thus, increased cross-linking of a 
fixed number of antibody-bound receptors results in increased 
cell death. These results indicate that the extent of cross-linking 
determines the number of cells that die. Similar findings have 
been reported by Parry et al. (24). 

The Role of the Fc Receptor in the Antibody-mediated Nega- 
tive Signaling of BCL~ 3B3 Cells. The potential role of the 
Fc receptor in the antibody-induced negative signaling of 
BCLt 3B3 cells was investigated. In mature B cells when the 
FcylIK is coligated with IgM or IgG, it induces a codominant 
negative signal that can override the positive signal induced 
by mlg (25, 26). In the first series of experiments, we demon- 
strated that F(ab')2 fragments of goat or rabbit antibody 
were highly effective at inducing CCA and apoptosis in vitro. 
Goat F(ab')2 was as effective as goat IgG (Fig. 8 A), how- 
ever, F(ab')2 fragments of rabbit IgG were slightly less effec- 
tive than the rabbit IgG antibody in vitro (data not shown). 
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Figure 6. Kinetics of RA BCL1 Id-induced cell death and 
CCA. 106 BCL1 3B3 cells were plated in 1.0 ml in 24-well 
plates with 35 #g/ml of rabbit anti-BCL1 Id, rabbit anti- 
OVA, or no antibody. There was no significant difference be- 
tween the RAOVA-treated and the nontreated BCL1 3B3 
cells. Wells were harvested at 2, 4, 6, 8, and 24 h (the figure 
is a compilation of four experiments-not all time points were 
done in each experiment). Cells were analyzed by FACS | for 
percentage of cells in $1, G2, and M phases of the call cycle 
and percentage of dead cells. The percentage of dead cells in 
untreated controls at each time point was subtracted from 
the percentage of dead cells in anti-BCL1 Id-treated cells. 
The difference between the percentage of cycling cells in con- 
trols and cycling calls in anti-BCL1 Id-treated samples was 
compared to the percentage of control cycling calls and plotted 
as percent reduction of cycling cells. Two additional experi- 
ments utilizing GA# gave similar results except that significant 
CCA did not occur until 24 h after antibody treatment and 
the maximum percentage of dead cells did not exceed 25%. 

This could be due to the ,o17% decrease of the binding 
affinity of the rabbit F(ab')2 compared to the intact antibody. 
Therefore, further experiments were carried out to block the 
coligation of the Fc'yKII with crosslinked Ig. As shown in 
Fig. 8 B, blocking the Fc receptor by pretreating the cells 
with nonaggregated or heat-aggregated RAOVA before the 
addition of RA# had no effect on the capacity of RA# to 
inhibit thymidine incorporation. Taken together, these data 
indicate that the FcTKII does not contribute significantly to 
the inhibitory signal induced by cross-linking mlgM. 

Effect of Anti-8 on the Induction of Dormancy. There are con- 
tradictory reports indicating whether cross-linking IgD can 
induce an inhibitory signal (24, 27, 28). One study suggested 

A 50, 

= 40 - 
.5 

T 

' ~ l  , , i i J , t i  i 

I0 i00 

Antibody concentration 0~4) 

anti-OVA 

anti-BCL1 Id 

anti-rabbit lgG 

! 

/ = 

+ 

�84  I0 
f ~ V  i " 

7 - A A D  Fluorescence  

F i g u r e  7. Enhanced cross-linking of mlg increases apoptosis in BCL1 
3B3 cells. Duplicate samples of 106 cells were incubated in the presence 
of 1 #g of either RAOVA (top) or KA BCL1 Id (bottom) at 0~ for 15 
min. The cells were washed twice in BSS-Eagle and plated with or without 
GARIg (10 #g/ml) for 24 h and then analyzed by flow cytometry as de- 
scribed in Materials and Methods. The percentage of apoptotic cells (arrow) 
is indicated for each sample. 
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Figure 8. The role of Fc receptors in anti-Ig-induced negative signaling. 
(A) Different concentrations of goat anti-# (open circles) or its F(ab')2 
(closed circles) fragments were incubated with 3 • 104 BCL1 3B3 cells for 
24 h. [3H]Thymidine incorporation was measured and is shown as a per- 
centage of that incorporated in untreated cells. (B) 3 • 104 BCL1 3B3 
cells were plated in 200 #l per well and 10 #g KAOVA, either native or 
heat aggregated, were added. After 15 rain of incubation at 37~ 1 #g 
of rabbit anti-# (closed boxes), goat anti-# (open boxes), or no anti-# anti- 
bodies (cross-hatched boxes) were added to the appropriate wells for the next 
24 h. [3H]Thymidine incorporation was measured and is shown as a per- 
centage of untreated cells. 
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that although anti-/~ by itself cannot induce a negative signal 
in WEHI231 cells, it can increase the negative signaling in- 
duced by anti-# antibodies (28). We, therefore, performed 
several experiments to determine the role of IgD signaling 
in BCLa 3B3 cells. Polyclonal (goat) or monoclonal (rat) 
anti-~ antibodies at various concentrations (2-500 #g) had 
no effect on 3 x 104 BCLt 3B3 cells in vitro. Moreover, 
there was no increase in inhibition observed when a constant 
suboptimal dose of tLA/z (1.75 #g/ml) was compared to the 
same dose of anti-/z administered simultaneously with in- 
creasing doses of polyclonal or monoclonal anti-~ antibodies. 
Thus, there was no evidence that negative signaling could 
occur through IgD. However, although all the 3B3 cells stained 
with monodonal rat anti-~, the density of mlgD was only 
10% that of mlgM as determined by MFI using FITC-labeled 
MARK. Hence, we cannot exclude the possibility that the 
negative result would be due to the low density of mlgD. 

Anti-/.t Treatment of BCLI 3B3 Cells Growing in SCID 
Mice. To determine what roles cell death and CCA play in 
inducing dormancy, SCID mice were injected with 106 
BCL1 3B3 ceils and palpated weekly for splenomegaly. 
When the spleen enlarged to a size consistent with the pres- 
ence of 5 x l0 s tumor cells, mice were injected with a 
single dose of 500/zg of RA# or GA# or their respective 
control antibodies. After 24 and 48 h, animals were killed, 
the spleens were removed, and splenocytes were analyzed by 
flow cytometry for cell death and CCA. Cells were also lysed 
and analyzed by agarose gel electrophoresis for DNA frag- 
mentation. When GA/z antibodies (Fig. 9 A) were injected, 
4.1% of the ceils were dead at 24 h and 30.8% were dead 
at 48 h. Cell death after treatment with KA/Z peaked at 24 h 
with 62.5% dead cells vs. 3.6% after RAOVA treatment (Fig. 
9 B). By 48 h, RA#-treated cells had only 7.9% more dead 
cells than the controls (14.4 vs. 6.5%). The sharp decline 
in the proportion of dead ceils is probably related to rapid 
cell lysis and clearance of dead cells by the host. Agarose gel 
analysis for DNA laddering was performed on the aliquots 
of cells used for flow cytometric analysis (Fig. 9 C). The 
results demonstrate the presence of nucleosome multimer- 
sized fragments only in the cells removed from mice treated 
with GA/Z after 48 h and RA/z after 24 h. Thus, a portion, 
if not all of the GA#- or KA/z-induced cell death of BCL1 
3B3 ceils results from signal-induced apoptosis. These experi- 
ments suggest that signal-induced cell death is an important 
mechanism contributing to induction of dormancy. In the 
mice in which apoptosis was induced by anti-/z, there ap- 
pears to be CCA as well (Fig. 9, A and B). However, there 
is considerable variation in the proportion of cycling cells in 
control mice so that a much larger number of control and 
anti-/z-treated mice will have to be studied before a conclu- 
sion can be reached. 

Discussion 
The major findings to emerge from this study are: (a) An- 

tibodies directed against a variety of epitopes on mlgM in- 
duce tumor dormancy in a proportion of SCID mice chal- 

Figure 9. Flow cytometric analysis of BCL1 3B3 cells recovered from 
SCID spleens after anti-# treatment. SCID mice were injected with 106 
tumor cells and palpated weekly. When the spleen index was 2-3 
(representing "~5 x 108 tumor cells [4]), animals were grouped by spleen 
size and injected with 0.5 mg of either goat (A) or rabbit (B) antibodies. 
Due to the large volume injected ("~0.5 ml), the dose was given both in- 
travenously and intraperitoneally. Animals were killed at 24 h (B) or 48 h 
(A) and the splenocytes were gated on X § , Thy-1 - cells and analyzed for 
membrane integrity and DNA content. The percentage of apoptotic cells 
(arrow) is indicated for each plot. (C) Aliquots of the splenocytes from 
each animal were lysed, the DNA extracted and analyzed by gel electro- 
phoresis as described in Materials and Methods. 
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lenged with the murine lymphoma, BCL1. (b) Id-immune 
T cells by themselves are unable to induce dormancy, but 
they enhance the frequency and duration of dormancy when 
administered with anti-IgM. (c) The capacity of antibody to 
induce dormancy in vivo depends primarily on its capacity 
to signal rather than on conventional immune effector mech- 
anisms. (d) The major effects of antibodies in vitro are to 
induce apoptosis and CCA. Apoptosis was also demonstrated 
in tumor cells removed from treated mice. (e) Superaggrega- 
tion of IgM increased the proportion of cells undergoing apop- 
tosis. (f) Occupation or coligation of the Fc receptor is not 
necessary for negative signaling either in vitro or in vivo. 

Taken together, the in vivo and in vitro data suggest that 
signal transduction rather than classical immunological effector 
functions are the major contributors to tumor dormancy. This 
conclusion is based on the following observations: (a) There 
is a strict correlation between the capacity of antibodies to 
induce negative signaling in vitro and their ability to induce 
dormancy or, indeed, to have any affect on tumor growth 
in vivo. Thus, RtAMt5 and RtAM CD44 that bind to BCL1 
3B3 cells were ineffective, whereas RA/z, RA BCL1 Id, and 
RtAMX were effective. (b) An interaction between the anti- 
body and the Fcq'IIR is not required for negative signaling. 
(c) Virtual elimination of NK cell activity by treatment with 
RAGM1 had no effect on the induction of dormancy. (d) In 
vivo experiments in mice with actively growing BCL1 
tumors indicated that injection of RA# can cause massive 
apoptosis in vivo. 

These results are consistent with a growing body of evi- 
dence indicating that antibodies against surface molecules 
associated with the Ig signaling complex have powerful anti- 
tumor effects and that these are due to their signaling prop- 
erties. Thus, lymphoma regression induced by monoclonal 
anti-Id antibodies correlates with their ability to induce an 
increase in tyrosine phosphorylation in vitro (29). Both anti- 
CD19 (30) and anti-CD20 (31) inhibit the growth of human 
lymphoma cells in SCID mice. Of particular importance, the 
F(ab')2 fragment of anti-CD19 is as effective as intact anti- 
body in preventing tumor growth, proving that its antitumor 
activity is not due to Fc-mediated effector mechanisms (30). 
The ability of anti-CD19 to induce CCA in B lymphoma 
lines in vitro is consistent with this conclusion (11, 30). Anti- 
CD21, anti-CD23, and anti-CD24 can downregulate the 
growth of EBV-positive B cell lymphomas in SCID mice (32) 
and in humans (33), although the mechanisms responsible 
have not been explored. Anti-CD81 has antiproliferative ac- 
tivity in B cell lymphomas (34). Recent studies have shown 
that anti-CD40 can inhibit the growth of B cell lymphomas 
in vitro (35, 36) and display antitumor activity in SCID/ 
lymphoma mice; the mechanisms have not been elucidated. 
We have obtained similar results using anti-CDS, -CD20, 
and -CD21 in vitro (Vitetta, E. S., and J. W. Uhr, unpub- 
lished data). It is not surprising that the therapeutic poten- 
tial of the signaling function of mAbs has not been previ- 
ously appreciated. Thus, mAbs selected for therapeutic use 
were selected on the basis of their specificity for tumor cells 
and their effector function (37-40). They were not screened 

in vitro for negative signaling which may be the major con- 
tributor to their antitumor effects. 

In contrast to antibodies, Id-specific T cells by themselves 
were unable to induce dormancy under the conditions of our 
experiments. However, when Id-specific T cells were ad- 
ministered with anti-BCLl Id antibody, they synergized in 
the induction and maintenance of dormancy. This could be 
due to the secretion of cytokines or cytotoxic T cell activity. 
Cytokines released from T cells could increase the CCA or 
apoptosis mediated by anti-Ig. If CTLs are involved, then 
the intracellular pathway used may increase the proportion 
of tumor cells undergoing apoptosis since cytotoxic T cells 
can also induce this effect on target cells (41). 

There is accumulating information on the molecular events 
underlying the capacity of anti-# to induce CCA and apop- 
tosis by cross-linking surface IgM in B lymphoma cells and 
in immature B lymphocytes. The present concept of B cell 
signaling (reviewed in 42, 43) is that cross-linking of IgM 
initiates the phosphorylation of the Igot and ~ chains, that 
one or more of the src family kinases, Lyn, Fyn, Lck, and 
Blk, then bind to docking sites on the phosphorylated Igor 
and/~ chains, that this interaction activates the kinases which, 
in turn, leads to phosphorylation of a set of cytoplasmic pro- 
teins, possibly including another tyrosine kinase, Syk. PLC3, 
is activated resulting in generation of inositol triphosphate 
and diacylglycerol. Intracellular Ca § § levels are elevated and, 
in turn, protein kinase C is activated. A series of second mes- 
sengers that are serine/threonine kinases are phosphorylated 
by pathways that have not been clarified. Eventually there 
is activation of transcription regulators such as c-fos, jun B, 
erg, and other early proteins. The result is activation and 
differentiation of mature B cells. 

Although there are many similarities in the physiological 
changes associated with activation of mature B cells and nega- 
tive signaling in B lymphoma cells, there are differences be- 
tween the biochemical events in these two cell types. Thus, 
coligation of the Fcq, RII with membrane Ig in a normal B 
cell or a B cell tumor that cannot be negatively signaled results 
in a dominant negative effect, that is, the activation by cross- 
linking IgM can be overridden by coligation of Fcq, RII (25). 
This effect of Fcq, RII has been shown to be dependent on 
exogenous calcium ions (26). In contrast, in the BCL1 3B3 
cell line, neither coligation of Fcq, RII with IgM nor the 
absence of extracellular Ca 2+ ion (data not shown) signifi- 
cantly affects negative signaling. Another feature that distin- 
guishes signaling in the two cell types is the role of IgD. 
Cross-linking IgD on normal B lymphocytes results in acti- 
vation (44). Cross-linking IgD by itself or together with IgM 
on BCL1 3B3 cells does not affect signaling. Finally, as in- 
dicated above, positive signaling results in replication and 
differentiation, whereas negative signaling causes CCA and 
apoptosis. Hence, although portions of the signaling pathways 
in activated mature B cells and growth inhibited B lymphoma 
cells are probably identical, there must be differences in the 
pathways from the cell surface to the transcriptional response 
that remain to be characterized. These could depend on in- 
herent differences between the two cell types. 
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There is also evidence that the signaling pathways involved 
in CCA and apoptosis may be partially independent. We have 
reported that antisense oligonucleotides targeted to the lyn 
gene prevent induction of CCA, but not apoptosis resulting 
from cross-linking surface IgM on murine or human lym- 
phoma cells (11). This finding suggests that there is a bifur- 
cation point depending on Lyn that separates the two pathways. 
In contrast, experiments with antisense bile suggests that this 
PTK is essential for induction of apoptosis (21). 

What is the relationship between signaling lymphoma cells 
to undergo CCA and death and signaling their normal cel- 
lular counterparts with physiological ligands? The simplest 
explanation is that the stimuli and signaling pathways are 
identical. There is a large body of evidence to suggest that 
after contact with antigen, CCA and apoptosis can occur in 
immature B cells and in mature B cells if no accessory signals 
are concurrently received (18, 45). These cellular events have 
been implicated in the induction of anergy (45, 46) and clonal 
deletion of self-reactive cells (47) leading to B cell tolerance. 

There are several arguments to suggest that the signaling 
described here may be abnormal. Thus, it is unlikely that 
physiological concentrations of self antigens (particularly those 
in low concentrations) are sufficient to occupy all the specific 
receptors on B cells. Many self antigens may be paucivalent 
or even univalent and might not be effective at extensive cross- 
linking even when presented on a cell surface. Also, the L 
and H chain variable genes of naive B cells have not yet un- 
dergone hypermutation. Hence, their slg will have a rela- 
tively low binding affinity for self antigens. Thus, it is likely 
that lesser degrees of cross-linking are sufficient to negatively 
signal B cells. In contrast, the use of anti-Ig antibodies (par- 
ticularly polyclonal ones) saturate and cause massive clustering 
of these receptors. There is abundant literature to suggest 

that hyper cross-linking can increase negative signaling and 
in the present studies, apoptosis (24). Thus, increasing hap- 
tenization of proteins can render them more tolerogenic (48, 
49). Using fluorescence photobleaching to measure lateral 
diffusion of surface Ig receptors, it has been observed that 
there is a relationship between the increase in the fraction 
of mobile surface Ig receptor aggregates and the induction 
of B cell tolerance (50). It has recently been shown that im- 
mobilization of anti-/~ or anti-~5 antibodies on plastic can in- 
duce apoptosis in mature B cells (51). This is not the normal 
response of B cells to specific soluble antigens or, indeed, to 
soluble anti-IgD. We speculate, therefore, that antibody- 
mediated signaling of tumor cells may be different from phys- 
iological signaling, either in quantity (It is possible that during 
development, concentrations of physiological ligands are 
markedly increased in order to induce apoptosis in particular 
cell lineages and in that sense are physiological.) or quality. 
Hyperaggregation of large numbers of cell surface molecules 
could significantly alter the architecture of the plasma mem- 
brane or its underlying structures to such a degree that phys- 
iological signaling cascades are disrupted. This might result 
in apoptosis or CCA in normal or malignant cells. This does 
not exclude the possibility that tumor cells may be more sus- 
ceptible than normal cells to such negative signaling. 

Regardless of the mechanisms, these considerations have 
implications for clinical intervention. Thus, super cross-linking 
could be enhanced by the generation of multivalent antibodies 
using recombinant DNA technology. These could be multi- 
specific against different epitopes on the same molecule or, 
indeed, on different molecules to achieve hyper cross-linking. 
If this approach is proved effective in inducing apoptosis, it 
might be useful in eliminating undesired cells, that is, au- 
toimmune B or T cells as well as neoplastic ones. 
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