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Summary 
B lymphocytes recognize antigen through membrane-bound antigen-receptors, membrane IgM 
and IgD (mlgM and mlgD). Binding to foreign antigens initiates a cascade of biochemical events 
that lead to activation and differentiation. In contrast, binding to self-antigens leads to death 
or to inactivation. It is commonly believed that the B cells acquire the ability to discriminate 
between self and nonself in the early phases of development. We report here that immature B 
cells, which have just emerged from the mlgMnes, B220P ~ pool, are not deleted upon binding 
of self-antigen. In vivo, developing B cells become sensitive to tolerance induction in a relatively 
late window of differentiation, when they are in transition from the immature (HSAb~ig hi, 
B220 dun) to the mature (HSA auu, B220b'ig ht) stage. In the transitional B cells, early markers of 
differentiation such as Pgpl (CD44) and ThB reach the highest level of expression, while the 
expression of CD23 and mlgD, late markers of differentiation, and expression of class II MHC, 
progressively increases. Most of the transitional B cells, but only few of the mature and of the 
immature B cells, express the fas antigen, while mature B cells, but not immature and transi- 
tional B cells, express bcl-2 protein, mlgM is present in low amounts in immature B cells, reaches 
the highest level of expression in transitional B cells and is down-regulated in mature resting 
B cells, where it is coexpressed with mlgD. The high expression of mlgM, the presence of the 
fas antigen and the absence ofbcl-2 protein is compatible with the high sensitivity of transitional 
B cells to negative selection. In vitro, immature B cells die rapidly by apoptosis after cross-linking 
of mlgM. This result, combined with the resistance of immature B ceils to elimination in vivo, 
suggests that early in development the stroma cell microenvironment modulates signals trans- 
duced through mlgM. The functional and phenotypic division of IgMP ~ bone marrow B cells 
in three compartments not only allows to define the target population of physiological processes 
like negative selection, but will also be a helpful tool for an accurate description of possible de- 
velopmental blocks in mutant mice. 

T hroughout life, lymphocyte cells of the B lineage are 
generated and develop in the bone marrow, where they 

can be found in all maturation stages. They can be discrimi- 
nated on the basis of their phenotype and of their functional 
characteristics (1, 2). 

The first major population that can be identified corre- 
sponds to the pro-B lymphocytes. They are large prolifer- 
ating cells that are characterized by a low expression of B220, 
the B cell-specific splice variant of the surface marker CD45 
and by a high expression of the surface marker CD24 (heat- 
stable antigen [HSA]I). These cells start to rearrange their 
Ig heavy chain (HC) genes. After a productive rearrangement, 
they can express # chains in the cytoplasm and are called pre-B 
cells. 

Pre-B cells do not proliferate and are smaller in size. Recom- 
bination stops at the HC locus and starts at the light chain 

1 Abbreviations used in this~per: BCR, B cell receptor; HC, heavy chain; 
HSA, heat-stable antigen; m, membrane; TNP, trinitrophenyl. 

locus (3, 4). With the successful rearrangement of the light 
chain locus, a complete IgM molecule can be produced and 
expressed on the cell surface. Membrane (m)IgMr% HSA~s h~, 
B220 duu cells are considered immature B lymphocytes. Fur- 
ther differentiation leads to down-regulation of HSA and to 
up-regulation of B220. B cells now become independent of 
the stromal cells and migrate towards the sinusoids to leave 
the bone marrow (5, 6). 

Before and during HC rearrangement, under the influence 
of stromal cells and their factors, the pool size of the B lin- 
eage increases (1). Later, progression along the developmental 
pathway is guided by the presence of Ig molecules (7). 

At two differentiation steps after rearrangement, exten- 
sive cell loss occurs. 70% of the pre-B cells that are produced 
every day in the bone marrow die by apoptosis (8-10). The 
survivors are the immature B cells. Only 10-15% of them 
reaches the pool of mature B cells in the spleen (11, 12). Cell 
death could either eliminate the cells at random or specifically. 
Similarly to B cells, T cells construct their antigen receptor 
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through the rearrangement of different DNA segments. The 
mature T-cell repertoire is shaped by positive and negative 
selection in the thymus (13). Likewise, the emerging reper- 
toire of the B lineage differs from the mature repertoire (14-16). 
The extensive loss of B cells belonging to defined develop- 
mental stages in the bone marrow, combined with the selec- 
tive enrichment for certain VH regions in the periphery, sug- 
gests that also B lymphocytes are subject to selection processes. 

Tolerance induction (negative selection) in the B cell com- 
partment has been shown in normal mice many years ago 
(17) and was confirmed recently in transgenic mouse models 
(reviewed in references 18 and 19). A widely accepted notion 
describes tolerance to self-antigen as a property that the im- 
mune system acquires early in development. In the neonatal 
animal, all B cells are immature and are considered sensitive 
to tolerance induction, while in the adult, only the imma- 
ture B cells in the bone marrow are considered the target 
of negative selection (17). We have reported (20) that B cells 
of mice transgenic for IgM (/z and K transgenes) against the 
hapten trinitrophenyl (TNP) undergo apoptosis upon adminis- 
tration of TNP conjugates. If mlgD is coexpressed with mlgM 
(in mice carrying/x,K and ~ transgenes), deletion is limited 
to a few ceils that have a high density of mlgM. We con- 
cluded that in the absence of T cell help, the extent of mlgM 
cross-linking determines whether B cells are deleted when 
they encounter antigen. The engagement of mlgD together 
with mlgM protects the B cells from a rapid death. In normal 
mice, mature resting B cells coexpress mlgM with an av- 
erage of 3-10-fold excess of mlgD (21). This phenotype 
guarantees that B cells can bind antigen with high avidity 
and can be recruited in the immune response. The pheno- 
type of immature B ceils (mlgMP ~ mlgDneg) favors their 
elimination upon antigen binding. 

Little is known about the molecular mechanisms involved 
in the execution of programmed cell death. Apoptosis can 
be induced, among others, by members of the TNF-receptor 
family. A prominent representative of this family is the fas/ 
APO-1 antigen (reviewed in 22). A major role to prevent 
apoptosis has been ascribed to members of the bcl-2 family 
(23). Bcl-2 can, for instance, protect a cell from fas-induced 
cell death (24, 25), it cannot, however, prevent negative se- 
lection in the B and T cell compartments (26-28). 

In this study, we characterize the population of B cells that 
can be negatively selected upon cross-linking of their surface- 
antigen receptor in transgenic and normal mice. In contrast 
to previous observations (17), this population does not coin- 
cide with the B cells that appear very early in ontogeny and 
development. Engagement of mlgM causes apoptotic cell death 
only when B cells are in transition from the immature to 
the mature stage. On most of these cells, the fas antigen is 
expressed, while the bcl-2 protein is absent. 

Materials and Methods 
Mice. Mice were obtained from our breeding facility. Homozy- 

gous adult (7-10 wk old) mice of the SP6/x,g transgenic mouse 
line (29, 30) on the BALB/c background, and normal BALB/c, 
C57BL/6 and (BALB/c x C57BL/6) F1 mice were used for most 
experiments. Newborn BALB/c mice from the same litter were 
analyzed in pools of two to three pups. 

Tolerogens. TNP was coupled to amino-dextran (mol wt = 
70,000; Molecular Probes, Inc., Eugene, OIL) as described (20). 
The degree of substitution was between 17 and 23. TNP-dextran 
(800/xg in 100/~1 PBS) was injected i.v. in the tail veins of adult 
mice 24 h before analysis. As control FITC-dextran (tool wt = 
70,000, degree of substitution = 15-20; Molecular Probes) or PBS 
was used, with identical results (see also reference 20). Rat mono- 
clonal anti-IgM (clone 2911) and anti-IgE (clone 37.1949, a gift 
of Dr. L. Aarden, CLB, Amsterdam, The Netherlands), both of 
the 71 subclass, were administered in 100 #1 (500/~g/ml PBS) i.p. 
to newborn mice. 

Flow Cytometric Analysis and Cell Sorting. Flow cytometric anal- 
ysis was performed as described before (20). Lymphocytes were 
identified on the basis of small angle vs orthogonal light scatter 
characteristics. Data were collected from 2-3 x 104 cells on a 
FACScan | flow cytometer (Becton-Dickinson Immunocytometry 
Systems, Mountain View, CA). Four-color fluorescence analysis and 
cell sorting was carried out on a FACStar | Plus flow cytometer. 
Data are represented as 5% equal-probability double-contour plots, 
as dot plots, or as histograms. Measurement of fluorescence was 
on a logarithmic scale. In selected experiments, propidium iodide 
was used for live-dead cell discrimination. For staining of intracel- 
lular proteins, cells were permeabilized with saponin after staining 
for extracellular determinants. Briefly, antibodies were diluted in 
FACS | buffer (PBS, 0.1% azide, 3% dialyzed FCS) containing 
0.03% saponin. Cells were washed extensively in FACS | buffer 
containing 0.01% saponin. DNA staining was performed as de- 
scribed (31). 

The following monoclonal antibodies (species; specificity) were 
used: M1/69 (rat; HSA/CD24), RA3-6B2 (rat; B220/CD45), X36 
(rat; kappa [Becton Dickinson]), 2911 (rat; third constant domain 
of the/x chain), B3B4 (rat; CD23), KM81 (rat; Pgpl/CD44), 49h4 
(rat; ThB, a gift of Dr. L. Eckhardt, CUNY, New York), 11-26c 
(rat; 6 chain, a gift of Dr. J. Kearney, University of Alabama at 
Birmingham, Birmingham, AL), 3Fll (hamster, bcl-2, a gift of 
Dr. S. Korsmeyer, Washington University School of Medicine, St. 
Louis, MO). These antibodies were in our collection or obtained 
from the American Type Culture Collection (gockville, MD). An- 
tibodies were coupled to amino-hexanoyl-biotin-N-hydroxysuccin- 
imide ester (long-arm biotin; Molecular Probes) or to FITC (Mo- 
lecular Probes) as described (30). Monoclonal hamster anti-fas 
antigen, coupled to PE, was bought from PharMingen (San Diego, 
CA). Goat anti-mouse IgM coupled to PE and to Cy5 were pur- 
chased from Medac (Hamburg, Germany) and from Jackson Im- 
munoResearch Laboratories, Inc. (West Grove, PA), respectively. 
A rat monoclonal anti-hamster cocktail labeled with biotin was 
obtained from PharMingen. ILA3-6B2 labeled with PE, and with 
the tandem conjugates PE-Texas red (ILeal613) or PE-Cy5 (Red670) 
were obtained from GIBCO BRL (Gaithersburg, MD). Biotin- 
labeled antibodies were revealed with streptavidin-PE (Southern Bi- 
otechnology Associates, Birmingham, AL), with streptavidin- 
tLed670 (GIBCO BILL), or with streptavidin-Cy5 (Jackson Im- 
munoResearch Laboratories). 

In Vitro Cultures. Bone marrow cells of adult mice and splenic 
cells of neonatal mice were depleted of erythrocytes by isotonic lysis 
(20). The cells were then cultured at 106 cells/ml in Iscove's 
medium supplemented with a selected nonmitogenic FCS (10%) 
in 24-well plates (Costar Corp., Cambridge, MA) with the indi- 
cated substances for the indicated time. 

Results 
Immature B Cells are Resistant to Negative Selection. Based 

on the effects observed after treatment of mice which carried 



either/z and x (SP6 #,x mice) or #,x and 8 transgenes (SP6 
/z,x,~ mice) with specificity for the hapten TNP, with TNP 
conjugates, we previously concluded that engagement of 
mlgM on mature B lymphocytes is an apoptotic signal, un- 
less other signals (e.g., engagement of mlgD) interfere with 
this default pathway (20). Immature B ceils in the bone marrow 
were resistant to deletion both in #,x and in #,x,~i mice (20). 
This is surprising because immature B cells in the marrow 
are supposed to be the target of tolerance induction (17). Since 
immature B cells were resistant to deletion when they coex- 
pressed mlgM and mlgD, but also when they only expressed 
mlgM, the type of antigen receptor does not play a role in 
this stage of differentiation. We therefore investigated in more 
detail the results of cross-linking of mlgM in immature B 
cells of both transgenic and normal mice. 

Bone marrow mlgMP ~ B cells are usually divided in two 
populations: immature B cells, which are dull for B220, and 
mature B cells, which are bright for B220. Immature B ceils 
(Fig. 1 a, left arrow) derive from mlgMneg, B220P ~ precur- 
sors, while the B220b'ig ht, mlgMP ~ cells (Fig. 1 a, right arrow) 
are mature, recirculating B lymphocytes (1). Although based 
on these two markers this classification is justified, the func- 
tional analysis discussed below is more compatible with a 
division in three populations. In Fig. 1, a and b, we call im- 
mature B cells only those in gate G1 (Fig. 1, a and b). They 
express low amounts of mlgM and are dull for B220. In the 
most mature B cells (gate G2 in Fig. 1, a and b), B220 ex- 
pression is high. IgMbrig at B ceils are represented as a sepa- 
rate population (in gate G3). They are either dull (more im- 
mature) or bright (more mature) for B220, as is indicated 
by the vertical arrows. We based this seemingly arbitrary di- 
vision on the effects observed after treatment with the an- 
tigen TNP-dextran. 77% of the ceils in gate G2 (mature cells) 
were deleted after treatment with TNP-dextran in vivo (Fig. 
1 a [sham treatment] vs b [TNP-dextran treatment]). These 
cells express CD23, the low affinity receptor for IgE, a marker 
that normally appears on the surface of more mature B cells 
at the same time as IgD (Fig. 1, c and d). The immature 
B cell pool remained intact after treatment (94% survival, 
compare the cells contained in gate G1 in a and b). We have 
shown that in mature B cells, the density of mlgM and the 
extent of mlgM cross-linking determines whether B cells are 
deleted (20). Since the amount of mlgM on most of the im- 
mature cells was similar to the amount of mlgM on the more 
mature population (compare the staining for IgM in gates 
G1 and G2 of Fig. 1 a), we tentatively concluded that resis- 
tance to negative selection is an intrinsic property of the more 
immature bone marrow B cells. IgMbng ht B ceils, contained 
in gate G3 of Fig. 1, a and b, were deleted after TNP-dextran 
treatment independently of their staining profile for B220: 
70% of the more immature (B220 l~ and 88% of the more 
mature (B220bng h~) cells were eliminated (Fig. 1 e). In abso- 
lute numbers (Fig. 1 f ) ,  roughly 4 times more cells were 
deleted from the IgMbng a~ population than from the imma- 
ture B cell pool. 

We conclude that of the three populations of B lymphoid 
cells that we have defined in the bone marrow of Sp6/z,x 
mice, the most immature population (in gate G1) is resistant 
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Figure 1. Deletion of bone marrow B cells. Sp6 #,r mice received a 
single i.v. injection of either PBS (100 #1) or TNP-dextran (800 #g in 
100 #1 PBS) 24 h before three-color flow cytometric analysis. Cells were 
stained either with anti-B220, anti-IgM, or anti-B220 and anti-CD23 Abs. 
(a and b) Based on the expression of B220 and of mlgM, B cells were 
divided in three populations: gate G1, immature B cells; gate G2, mature 
B cells; and gate G3, IgMb~g h' B cells. (c and d) Staining profiles for 
CD23. (e) The percentage of surviving cells, as compared to sham-treated 
littermates; 0 c) surviving cells in absolute numbers. To show that loss in 
gate G3 is independent of staining for B220, gate G3 was divided into 
two compartments containing B2201~ immature (ira) and B220b,is h~ ma- 
ture (ma) B cells. 

to negative selection and that the two more mature cell types 
(in gates G2 and G3) are about equally sensitive. 

Transitional B Cells of Normal Mice. B cell populations 
equivalent to those described in Fig. 1 in transgenic mice can 
be identified in the bone marrow of normal mice (Fig. 2 a). 
Here the mature cells, which are found in gate G2, express 
mlgM and mlgD. We have shown that cells with this pheno- 
type are protected from deletion (20). The physiological target 
of negative selection could therefore coincide with the 
mlgMbns ht population (in gate G3). In this section we de- 
scribe this population in normal mice. 

In the bone marrow of normal mice, IgMb~g ht cells (see 
Fig. 2 a, in gate G3, red) represent 12-20% of all mlgp ~ 
ceils (contained in gates G1, G2, and G3). By using HSA 
as an additional marker, we have located the IgMbag ht popu- 
lation along the B cell differentiation pathway. In Fig. 2 b, 
the staining profile for HSA and B220 of whole bone marrow 
is shown, while in panel c, only the IgMbng ht cells, contained 



Figure 2. Transitional B cells. Bone marrow 
cells from adult BALB/c mice were analysed by 
multiparameter flow cytometry. (a) Cells were 
stained with anti-B220 and anti-lgM Abs, and 
divided in three populations contained in gates 
G1, G2, and G3. GI: IgM~, B220 'm immature 
B cells, dark blue; G2: IgM~, B220~8 ht mature 
B cells, green; G3: IgMb"~ h' transitional B cells, 
red. (b and c) The use of liSA as additional marker 
allows a better definition of IgMT~ig ht B cells. (c) 
Staining pattern for B220 and HSA of IgMb~ig ht 
cells. For comparison, all bone marrow cells are 
shown in panel/~ (d-h) Expression pattern of 
other differentiation markers. The gates in panels 
d-h show the localization of transitional B cells 
(defined as IgMb~ig ht, HSA brish, ~ d~n, B220a~, 
~sht) in respect to the whole bone marrow. The 
color code is the same as above, other bone 
marrow cells (B220vo~ and B220neg) are shown 
in light blue. 

in gate G3 of a, are shown. IgMbns h: B cells appear to be 
"in transition" from the immature (HSAb~g h~, B220 dull) to 
the mature (HSA dull, B220b'ig h*) stage. We used three- and 
four-color fluorescence analyses of other developmentally regu- 
lated surface markers to further characterize the transitional 
B cell population. We compared the expression of early (Pgpl, 
ThB) and late (MHC class II, IgD, CD23) markers of differen- 
tiation on IgMP ~ cells according to the division outlined in 
Fig. 1. Immature B cells (mlgM dal, HSAb~is h~, B220 a"n) are 
shown in dark blue, transitional B cells (mlgM b~gh~) in red, 
and mature B cells (mlgM aull, HSA a~ll, B220bng ht) in green. 
Pgpl (CD44), the receptor for hyaluronic acid, is an adhe- 
sion molecule expressed by all hemopoietic cells. All B220ro, 
cells are PgplV% but IgM bagh~ B cells are brighter for Pgpl 
than immature and mature B cells (Fig. 2 d). The expression 
of ThB, a phosphoinositol glycosyl-phosphatidyl-inositol 
(GPI)-linked protein with unknown function, gradually in- 
creases during differentiation from pro-B to immature B cells, 
but drops in mature cells. The IgM bright B cells that are con- 
tained in gate G3 of Fig. 2 a are still bright for ThB (these 
cells are shown in red, surrounded by an elliptical gate in 
Fig. 2 e). MHC class II antigens (Ia) first appear on the sur- 
face of pre-B cells that express a complete # protein in the 
cytoplasm (Lamers, M. C., unpublished results). IgM b~gh~ B 
cells express increasing amounts of MHC class II (Fig. 2 f, 

elliptical window), but substantially less than mature B cells. 
mlgD is progressively up-regulated on IgM~g ht B cells (Fig. 
2 g, elliptical window), but it does not reach the density found 
on mature B cell (Fig. 2 g, green). CD23 has a similar distri- 
bution (Fig. 2 h): it is expressed in low amount on transi- 
tional B cells and becomes bright in mature B cells. 

IgMb"g ht B cells found in the bone marrow of normal 
mice are fully comparable to the IgMb~g ht B cells of #,K 
transgenic mice (not shown). 

The pattern of expression of several developmentally regu- 
lated markers confirms that IgMb~ig ht B cells represent a 
population that is in transition from the immature to the 
mature stage. Early markers of differentiation, such as Pgpl 
and ThB, reach the maximum level of expression. In con- 
trast, the expression of mlgD and CD23, both late markers 
of differentiation, and of MHC class II progressively increases 
in transitional B cells without reaching the levels found on 
mature B lymphocytes in the periphery, mlgM, the only type 
of antigen receptor expressed early in development, also reaches 
the maximum level of expression in this stage and, we pre- 
dict, confers a high sensitivity to negative selection. 

Appearance of Transitional B Cells in Neonatal Mice. We 
next monitored B cell development in the bone marrow and 
in the spleen of newborn BALB/c mice to answer the ques- 
tion whether immature B cells are the direct precursors to 
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Figure 3. Development of transitional B cells in the newborn mouse. 
Bone marrow and spleen cells of BALB/c mice of the indicated age (in 
days after birth) were stained with anti-B220, anti-HSA, and anti-kappa 
Abs for flow-cytometric analysis. Staining patterns for B220 and HSA are 
depicted in a-c for bone marrow cells and in g-i for spleen cells. In d-f 
(bone marrow) andj-I (spleen), the staining pattern for B220 and HSA 
of kappap ~ cells is shown. In a-c and g-i, the percentage of B220p ~ cells 
is given; in d-f and j-l, the fraction of kappap ~ cells of B lineage (B220P ~ 
cells is given. The percentages of cells in the respective gates are repre- 
sented beside the gates, considering the total number of B220p ~ cells (a-c 
and g-i) or of kappav'~ cells (d-f and j-t)  as 100%. During the first 2 wk 
of life, the number of cells in the spleen increases 10-fold and in the bone 
marrow 4-fold. 

transitional B cells (Fig. 3). We labeled the cells with anti- 
HSA and anti-B220 Abs and identified mlgp ~ cells by 
staining with anti-kappa Abs. Staining with anti-IgM Abs 
gave identical results (not shown). In the bone marrow on 
day 2 after birth, 15% of the cells in the lymphocyte gate 
are B220P ~ and have an immature phenotype (HSAb~ig h', 
B220auH; Fig. 3 a). Only 10% of these cells express mlg 
(Fig. 3 d, showing staining profiles for HSA and B220 of 
kappaP ~ cells). The percentage of B220m cells rapidly in- 
creases and reaches 66% on day 14 (Fig. 3 c). At this time, 
some of the kappap ~ cells have down-regulated HSA expres- 
sion and start to up-regulate B220 (Fig. 3 f ) .  Mature, IgDP ~ 

cells are still rare (not shown). In the spleen B cells are in 
more advanced stages of differentiation (Fig. 3, g-i). In par- 
ticular, transitional B cells are easily recognized on day 2 (Fig. 
3 j) .  The percentage of B220p ~ cells, low on day 2 (15% 
of lymphoid cells), reaches adult levels (59%) at 2 wk of age, 
when most of the B cells are, however, still immature 
(HSA bright, B220aun). About half of the cells express now 
mlgD (not shown). Fig. 5 a shows that IgMb~g ht splenic B 
lymphocytes of neonatal mice resemble the transitional B cells 
found in the bone marrow of adult mice. They are clustered 
at the passage from the immature (HSAbng ht, B220 d~) to the 
mature (HSA dull, B220brig ht) B cell stage (Fig. 5 c). 

Both the phenotype and the time point of first appearance 
suggest that transitional B cells represent a relatively late stage 
of differentiation. They derive from the immature B cells and 
proceed to become mature B cells. 

In the Adult, Bone Marrow Transitional B Cells Derive from 
HSAb'g h~, B220 ~tl, IgMneg Precursors. To demonstrate that 
also in the adult bone marrow transitional B cells derive from 
B220P% IgMnes precursors, we have followed the develop- 
ment of B220P% mlgMneg bone marrow cells in vitro (Fig. 
4). Bone marrow from adult BALB/c mice was depleted of 
mlgMP ~ B cells by cell sorting. Staining profiles for mIgM 
and mlgD before and after depletion are shown in Fig. 4, 
e and f, and i and j, respectively. The staining profile for HSA 
and B220 of IgMP ~ cells is shown in Fig. 4, a and h Imma- 
ture B cells, using the definition introduced in Figs. 1 and 
2, are depicted in blue, transitional B cells in red, and mature 
B cells in green. After 1 d in culture, 24% of the ceils had 
acquired mIgM (Fig. 4 g), but most of them were still in 
the immature B call gate (Fig. 4 c). After 36 h, 39% of the 
cells expressed mlgM (Fig. 4 h). 15% of the B cells were 
in transition from the immature to the mature stage (Fig. 
4 d). The expression of modest amounts of mIgD after in 
vitro culture (Fig. 4, j- l)  was in agreement with the pro- 
gression from the immature to the transitional B cell stage. 
In vitro culture systems support differentiation up to the 
mlgMP ~ stage, but are insu~cient to support differentiation 
into mature ceils (32). These observations suggest that the 
final B cell maturation step is dependent on factors or inter- 
actions found in vivo, but not in in vitro cultures. We con- 
clude that also in adult bone marrow, pre-B cells evolve to 
become first immature B cells and subsequently transitional 
B cells. 

Transitional B Cells Are the Target of Negative Selection in 
Normal Mice. Antigen-specific negative selection is dif~cult 
to study in normal mice because the frequency of target ceils 
is very low. Therefore, anti-IgM Abs have been used as a sur- 
rogate universal antigen/tolerogen for B cells. We verified 
whether also in normal mice transitional B cells are the target 
of negative selection by treating newborn mice with a rat 
mAb to IgM. We reasoned that the binding of a mAb to 
mlgM more dosely resembled the interaction of an antigen 
with its specific binding site than the "super" cross-linking 
achieved by polyclonal Abs, and that in very young mice, 
interference with circulating IgM and with mature B cells 
could be avoided. The time of injection had to coincide with 
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Figure 4. In vitro development of transitional B cells from mlgM~r 
precursors. Whole bone marrow was depleted of mlgMp ~ B cells by cell 
sorting and cultured in vitro. The phenotype of unsorted cells (a, e, and 
i) was compared to the phenotype of sorted cells before (b,f, and j)  and 
after 24 h (c, g, and k) or 36 h (d, h, and I) in culture. The staining profile 
for B220 and HSA of mlgMpo~ cells is shown in a-d, where immature 
B cells are depicted in dark blue, transitional B cells in red, and mature 
recirculating B cells in green. Histograms in e-h show the expression of 
mlgM of B220p ~ cells. Sorted cells were mlgM~eg. The mean intensity 
of fluorescence for IgM was 99 after 24 h in culture, and rose to 137 after 
36 h. The histograms in i-I show the expression of mlgD of B220r~ cells. 
The arrow in i points at the peak corresponding to mature recirculating 
B cells. 

the first appearance of transitional B cells because we wanted 
to compare directly immature and transitional B cells. 

A single i.p. injection of 50/~g of either anti-IgM (mAb 
2911) or of an isotype control mAb (37.1949, anti-mouse 
IgE) was given to 1-d old BALB/c mice. 1 d later, spleen 
cells were prepared, counted, and analyzed by flow cytom- 
etry (Fig. 5). In the spleen, 98% of m l g  bright cells were 
deleted after anti-IgM treatment (compare the populations 
contained in gate G3 of Fig. 5 a [anti-IgE treatment] with 
those of Fig. 5 b [anti-IgM treatment]). This is reflected in 
Fig. 5, c and d, showing the staining profiles for HSA and 
B220 of the mlg b~ight cells. The cells that were deleted after 
treatment with anti-IgM, stained very brightly for Pgpl, con- 
firming that transitional B cells are the target of negative se- 
lection (Fig. 5 e). The mlg dull B cells (in gate G1 of Fig. 5, 
a and b) were largely spared from deletion. The disappear- 
ance of mlgbrls h~ B cells could not be explained by modula- 
tion of mlgM. First, the loss of mlgbrig h~ B cells was not 
compensated by a proportional increase of mlg d~ll or ~g, 
B220P ~ cells. Indeed, after anti-IgM treatment, the per- 
centage of B220P ~ ceils was reduced in the spleen (compare 
histograms in Fig. 5f) .  Second, signs of apoptosis were evi- 
dent in the spleen of mice injected with anti-IgM, but not 
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Figure 5. Transitional B cells are the target of negative selection. Of 
a litter of six newborn normal BALB/c mice, three were injected with 
anti-lgM mAb 2911 (50/xg i.p.) I d after birth. The remaining were treated 
with isotype-matched mAb 37.1949 (anti-mouse IgE). 24 h later, the spleens 
of each group of mice were pooled and analysed by multiparameter flow 
cytometry. In a and b, B cells were stained with anti-B220 and anti-lgM 
Abs and divided in immature (gate G1), mature (gate G2) and transitional 
(gate G3) cells. Very few mature B cells (G2) are found at this age. (c and 
d) HSA is used as additional marker. (e) Staining profiles for B220. (f) 
Staining profiles for Pgpl. (g and h) Cell cycle analysis after anti-IgE and 
anti-IgM treatment. APO, apoptotic cells. 

in the spleen of mice treated with anti-IgE, as revealed by 
cell cycle analysis. Upon anti-IgM treatment, a new peak ap- 
peared in the DNA profile to the left of the G1 peak (Fig. 
5 h, APO). These cells that have less than 2N DNA, are 
undergoing apoptosis (31). The number of the apoptotic cells 
does not perfectly correspond to the extent of deletion. The 
cells that underwent apoptosis first (~6 h after contact with 
anti-IgM) are completely lysed at the time point of analysis 
and appear as cell debris outside the lymphocyte gate (not 
shown). Other physical signs of apoptosis were also seen: 

2134 Transitional B Cells Are the Target of Negative Selection 



blebbing of the nucleus and ruffling of the cell membrane 
(not shown). 

Transitional B Cells Express the fas Antigen, but Not the bcl-2 
Protein. Since the presence of the fas antigen marks the cells 
that are susceptible to the induction of apoptosis by the fas 
ligand (22), we examined the expression of the fas antigen 
on B cells in the bone marrow. B220vos cells were divided 
into pro- and pre-B cells, immature, transitional, and mature 
B cells (Fig. 6 a). Fig. 6 c shows that most of the transitional, 
but few of the immature or mature B cells, express the fas 
antigen. We further examined the cells for the presence of 
the bcl-2 protein, which can protect cells from apoptosis. Ma- 
ture, but not immature or transitional B cells, stain positively 
for bcl-2 protein (Fig. 6 b). 

We conclude that in transitional B cells, the presence of 
the fas antigen and the absence of the bcl-2 protein correlates 
with their susceptibility for negative selection. 

In Vitro, Immature B Cells Are Not Resistant to Negative Se- 
lection, We have shown that B cells become sensitive to toler- 
ance induction relatively late in development, while imma- 
ture B cells are surprisingly resistant to deletion. Resistance 
and sensitivity to deletion could be intrinsic characteristics 
of immature and transitional B cells, respectively. It is, how- 
ever, also possible that the contact to stroma cells protects 
the immature B cells from deletion, but not the more ma- 
ture B cells, that have left their nursing micro environment 
(1, 5, 6). Furthermore, the assessment of susceptibility for 
tolerance induction in previous studies was routinely carried 
out in in vitro systems (17). 

To address these questions, we have repeated some of the 
experiments in vitro. In this approach, the intimate contact 
between immature B cells and stroma cells is disrupted. Bone 
marrow cells of adult Sp6/z,K mice were cultured in normal 
medium or in the presence of TNP-dextran. After 24 h in 
culture, the cells were counted, stained with anti-IgM, anti- 
HSA, and anti-B220 Abs and analysed by flow cytometry. 
About 80% of the transitional B cells and 70% of the ma- 
ture B cells were deleted (see Fig. 7 a, white columns). Imma- 
ture B cells, which were not affected by the challenge with 

TNP-dextran in vivo, were deleted in vitro. We found 60% 
deletion in vitro vs 6% deletion in vivo. 

We also treated cells of normal mice in vitro with the mAb 
2911. In vitro, we could study the effect ofmlgM cross-linking 
on B cells from neonatal spleen and adult bone marrow. The 
different B cell maturation stages could not be identified using 
mlgM as a marker because in vitro, in contrast to in vivo, 
mlgM is modulated upon cross-linking with anti-IgM Abs 
(not shown). Staining with anti-Pgpl and anti-B220 Abs, 
however, allowed a discrimination between transitional and 
mature B cells. 70-80% of the transitional and mature B cells 
were eliminated in normal mice (Fig. 7 b; the white columns 
correspond to neonatal splenic B cells and the filled columns 
to adult bone marrow B cells). The compartment of the im- 
mature cells was reduced by 30-40%. This limited cell loss 
does not reflect a particular resistance to negative signals, and 
can easily be explained considering that only 30-40% of the 
B220 aull, Pgpl dull pool expresses mlgM, as we could calcu- 
late from the staining of control cells. 

We conclude that the resistance to deletion demonstrated 
in vivo of the pool of the immature B cells can not be 
confirmed in vitro. In the hemopoietic organs, most prob- 
ably the local microenvironment plays a fundamental role in 
modulating signals conveyed through the B cell receptor 
(BCR). The notion that the immature B cell is the target 
for negative selection, derives from in vitro experiments. We 
have shown that these experiments can not be interpreted 
as representative of the in vivo situation. 

Discussion 

In this paper, we have shown that within the B cell com- 
partment, cross-linking of the membrane-bound BCR causes 
negative selection when B cells are in a defined and narrow 
window of differentiation that is situated between the im- 
mature and the mature stages. We have called B cells in this 
window of differentiation transitional B cells. In vivo, both 
immature B cells and mature B cells (20) are protected from 
negative selection. 

Figure 6. Expression patterns of the fas antigen and of bcl-2 protein in bone marrow cells. Bone marrow cells were stained for mlgM, B220, and 
fas antigen or intracellular bcl-2 protein, respectively. (a) The staining profile for mlgM and B220 is shown and the division in compartments based 
on this staining pattern. (b) Staining for bcl-2 of the cells in the different compartments is shown; (c) staining profiles for the fas antigen are depicted. 
Staining patterns represented in c were obtained from a different mouse than used for the generation of a and h 

2135 Carsetti et al. 



140 

~ 2 o  

40 

20 

| 
NORMAL _ 

G I  G2 G3 
i n a m h ~  m m n ~  t r ~ t l o n a l  
Bcells BceUs Bcens  

140 

120 
fJ 

40 

20 

r - ' l  NEONATAL SPLEEN @ 

ADULT BONE MARROW 

G1 G2 G3 

Beells  Beells  B cells 

Figure 7. In vitro all B cells are equally sensitive to negative selection. 
(a) Bone marrow cells (10#/ml) of a pool of six Sp6 ~,K and a pool of 
six normal adult mice were cultured for 24 h in normal medium (control) 
or in presence of TNP-dextran (10/~g/ml). Cells from four equally treated 
wells were stained with anti-HSA, anti-B220, and anti-lgM Abs for flow 
cytometric analysis and the absolute number of cells in the immature, ma- 
ture, and transitional B cell pools was calculated. Results are given as per- 
centage of surviving cells, with the number obtained from control wells 
set at 100. Similar results were obtained at other time points (36 and 60 h, 
not shown). (b) Splenic cells of 20 normal (BALB/c) newborn mice or 
bone marrow cells of 2 normal adult mice (7 wk old) were cultured in 
medium or in the presence of anti-lgM (mAb 2911, 1 /~g/ml) at 1@ 
cells/ml. After 24 h, pooled cells from four identically treated wells were 
counted and stained for flow cytometric analysis. The different develop- 
mental stages were identified on the basis of Pgpl and B220 expression 
(see Fig. 2). On control cells (cultured with medium only), IgM was used 
as additional marker. 

B Cell Tolerance: Old Models and New Facts. Although an- 
tibodies with auto-specificity are produced by rearrangement 
of Ig genes, the mature B cell pool normally reacts to foreign 
antigens, but is tolerant towards itself. A widely accepted 
notion states that tolerance is induced early in development, 
at the transition from the pre-B to the immature B cell stage 
(17), and that resistance to tolerance induction progressively 
increases during differentiation to the mature stage (17). An- 
tigens encountered early in development would therefore be 
recognized as self and cause deletion of immature B cells if 
present in large amounts, or cause anergy if present in low 

concentration (17). This theory postulates that negative signals 
are transmitted through mIgM early in development, but posi- 
tive signals are transmitted when B cells reach the mature 
stage (17). Recent studies, however, have suggested that regu- 
lation of life and death in B lymphocytes is not this simple. 

Thanks to transgenic mice, it has been confirmed that the 
contact with self-antigens leads to clonal deletion (18-20) of 
autoreactive B cells. Anergy has been considered a major mech- 
anism for the maintenance of tolerance in the B cell com- 
partment (17, 18). Anergic B cells, however, have such a re- 
duced life-span that anergy can be considered a prelude to 
elimination (33). 

In disagreement with the commonly accepted theory, trans- 
genic mouse models have shown that also mature B cells can 
be easily tolerized (reviewed in references 18 and 19), even 
when they first encounter antigen in the periphery. We have 
recently shown that in vivo mature B ceils undergo apop- 
tosis upon contact with a multivalent antigen if they express 
only mlgM, but not if they express mlgM and mlgD (20). 

Surprisingly, immature B cells from the bone marrow, 
which are supposed to be the target of tolerance induction 
(17), are rather insensitive to deletion (20, 28) upon contact 
with self-antigens in vivo, independent of whether they ex- 
press mlgM and mlgD (in/~,g,6 mice) or only mIgM (in 
~,g mice). 

In this study, we have identified the primary target of nega- 
tive selection in the bone marrow of normal mice. We rea- 
soned that, since most of the immature B cells are resistant 
to negative selection and mature B cells can be deleted only 
when they express mlgM, but not mlgD, the physiological 
target of negative selection should be a cell type that is rela- 
tively mature but still lacks mIgD. 

Identification of Transitional B Cells. After antigen adminis- 
tration, not only the mature B cell population, but also an- 
other group of cells was deleted in the bone marrow of SP6 
#,g mice (Fig. 1). These cells stain brightly for IgM and, 
based on the expression of HSA and B220, appear to be in 
transition from the immature to the mature B cell pool. We 
studied the expression of other differentiation markers in order 
to identify this population more precisely (Fig. 2). Both Pgpl 
and ThB, which appear on the cell surface early in develop- 
ment, are expressed at the maximum level in transitional B 
cells. In contrast, the expression of MHC class II and CD23 
gradually increases in this population without reaching the 
levels found on mature B cells, mlgM reaches the highest 
levels of expression in transitional B ceils and it is down- 
regulated in peripheral B cells. In normal, but not in #,g 
transgenic mice, mlgD, which is present in excess over mIgM 
in mature B cells, just starts to appear on the surface of tran- 
sitional B cells. For us, the most intriguing feature of these 
cells is that in normal mice they express high amounts of 
mlgM and very little if any mIgD. This phenotype corre- 
sponds perfectly to the phenotype of the cells which, as we 
showed (20), are maximally sensitive to negative selection. 
Transitional B cells represent an intermediate stage of differen- 
tiation between the immature and the mature population, 
and they form '~12-20% of the B220P ~ ceils in the adult 
bone marrow. Accordingly, transitional B ceUs are found after 
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36 h of in vitro culture of sorted mlgMnes, B220 aull cells 
from the bone marrow (Fig. 4). After 24 h of culture, only 
immature cells were seen. Furthermore, transitional B cells 
are rare in the bone marrow of newborn mice before 6 d of 
age. They are, however, already evident in the spleen 2 d after 
birth (Fig. 3). 

Transitional, but not immature, B cells are the target of 
negative selection. Upon injection of anti-IgM Abs, transi- 
tional B cells completely disappear from the spleen of normal 
neonatal mice, while most of their more immature HSA b~ight, 
B220 ~n, IgM 1~ precursors survive (Fig. 5). DNA staining of 
B220P ~ splenocytes of neonatal mice demonstrated that cross- 
linking of mlgM had initiated a signaling pathway leading 
to programmed cell death (Fig. 5). Our findings confirm that 
also in normal mice, IgMb"8 ht transitional B cells are the 
target of negative selection, while immature B cells can not 
be deleted. This conclusion contrasts with current models of 
tolerance induction. Immature B cells were thought to be "ex- 
quisitely" sensitive to tolerance induction (17). Resistance to 
tolerance induction could reflect a more general inability of 
immature B cells to transduce mlgM-derived signals. Cross- 
linking of mlgM normally results in the rapid phoshorylation 
on tyrosine residues of different substrates, among which is 
phospholipase C-y. Activated phospholipase C-y initiates a 
signaling pathway leading to Ca 2+ influxes and to protein ki- 
nase C activation (34, 35). We compared Ca 2§ influxes in- 
duced by anti-IgM or by antigen in immature and in mature 
B cells of normal and of Sp6 #,K mice. Cross-linking of mlgM 
Abs induced CF + influxes both in immature and mature B 
cells. These unpublished observations (Carsetti, K.) do not 
exclude that the still largely unknown late events of activation 
may differ in the two differentiation stages. They, however, 
certainly exclude that immature B cells have a major defect 
in coupling of the mBCR to its "immediate" (tyrosine ki- 
nases) and "early" (Ca 2+) second messengers. 

Most of the data reporting about the extreme sensitivity 
of immature B cells from the bone marrow to negative selec- 
tion derive from experiments done in vitro. This experimental 
design could be the cause for the discrepancy with our results. 
Indeed, in vitro, all B cells populations are deleted to the same 
extent after cross-linking of mlgM with antigen (in Sp6 #,K 
mice) or with anti-IgM Abs (Fig. 7). In contrast, deletion 
of immature B cells was not observed in vivo, even at con- 
centrations in four- to fivefold excess over the amount of ligand 
given in vitro. The results could be explained by a constant 
feeding from the pre-B precursor pool into the immature B 
cell pool in vivo, but not in vitro. However, also in vitro 
B220 ~"n, mlgM"eg cells mature into mlgMP ns cells (Fig. 4, 
and Lamers, M. C., unpublished observations). This suggests 
that mlgM transmits an apoptotic signal also in immature 
B cells. Stromal micro-environment in the early phases of 
development most likely modulate the effects of mlgM cross- 
linking. 

We have shown that negative selection can happen in the 
B cell compartment in a defined window of differentiation 
that is situated between the immature and the mature stage. 
We have called B cells in this window transitional B cells. 
In this population, the presence of high amounts of mlgM 
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in absence ofmlgD results in the transmission of signals that, 
by default, lead to apoptosis and cell death. 

The expression pattern of two proteins that are directly 
involved in the induction or prevention of apoptosis, the fas 
antigen and bcl-2, respectively, support this notion. Engage- 
ment of the fas antigen, a member of the TNF-cytokine 
receptor family, by its ligand can induce apoptosis in the target 
cell (22). The expression of the bcl-2 protein, on the other 
hand, is correlated with an albeit not absolute protection from 
apoptosis (26-28) and can prevent fas-mediated apoptosis (24, 
25). Transitional B cells are largely positive for the fas an- 
tigen, but negative for the bcl-2 protein (Fig. 6). This pheno- 
type would make them exquisitely susceptible for deletion. 
Immature B cells express neither the fas antigen, nor the bcl-2 
protein, while mature B cells express only the bcl-2 protein. 
Mature B cells are not immune to deletion if only mIgM 
is engaged by antigen, as we have shown (20), and even the 
presence of a constitutively expressed bcl-2 transgene does 
not protect from negative selection (28). In this context, the 
model that was recently proposed by Oltvai and Korsmeyer 
(23) is of interest. It postulates that an apoptotic signal can 
be modulated at multiple checkpoints, before it is executed. 
This nicely explains the phenomena that occur during selec- 
tive processes. In wild-type animals, mature B cells are rela- 
tively resistant to apoptosis induced by cross-linking of mlgM. 
First, the bcl-2 protein postpones the execution of programmed 
cell death. Second, other signals, for instance those gener- 
ated by mlgD, by accessory molecules such as CD40 and by 
T cell-derived cytokines can modulate the signals conveyed 
through mIgM in a longer time frame. In vivo, immature 
B cells could be protected by the stroma cell environment 
and the expression of other members of the bcl-2 family, like 
bcl-x, that has similar properties as bcl-2 (36) and is abun- 
dantly expressed in bone marrow (37). In the absence ofbcl-2 
and of bcl-x (as we presume), the possibility for modulation 
of the apoptotic signal is lacking in transitional B cells. 

Recently, Hartley et al. (28) have also observed that im- 
mature IgM l~ B cells of anti-HEL transgenic mice are not 
eliminated in the presence of the corresponding auto-antigen, 
while mature B cells can not be found. The authors have 
suggested that, while mature cells are deleted, immature B 
cells become developmentally arrested when they bind an- 
tigen in the bone marrow. They showed that IgM aun B cells 
of double transgenic mice developed into IgMb"* ht B cells if 
cultured in vitro in absence of self-antigen. A simpler interpre- 
tation of their results is that immature, IgM l~ B cells do 
not undergo programmed cell death when they bind auto- 
antigens, but proceed along the developmental pathway to 
become transitional B cells. At this stage, they are eliminated 
when they encounter antigen. The in vitro data of Hartley 
et al. (28) indeed support our interpretation: only immature, 
IgM l~ B cells survived after culture in the presence of an- 
tigen. Cell loss happened independently of whether the cells 
had or had not met the antigen in vivo. In addition, no ac- 
cumulation of immature developmentally arrested B cells was 
seen in the bone marrow of double transgenic mice. 

The Role of mlg Molecules in B Cell Development: A Model. 
In the bone marrow, cells of the B lineage can be grouped 
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Figure 8. A model of B cell development. Three populations of cells 
are represented, based on the staining pattern for HSA and B220. 
HSASns ht, B220 a~n B cells include pro-, pre-, and immature B cells. They 
develop into HSAb'~g ht ~ null, B220d,tl ~ ~h, transitional B cells. HSA nun, 
B220brig ht cells correspond to mature cells. In the lower part of the figure 
the expression pattern of other developmentally regulated markers is listed. 
Cross-linking of mlgM has positive (further differentiation) or negative 
(negative selection) effects during development. 

in three partially overlapping populations (Fig. 8). In our 
model, signalling through the BCR has varying effects de- 
pending on the developmental stage and on the microenviron- 
ment. In the early stages of differentiation, the contact to 
stroma cells and the presence of functional lg molecules are 
necessary to guide B cells along the differentiation pathway 
(7) from pro-B to immature B cell. 

Immature B cell proceeding to the transitional B cell stage 
leave the stroma cell microenvironment and pause in the bone 
marrow sinusoids before migrating to the periphery (5, 6). 
It is not known whether the differentiation step from the 
immature to the transitional B cell stage happens by default 
or whether it is an induced process. The availability of mu- 
tant mice that are arrested in the immature stage would darify 
this point. We have recently generated transgenic mice with 
a mutant IgM receptor, in which the B cells are unable to 

progress to the transitional B cell stage (Carsetti, R., M. C. 
Lamers, manuscript in preparation). 

Transitional B cells express a high amount of mlgM, are 
largely positive for the fas antigen, and are negative for bcl-2 
expression. Signaling through mlgM is not modulated and 
leads to programmed cell death. The population of recent 
bone marrow emigrants described by Allman et al. (12) in 
the spleen is identical to the population of transitional B cells. 
The authors suggest that these cells may be the targets of 
negative selection in the periphery (12). The continuity of 
the transitional phenotype into the periphery would guar- 
antee that tolerance can be induced to antigens that are ex- 
pressed exclusively in the periphery (peripheric tolerance). 

The last step of differentiation from transitional B cells 
to mature B cells probably happens in peripheral lymphoid 
organs (1, 12). The existence of mutant mouse lines in which 
this step does not occur would help to clarify the molecular 
mechanisms involved. Using the division of bone marrow 
B cells in three populations as we have presented in this paper, 
we were able to identify two mutant mouse lines with a de- 
fect in the final B cell maturation: the CBA/N mouse, which 
has an X-linked immunodeficiency caused by a mutation in 
Bruton's tyrosine kinase (38, 39), and the CD45 knock-out 
mouse (40), which lacks the expression ofa phosphotyrosine 
phosphatase (in collaboration with Drs. C. Paige, The 
Wellesley Hospital Research Institute, Toronto, Canada, and 
T. Mak, Ontario Cancer Institute, Toronto, Canada). Also 
at the mature B cell stage, mlgM transmits negative signals 
(20). Binding to antigen, however, can result in activation 
thanks to the combined action of mlgD, T cell-derived 
factors, and accessory molecules. A role for mlgD has already 
been implied in the protection of mature resting B cells from 
tolerance induction and in favoring antigen-induced activa- 
tion (41, reviewed in reference 42). We have confirmed this 
hypothesis in IgM, IgD double-transgenic mice (20). In ad- 
dition, we now have evidence that the components of the 
IgM-BCR and of the IgD-BCR are not identical, mlgM and 
mlgD associate with the classical coreceptor proteins Igor and 
Ig3 (35). However, mlgM, but not mlgD, is found to be 
associated with at least two additional proteins: BAP32/pro- 
hibitin and BAP37/prohibitone (43). Prohibiton was origi- 
nally cloned based on its growth-arresting property and was 
suggested to be a tumor suppressor (44). The antiprolifera- 
tive activity of prohibitin could quite well explain the func- 
tional difference between the IgM- and IgD-BCR. 

Finally, the division of bone marrow B cells in three com- 
partments is based both on functional and phenotypic criteria. 
The description of the transitional B cell allows for a better 
assessment of the differentiation stage of B cells, and it is 
of utmost importance in the evaluation of mutant mouse 
models. 
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