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S u m m a r y  

Myristoylated, alanine-rich C-kinase substrate (MARCKS) is a lipopolysaccharide-induced protein 
kinase C (PKC) substrate that has been proposed to regulate actin-membrane interactions, as 
well as actin structure at the membrane. We studied the distribution of MARCKS, the ot isozyme 
of PKC (PKCc~), and myosin I in lipopolysaccharide-treated peritoneal macrophages ingesting 
zymosan particles. MARCKS, PKCot, and myosin I colocalized with F-actin and talin in the 
cortical cytoplasm adjacent to forming phagocytic cups. After particle ingestion was completed, 
myosin I, F-actin, and talin were no longer enriched in the vicinity of the phagosome. By contrast, 
MARCKS and PKCot remained associated with the phagosome membrane until after acquisition 
of the lysosomal marker Lamp-1. Vinculin was not detected on phagosomes at any time point 
examined. Phagocytosis of zymosan was accompanied by rapid and sustained phosphorylation 
of MARCKS. Inhibitors of PKC reduced zymosan binding to the macrophage surface and blocked 
the focal accumulation of F-actin, talin, phosphotyrosine-containing proteins, MARCKS, and 
PKCo~ beneath attached particles. We propose that PKC-dependent phosphorylation is an early 
signal required for zymosan phagocytosis and that MARCKS and PKCot have a role in phagosome 
maturation. The colocalization of F-actin and MARCKS at the cytoplasmic face of the nascent 
phagosome reinforces the hypothesis that MARCKS regulates actin structure at the membrane. 
Our data also suggest that myosin I functions as a mechanical motor during particle uptake. 

he ability of macrophages to phagocytose and kill mi- 
oorganisms is an essential element of the immune re- 

sponse. Phagocytosis is initiated when ligands on the par- 
tide surface engage specific receptors in the macrophage plasma 
membrane (1). Subsequent internalization requires localized 
actin polymerization and the extension of membrane pseu- 
dopodia around the particle (1). Actin is disassembled from 
the phagosome once internalization is complete (1), and the 
phagosome matures, eventually fusing with lysosomes (1). 
It has been suggested that localized receptor-ligand interac- 
tions and actin polymerization provide the mechanical force 
for particle engulfment (2, 3). It is unknown whether one 
or more motor proteins interact with actin to drive pseu- 
dopod extension. Furthermore, the signals that recruit actin 
to the nascent phagosome, as well as the signals for actin 
assembly and disassembly, remain undear. Phagosomes ma- 
ture by recycling plasma membrane proteins to the cell sur- 
face (4), and by sequential fusion events with endosomes and 
lysosomes, culminating in the formation of mature phagolyso- 
somes (5-7). Although phagosome-endosome fusion has been 
reconstituted in vitro (6), the processes that recruit endo- 
somes and lysosomes to the phagosome are unknown. 

The pseudopodia of nascent phagosomes are similar in many 
ways to lameUipodia at the leading edge of motileApreading 

cells. Both structures have a high content of F-actin, talin 
(8, 9), and the tyrosine kinase substrate paxillin (10-12). In 
addition, both processes are initiated by receptor-ligand in- 
teractions, and they involve localized rearrangements of the 
actin cytoskeleton (1, 3). All of these events are highly regu- 
lated (1-3). 

Myristoylated, alanine-rich, C-kinase substrate (MARCKS) t 
is an actin-binding protein that transduces signals in the cal- 
cium/calmodulin and protein kinase C (PKC)-dependent sig- 
nalling pathways (13, 14). MARCKS binds to the sides of 
actin filaments and cross-links them, and this cross-linking 
activity is disrupted by both phosphorylation and by calcium/ 
calmodulin (15). MARCKS is a peripheral membrane protein 
that binds to membranes via an NH2-terminal myristoylated 
membrane binding domain, and by the interaction of the basic 
effector domain with acidic phospholipids (16-18). Phosphory- 
lation introduces negative charges into the basic effector do- 
main and displaces the protein from the membrane into the 
cytosol (19). Upon dephosphorylation, MARCKS reassociates 

1 Abbreviations used in this ~per: MARCKS, myfistoylated, alanine~rich C 
kinase substrate; PKC, protein kinase C; PKC~, c~ isozyme of protein 
kinase C. 

829 J. Exp. Med. �9 The Rockefeller University Press �9 0022-1007/95/09/0829/12 $2.00 
Volume 182 September 1995 829-840 



with the membrane (19). In macrophages, MARCKS is dis- 
tributed throughout the plasma membrane and is enriched 
in punctate podosomes at the substrate adherent surface of 
actively spreading cells (20), where it colocalizes with vin- 
culin and talin, known components of focal contacts (20). 
Immunoelectron microscopy demonstrates the presence of 
MARCKS at points where actin filaments interact with the 
cytoplasmic surface of the plasma membrane in actively 
spreading macrophages (Allen, L., A. Rosen, J. Hartwig, 
and A. Aderem, manuscript in preparation). These data sug- 
gest that MARCKS regulates actin-membrane interactions 
and the structure of actin at the plasma membrane. Further- 
more, in fibroblasts, MARCKS shuttles between the plasma 
membrane and lysosomes (21), suggesting that MARCKS 
contains recognition elements for both types of membranes. 
MARCKS is enriched at the leading edge of motile fibro- 
blasts, and mutation of the PKC phosphorylation sites of 
MARCKS results in a defect in cellular movement in a wound- 
healing assay (22). The similarity between cell movement and 
phagocytosis, together with the observation that MARCKS 
shuttles between the plasma membrane and lysosomes, 
prompted us to investigate a potential role for MAP,,CKS in 
phagocytosis and phagosome-lysosome fusion. We now show 
that MARCKS and the o~ isozyme of PKC (PKCol) associate 
with the nascent phagosome at the same time as F-actin, that 
MARCKS is phosphorylated during phagocytosis, and that 
MARCKS and PKCc~ remain on the maturing phagosome 
until after phagosome-lysosome fusion has occurred. We also 
show that myosin I is recruited to the forming phagosome, 
where it is likely to act as a mechanical motor during phago- 
cytosis. 

Materials and Methods 
Materials. [32p]orthophosphate (320 TBq/mmol) was obtained 

from New England Nuclear (Boston, MA). Leupeptin was from 
Boehringer Mannheim Biochemicals (Indianapolis, IN). Re595 LPS 
from Salmonella minnesota was from List Biological Labs, Inc. (Camp- 
bell, CA). PMA, chelerythrine chloride, and calphostin C were 
purchased from LC Laboratories (Woburn, MA). Unless indicated 
otherwise, all other chemicals were obtained from Sigma Im- 
munochemicals (St. Louis, MO). 

Macrophage Cultures. Macrophages from the peritoneal cavities 
of female ICR mice (Charles River Laboratories, Wilmington, MA) 
were plated on acid-washed glass coverslips (Propper Manufacturing 
Company, Inc., Long Island City, NY) at a density of 50-100,000 
cells per coverslip in MEMo~ supplemented with 1% t-glutamine, 
100 U/ml penicillin G, 100 gg/ml streptomycin (all from JRH 
Biosciences, Lenexa, KS), and 10% heat-inactivated fetal bovine 
serum (Hyclone Laboratories, Logan, UT). After 2 h at 37~ 
nonadherent cells were removed by washing with PD (calcium- 
and magnesium-free PBS), and cells were cultured overnight in fresh 
medium. The next day, macrophages were switched to Hepes- 
buffered R.PMI (JRH Biosciences, Lenexa, KS) containing the sup- 
plements indicated above, as well as 50 ng/ml LPS. 

Zymosan particles (Sigma) were prepared as described (23), dis- 
persed by sonication, and resuspended in Hepes-buffered RPMI 
at 4~ To synchronize ingestion, macrophages were switched to 
zymosan-containing medium and centrifuged at 450 g for 2 min 
at 4~ Unbound particles were removed by washing, and cells 

were incubated at 37~ to initiate particle uptake. After various 
times, cells were fixed and processed for microscopy as described 
below. The total time in LPS was 3-4 h. 

In some cases, internalization of zymosan (phagocytic index) 
was examined by staining live cells with 0.4% trypan blue in PBS. 
ExtraceUular zymosan particles stained blue, whereas fully inter- 
nalized particles did not. 

Fluorescence Microscopy. Macrophages were fixed for 7 rain at 
25~ in 10% neutral buffered formalin solution (Sigma) and per- 
meabilized in -20~ acetone for 5 rain. Cells were blocked for 
1 h at 25~ in PD supplemented with 0.2 g/liter sodium azide 
and 5 g/liter BSA (PAB) and 10% horse serum (heat inactivated), 
and then incubated with primary antibodies for 1 h at 25~ in 
a humidified chamber. Coverslips were washed sequentially in eight 
medicine cups of PAB, incubated with secondary antibodies for an 
additional hour, and then washed eight more times in PAB. Cover- 
slips were attached to microscope slides using Hydromount (Na- 
tional Diagnostics, Manville, NJ). Specificity of staining was as- 
sessed by omission of primary antibodies. All antibodies were diluted 
in PAB containing 10% horse serum. 

MARCKS was visualized using an affinity-purified rabbit an- 
timurine MARCKS antibody (20, 21, 24) and a 1:1,000 dilution 
of a Texas red-conjugated goat anti-rabbit secondary antibody (Mo- 
lecular Probes, Eugene, OR). F-actin was detected using a 1:300 
dilution of FITC-phalloidin (Molecular Probes). Talin and vinculin 
were detected using 1:400 dilutions of mouse mAbs 8d4 and VIN- 
11-5, respectively (Sigma) and a 1:100 dilution of FITC-conjugated, 
affinity-purified goat anti-mouse IgG plus IgM (Jackson Im- 
munoResearch Laboratories, West Grove, PA). Similarly, sites con- 
taining phosphotyrosine or PKCe~ were visualized using mouse 
mAbs 4G10 (UBI, Lake Placid, NY) and M6 (25) (generous gift 
from Dr. S. Jaken, UBI), respectively and the same secondary anti- 
body as used for vinculin and talin. Lamp-1 was detected using 
a 1:300 dilution of rat mAb 1D4B (NIH Developmental Studies 
Hybridoma Bank, Baltimore, MD) and a 1:40 dilution of FITC- 
conjugated goat anti-rat (Fab')2 IgG (Tago, Burlingame, CA). 
Mouse mAbs to myosin I (M2 an M5 [261) were the generous gift 
from Dr. J. Albanesi, and were used at a 1:100 dilution. Confocal 
microscopy was performed using the Molecular Dynamics system 
and Image Space software in conjunction with an Axioskop mi- 
croscope (Carl Zeiss, Inc., Thornwood, NY) equipped with a 100x 
Plan-Apochromat objective. 

Radiolabeling and Immunotrrecipitation. Peritoneal macrophages 
(0.6-1.0 x 107 per 35-mm dish) were cultured overnight at 37~ 
in serum-free MEMo. Serum-starved cells were depleted of phos- 
phate by a 90-min incubation in phosphate-free RPMI (GIBCO 
BILL, Gaithersburg, ME)), and then labeled for 4 h in phosphate- 
free RPMI supplemented with 0.1 mCi/ml [32P]orthophosphate 
in the presence of 50 ng/ml LPS. Zymosan particles were added 
to the culture medium during the final 1-90 min of the labeling 
period. Lysates were prepared by scraping cells into 200/*1 of lysis 
buffer (10 mM Tris-HC1, pH 7.5, 15 mM EDTA, 50 mM KF, 50 
mM NaH2PO4, 10 aiM sodium pyrophosphate, and 1% NP-40) 
supplemented with protease inhibitors (0.09 TIU aprotinin, 0.5 
mg/ml leupeptin, I mM PMSF, and I mM diisopropyl fluorophos- 
phate). MARCKS was immunoprecipitated from Postnuclear su- 
pernatants using a rabbit anti-mouse polyclonal antiserum as pre- 
viously described (27). Immunoprecipitates were resolved by 8% 
SDS-PAGE. 3zpi was visualized by autoradiography, and the incor- 
poration of radiolabel into MARCKS was quantified using an 
Ultrascan enhanced laser densitometer (LKB Instruments, Helsinki, 
Finland) and by Cerenkov counting. 

Inhibitor Studies. Macrophages on glass coverslips were treated 
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with 50 ng/ml LPS in Hepes-buffered RPMI for 3 h at 37~ as 
described above. Cells were then treated with 1/~M staurosporine, 
10 #M chelerythrine chloride, 5 #M calphostin C, or vehicle 
(DMSO) for 15 min at 37~ Zymosan was added to the culture 
medium and centrifuged onto the ceils as described above. After 
3 min at 37~ ceils were fix~ and stained for indirect im- 
munofluorescence as descn3~l abow Cells were photographed using 
a Zeiss Axiophot microscope fitted with a 100x Plan-Neofluar ob- 
jective and professional daylight slide film (Ektachrome; Eastman 
Kodak Co., Kochester, NY). 

For radiolabeling experiments, peritoneal macrophages were la- 
beled with 32pi in the presence of LPS as descn'bed above. Zymosan 
particles were added to the culture medium during the final 5 min 
of the labeling period. In some cases, macrophages were treated 
with 10 #M chelerythrine chloride, 5 #M calphostin C, or 1 #M 
staurosporine for 15 min before the addition of zymosan particles. 
Cells were lysed and MAKCKS was immunolm~ipitated as de- 
scribed above. Incorporation of radiolabd into MARCKS was visual- 
ized by autoradingraphy after SDS-PAGE and quantified as described 
above. 

Results 
MARCKS Associates with Nascent Phagosomes and Mature 

Phagolysosomes. We used indirect immunofluorescence and 
confocal microscopy to examine whether MARCKS associated 
with phagosomes containing zymosan particles in LPS-treated 
peritoneal macrophages. Phagocytosis was synchronized by 
centrifuging zymosan particles onto macrophages at 4~ 
and internalization was initiated by warming cells to 37~ 
for various times. The fluorescence data shown are represen- 
tative of eight independent experiments. 

After 1 min at 37~ MAKCKS was concentrated in the 
vicinity of forming phagocytic cups (Fig. 1), where it colocal- 
ized with both F-actin (Fig. 1, a-d) and talin (Fig. 1, e and 
f ) .  Free zymosan particles were not stained (data not shown). 
Significantly, vinculin, a protein found in adhesion plaques 
along with talin and actin (9, 28), was excluded from the 
nascent phagosome (Fig. 1, g and h), although it was assodated 
with streak-shaped focal contacts at the substrate-adherent 

Figure 1. MARCKS associates with forming phagosomes. LPS-treated peritoneal macrophages were allowed to ingest zymosan particles for I min 
at 37~ Fixed and permeabilized ceils were double stained for MARCKS (a, c, e, g, i, and k) and F-actin (b and d), talin (f), vinculin (h), PKCc~ 
0'), or myosin I (I), as described in Materials and Methods. Each panel is a single section from the confocal microscope. 
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surface (data not shown). PKCot, which is associated with 
adhesion plaques in fibroblasts (25), also colocalized with 
MARCKS at the cytoplasmic face of the forming phagosome 
(Fig. 1, i and j) .  In addition, myosin I (Fig. 1, k and 1), and 
phosphotyrosine-containing proteins (see Table 1 and Fig. 6, 
and data not shown) colocalized with MARCKS on nascent 
phagosomes. On the other hand, forming phagosomes lacked 
markers of late endosomal compartments, such as the lyso- 
some-associated glycoprotein Lamp-1 (references 29-31 and 
data not shown). Similar data were obtained for control mac- 
rophages not treated with LPS, although the cellular levels 
of MARCKS were lower (data not shown). Call-associated 
zymosan particles stained prominently with trypan blue after 
1 rain at 37~ confirming that the particles were not com- 
pletely internalized (32). 

After 3 rain at 37~ ~90% of zymosan particles were 
completely internalized, as judged by the failure of these par- 
ticles to stain with try'pan blue (data not shown). Recently 
internalized particles retained enhanced staining for MARCKS, 
as well as F-actin, talin (Fig. 2 a-f), and phosphotyrosine- 
containing proteins (Fig. 6, e and f) .  PKCot (Fig. 2 h) and 
myosin I (Fig. 2f )  were also detected on phagosomes at this 
time. Consistent with the data obtained at earlier time points, 
vinculin was excluded from all phagosomes examined (data 
not shown). Recently internalized particles had not yet ac- 

Table  1. Inhibition of PKC Blocks Zymosan Phagocytosis 

Control Stauro. Cheleryth. Calph. C 

Bound 208 + 49 15 • 5 14 _+ 11 10 • 5 

Percentage of 

Actin + 90 + 4 12 + 6 1 _+ 1 0 • 0 

Percentage of 

P-Y + 9 3 _ + 2  3 •  0 _ + 0  0 + 0  

P-Y dist. Phago., A.P. Diffuse Punctate Diffuse 

P.I. 185 _+ 9 0 • 0 0_+ 0 0 • 0 

Percentage of 

Inhib. PKC (0) 88 _ 6 91 _+ 4 90-+ 5 

LPS-treated macrophages were cultured for 15 min at 37~ in the ab- 
sence (control) or presence of I/~M staurosporine, 10/zM chelerythrine 
chlorine, or 5/~M calphostin C. Zymosan particles were added, centrifuged 
onto the cells, and the dishes were incubated for 3 min at 37~ to allow 
internalization. Cells were fixed and stained for indirect immunofluores- 
cence microscopy as described in Materials and Methods. "Bound" refers 
to the number of zymosan particles bound per 100 macrophages as judged 
by phase contrast microscopy. Bound zymosan particles were scored for 
the presence of F-actin and P-Y using immunofiuorescence microscopy. 
Phagocytic indices (particles internalized per 100 macrophages), were scotxxl 
in live cells using trypan blue. To demonstrate inhibition of PKC, mac- 
rophages were labeled with [32P]orthophosphate with or without the in- 
dicated inhibitors, and the incorporation of label into MARCKS was 
quantified as described in Materials and Methods. Data are the aver- 
age -+ SD of three independent experiments. Stauro., staurosporine; 
Cheleryth., chelerythrine chloride; Calph. C., calphostin C; P-Y, pbos- 
photyrosine; dist., distribution; Phago., phagosomes; A.P., adhesion 
plaques; Inhib., inhibition; P.l., phagocytic index. 

Figure 2. MARCKS is retained on recently internalized phagosomes. 
LPS-treated peritoneal macrophages were fixed and permeabilized for im- 
munofluorescence microscopy after ingesting zymosan particles for 3 rain 
at 37~ Cells were double-stained for MARCKS (a, c, e, g, and i) and 
F-actin (b), talin (d), myosin I (f), PKCo~ (h), or Lamp-1 (3'), as described 
in Materials and Methods. Each panel represents a single section from the 
confocal microscope. 



quired markers associated with late endosomes and lysosomes, 
such as Lamp-1 (Fig. 2 j ). 

As previously described for phagosomes containing 
IgG-coated particles (33), further maturation of zymosan 
phagosomes (7-15 min at 37~ was associated with a dis- 
appearance of staining for F-actin, talin, and phosphotyrosine- 
containing proteins (Fig. 3 b-d and data not shown). Myosin 
I was also undetectable on zymosan phagosomes after 15 min 
at 37~ (Fig. 3f) .  By contrast, MAKCKS (Fig. 3, a, c, e, 
g, and i) and PKC_ax (Fig. 3 h) were retained on the maturing 
phagosome. Although F-actin was nearly undetectable on 
phagosomes after 15 rain, MARCKS and F-actin were colocal- 
ized in the leading edge of polarized cells (Fig. 3, a and b, 
arrowheads). A subset of phagosomes had acquired Lamp-1 
staining after 15 min of internalization (Fig. 3j ), suggesting 
that some phagosome-lysosome fusion had occurred by this 
time point. 

After 90 min at 37~ MARCKS colocalized with both 
PKCot and Lamp-1 on the phagosomal membrane (Fig. 4 
g-j ), whereas actin, talin, and myosin I were not associated 
with phagosomes at this time (Fig. 4 a-j). MARCKS and 
Lamp-1 remained associated with phagosomes for at least 8 h 
(data not shown). Taken together, our data suggest that 
MARCKS is assodated with the phagosomal membrane from 
its inception through the formation of mature phagolysosome~ 

MARCKS Is Phost,horflated during Phagocytosis. Since 
PKCot and MARCKS, a known PKC substrate, were colocal- 
ized on phagosomes, we examined whether uptake of zymosan 
particles induced the incorporation of 32Pi into MARCKS. 
MARCKS phosphorylation increased more than threefold 
within 1 min of zymosan binding, remained high during par- 
tide ingestion (3-15 min), and was slightly elevated even after 
phagosome-lysosome fusion was completed (90 min), (Fig. 
5, a and b). The maximum level of MAKCKS phosphoryla- 
tion induced by zymosan was "~70% of the amount seen 
when PKC was activated by PMA (data not shown). 

PKC Inhibitors Block Zymosan Binding and Internalization. 
Since PKC~x and MARCKS were colocalized on nascent 
phagosomes, and since MAKCKS was phosphorylated during 
phagocytosis, we examined whether activation of PKC was 
required for particle ingestion. Both specific (calphostin C 
and chelerythrine chloride [34, 35]) and relatively nonspecific 
inhibitors of PKC (staurosporine [36]) were tested. All three 
inhibitors blocked zymosan internalization, reduced the num- 
ber of zymosan particles bound to the macrophage surface 
(Table 1), and disrupted the focal accumulation of F-actin, 
phosphotyrosine, MARCKS, PKCot, and talin in the cor- 
tical cytoplasm adjacent to bound particles (Table I, Figs. 6 

Figure 3. Maturing phagosomes containing zymosan particles re- 
tain MARCKS and PKCo. LPS-treated peritoneal macrophages ingested 
zymosan particles for 15 rain at 37~ before processing for immunofluores- 
cence microscopy. Fixed and permeabilized cells were double-stained for 

MAKCKS (a, c, e, g, and i) and F-actin (b), talin (d), myosin I ( f ) ,  
PKCcx (h), or Lamp-1 (j),  as described above. Arrowheads in a and b indi- 
cate colocalization of MARCKS and F-actin in the leading edge of the 
plasma membrane. Arrowheads in i andj mark phagosomes prominently 
stained for MARCKS which have not yet acquired Lamp-1. Each pand 
is a single section from the confocai microscope. 
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Fig~m 5. Zymosan induces MARCKS phosphorylation by activating 
PKC. (a and b) Ttmc course of MARCKS phosphoryhtion. Macrophages 
we~ pteueated with LI~3 and labeled with ~z~pi before ingesting zymosan 
particles for 0-90 rain. MARCKS was immunoprecipitated from cell ly- 
sa~ and quantified as described in Materials and Methods. (a) Autoradio- 
graph showing MARCKS phosphoryhtion. (b) Tune course of MAKCKS 
phospho~tion in maaophages ingesting zymosan particles. Error bars 
indicate the range of duFticate samples, a.a., arbitrary units. (c) PKC in- 
hibitors block MARCK$ phosphoryhtion in the presence of zymosan. 
Maoa~hages weae pretreated with LPS and hbded with 3zpi. In some 
cases, cells were treated with 1 ~M staurosporine, 5/~M calphostin C, 
or 10/~M ~ e  chloride for 15 rain before addition of zymosan 
for 5 min. ~ C K S  was immunopredpitated from cell lysates as described 
above. Basal MARCKS phosphoryhtion in the absence of zymosan (Con- 
trol). St=am, staurosporine; Cheloyth., chderythrine chloride; Calph. C, 
calphostin C. 

Figure 4. MARCKS colocalizes with Lamp-1 and PKCc~ on mature 
phagolysosomes. LPS-treated macrophages that had ingested zymosan par- 
ticles for 90 min at 37~ were fixed and processed for immunofluores- 
cence microscopy as described above. Macrophages were double-stained 
for MARCKS (a, c, e, g, and i) and F-actin (b), talin (d), myosin I (f), 
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and 7, and data not shown). Unexpectedly, treatment wi th  
PKC inhibitors also altered intracellular staining patterns for 
phosphotymsine, In ma~'ophages allowed to ingest zymosan 
particles for 3 rain at 37~ phosphotyrosine was detected 
on nascent phagosomes as well as in streak-shaped focal con- 
tacts in the substrate-adherent plasma membrane (Fig. 6, e 
and f ,  and data not shown). In macrophages preincubated 
with  chderythrine chloride, phosphotyrosine staining was 

PKCcr (h), or Lamp-1 (j). Each panel is a single section from the confocal 
microscope. 



Figure 6. Chlelerythrine chloride disrupts the association of phos- 
photyrosine and F-actin with the zymosan phagosome. LPS-treated mac- 
rophages were incubated in the presence (c, d, g, and h) or absence (a, 
b, e, and f)  of 10/~M chelerythrine chloride for 15 min at 37~ before 
addition of zymosan particles for 3 min at 37~ Fixed and permeabilized 
cells were stained for F-actin (b and d) or phosphotyrosine (/'and h), as 
described in Materials and Methods. (a, c, e, and g) phase contrast. Ar- 
rowheads indicate bound zymosan particles not associated with staining 
for F-actin (c and d) or phosphotyrosine (g and h). Cells were photographed 
on a Zeiss Axiophot microscope fitted with a 100x Plan Neofluar objective. 

associated with cytoplasmic vesicles and was not detected ad- 
jacent to bound zymosan particles or in focal contacts (Fig. 
6, g and h, and data not shown). Moreover, phosphotyrosine 
staining was diffuse in macrophages treated with either cal- 
phostin C or staurosporine (Table 1 and data not shown). 

Figure 7. Inhibition of PKC blocks the association of MARCKS and 
PKC with the zymosan phagosome. LPS-treated macrophages were in- 
cubated in the presence (c, d, g, and h) or absence (a, b, e, and f)  of 10 
tam chderythrine chloride for 15 rain at 370C, before addition of zymosan 
partides for 3 min at 370C. Fixed and permeabilized calls were stained 
for PKCot (b and d) or MARCKS (]'and h), as described in Materials and 
Methods. (a, c, e, and g) Phase contrast. Arrowheads in c and d indicate 
bound zymosan particles that lack detectable staining for PKCot. Arrow- 
heads in g and h indicato bound zymosan partides that lack detectable 
staining for MARCKS. Cells were photographed as described in the legend 
to Fig. 6. 

The effects of  all three inhibitors were completely reversed 
within 15 min of  drug removal (data not shown). Consis- 
tent with recent reports (35, 37), the activity of  calphostin 
C was also abolished if cells were incubated in the dark, but 
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normal room light was suf~cient to activate the inhibitor (data 
not shown). To confirm that PKC activity was blocked in 
macrophages treated with 1/~M staurosporine, 5/~M cal- 
phostin C, or 10/tM chderythrine chloride, we quantified 
the incorporation of [32p]orthophosphate into MARCKS. 
Relative to controls, the PKC inhibitors reduced MARCKS 
phosphorylation by ",,90% (Fig. 5 c and Table 1). Lower con- 
centrations of inhibitors that only partially inhibited PKC 
activity (as judged by a 50% decrease in MAKCKS phos- 
phorylation) reduced zymosan binding *60% and slowed 
zymosan uptake, but they did not block the association of 
any of the above markers with the nascent phagosome (data 
not shown). Taken together, our data suggest that activation 
of PKC is an early signal required for attachment and inter- 
nalization of zymosan particles, and that MARCKS may inte- 
grate signals from PKC into dynamic changes in the actin 
cytoskeleton required for zymosan internalization. 

Discussion 

Although a number of proteins are known to associate with 
nascent phagosomes, the signals that mediate actin polymer- 

ization and partide internalization have not been character- 
ized fully. We now show that MARCKS, an actin-binding 
protein and PKC substrate, is recruited to the forming phago- 
some along with PKCc~ and myosin I. The kinetics of my- 
osin I association with and dissociation from the phagosome 
parallel those of F-actin and talin, whereas MARCKS and 
PKCcx are retained until after phagosomes have acquired the 
late endosome/lysosome marker Lamp-1. Inhibition of PKC 
blocks zymosan internalization, reduces particle binding, and 
prevents the focal accumulation of MAKCKS, F-actin, PKCcx, 
and phosphotyrosine-containing proteins beneath attached par- 
tides. Taken together, these data suggest roles for myosin I, 
MARCKS, and PKC in particle internalization, as well as 
continuing roles for MARCKS and PKCc~ in phagosome 
maturation. A schematic diagram depicting the temporal as- 
sociation of the proteins described in this study with the 
zymosan phagosome is shown in Fig. 8. 

Phagocytosis has many features in common with cell mo- 
tility and adhesion. All of these processes are initiated by 
receptor-ligand interactions, and they involve surface rear- 
rangements driven by the actin cytoskeleton. Many proteins 
associated with early phagosomes are also found at the leading 

Figure 8. Maturation of the zymosan phagosome. Schematic diagram depicting the temporal association of the proteins described in this study 
with the zymosan phagosome. 
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edge of motile cells and in focal contacts, including F-actin, 
talin, and substrates for tyrosine kinases (3, 8, 33). However, 
the tyrosine kinase syk is activated during Fc receptor-mediated 
phagocytosis (10), whereas FAK is associated with focal con- 
tacts (11). This suggests that similar yet distinct signaling 
pathways are used during phagocytosis and adherence to the 
substratum. The transient contacts made with the substratum 
in actively moving cells more closely resemble the forming 
phagosome than do the stable contacts made by quiescent 
cells. Although both types of contacts contain F-actin and 
talin, vinculin is acquired late by adhesion plaques, after talin 
and integrins (38), and is not associated with the transient 
contacts formed by motile fibroblasts (39). This is consistent 
with our observation that vinculin is not associated with na- 
scent phagosomes, and may reflect the transient nature of 
this structure. 

PKCo~ and MARCKS, an actin binding protein and PKC 
substrate, are recruited to the forming phagosome with kinetics 
indistinguishable from those of F-actin. Thus, MARCKS may 
have a role in modulating actin cross-linking during particle 
internalization, especially since the actin cross-linking activity 
of MARCKS is regulated by PKC (15). Indeed, fibroblasts 
expressing mutant MARCKS molecules, in which the serines 
normally phosphorylated by PKC have been mutated to ala- 
nines, exhibit defects in motility in a wound-healing assay (22). 

Although actin polymerization is required for both mo- 
tility and phagocytosis, the driving force behind the exten- 
sion of pseudopodia and lameUipodia remains unclear. My- 
osin I is a nonfilamentous form of myosin found in the leading 
edge of motile fibroblasts (26, 40). The distribution of my- 
osin I has lead to speculation that this protein may maintain 
polarity by transporting vesicles to the leading edge (40). 
Others have also proposed that movement of myosin I along 
actin filaments may drive pseudopod extension by displacing 
the plasma membrane and creating space for additional actin 
polymerization (3, 41). We now show that myosin I is en- 
riched in the cortical cytoplasm beneath entering zymosan 
particles, further reinforcing the parallels between motility 
and phagocytosis, and the notion that myosin I may provide 
the mechanical force for particle uptake. Moreover, the ob- 
servation that myosin I is shed from internalized particles along 
with F-actin is consistent with recent data suggesting that 
maturing phagosomes move along microtubules rather than 
actin filaments (42, 43). 

Several lines of evidence suggest that activation of PKC 
is an early signal required for zymosan phagocytosis: (a) PKCot 
colocalizes with MARCKS on the nascent phagosomal mem- 
brane and in the membrane beneath bound zymosan parti- 
cles. (b) MARCKS is phosphorylated within 1 min of zymosan 
binding. (c) Inhibition of PKC blocks zymosan internaliza- 
tion and prevents the focal accumulation of F-actin, MARCKS, 
and phosphotyrosine in the cortical cytoplasm under the few 
zymosan particles that do bind to the macrophage surface. 
(d) Phosphotyrosine-containing proteins are observed in mac- 
rophages treated with chelerythrine chloride, indicating that 
tyrosine kinases are not inhibited under these conditions. Taken 
together, the data suggest a role for PKC in zymosan binding 

and internalization, perhaps by modulating the number of 
receptors for zymosan at the cell surface. The observation 
that zymosan particles are not internalized in the presence 
of PKC inhibitors further suggests that activation of PKC 
is required for zymosan engulfment. PKC may also have a 
role in localizing phosphotyrosine-containing proteins in the 
cortical cytoplasm at the site of internalization. This require- 
ment for PKC does not preclude a requirement for tyrosine 
kinases in zymosan phagocytosis. 

The effects of PKC inhibitors on zymosan phagocytosis 
are similar to the effects of these drugs on focal adhesions 
in fibroblasts. Inhibition of PKC blocked formation of focal 
adhesions, and dispersed talin and vinculin, but not integrins, 
from recently formed contacts (38). By contrast, inhibition 
of PKC had no effect on stable adhesion plaques that were 
several days old (38). This suggests that PKC has a role in 
the formation of contacts at the plasma membrane, and is 
consistent with our observation that activation of PKC is 
required for phagocytosis. 

The observation that zymosan induces MAP, CKS' phos- 
phorylation, and that MARCKS is enriched on the phago- 
some membrane, even though phosphorylated MARCKS is 
usually displaced from membranes into the cytosol, may re- 
sult from a number of factors: (a) All three serines in the 
effector domain must be phosphorylated to release MARCKS 
from the membrane (reference 18 and data not shown). It 
is not clear whether all three serines are phosphorylated during 
phagocytosis. (b) In fibroblasts, PKC activation promotes the 
movement of MARCKS from the plasma membrane to lyso- 
somes (21), indicating that phosphorylation can direct the 
targeting of MARCKS to specialized membrane compart- 
ments. (c) The protein composition of the forming phagosomal 
membrane differs somewhat from the bulk plasma membrane 
(5, 7), suggesting that the phagosomal membrane, as the 
lysosomal membrane, may have MARCKS-targeting deter- 
minants. 

The literature contains conflicting reports on the require- 
ment for PKC during phagocytosis. A direct comparison of 
the results of these studies is complicated by the fact that 
the investigations used different cell types (monocytes, resi- 
dent macrophages, neutrophils, or activated macrophages), 
cells from different species (human and mouse), and most 
importantly, that different receptors were engaged for par- 
ticle uptake. Zymosan particles are yeast cell wall components 
that bind to the mannose-fucose receptor and the ~-glucan 
receptor, whereas the Fc receptor binds IgG (44, 45). Zhelez- 
nyak and Brown (46) found that activation of PKC is an early 
signal required for Fc receptor-mediated phagocytosis in 
human monocytes and that PKC is enriched on purified 
phagosomal membranes. PKC is also activated during com- 
plement receptor-mediated phagocytosis in neutrophils (47). 
In this study, we found that zymosan binding to the macro- 
phage surface activates PKC, resulting in MARCKS phos- 
phorylation, and that inhibition of PKC blocks particle binding 
and internalization. By contrast, Greenberg and co-workers 
(33) found that treating inflammatory macrophages with in- 
hibitors of PKC has no effect on Fc receptor-mediated phago- 
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cytosis. It is possible that PKC was only partially inhibited 
in the study by Greenberg et al. In our hands, the concentra- 
tions of inhibitors they used only partially inhibited PKC 
activity, as judged by the incorporation of 3zPi into MAKCKS, 
and slowed but did not block zymosan uptake or the associa- 
tion of F-actin and other proteins with the phagosome (data 
not shown). It is also possible that in thioglycollate-elicited 
macrophages activation of PKC is not required for Fc 
receptor-mediated phagocytosis. We cannot reconcile these 
differences at this time. 

In general, phagocytosis is accompanied by an increase in 
intracellular calcium (2, 32, 48-50), and single-cell imaging 
shows calcium transients in the vicinity the phagosome (48). 
The role of calcium in phagocytosis is controversial. Single- 
cell measurements have demonstrated a requirement for cal- 
cium during particle internalization, while studies by other 
investigators have demonstrated that calcium is not required 
for the internalization event (2, 32, 48-51). Calcium, how- 
ever, is required to depolymerize actin from phagosomes con- 
taining yeast in neutrophils (49). MARCKS senses calcium 
through calmodulin, and calcium/calmodulin prevents the 
actin-cross-linking activity of MARCKS (15). Therefore, 
MARCKS may integrate signals from both PKC and calcium/ 
calmodulin to alter actin structure around the phagosome. 

Results of both in vivo and in vitro studies suggest that 
phagosomes mature via a series of membrane fission and fu- 
sion events. Most plasma membrane proteins are rapidly recy- 
cled to the cell surface (4), and further maturation involves 

sequential fusion with endosomes and lysosomes (5-7), re- 
sulting in the formation of mature phagolysosomes. In ad- 
dition, actin depolymerization may be required for endosomes 
and lysosomes to gain access to the phagosome membrane, 
and calcium is required for phagosome-lysosome fusion in 
some systems (50). It is interesting that MARCKS and PKCot 
are retained on the maturing zymosan phagosome, and this 
suggests a role for these proteins beyond their potential in- 
teractions with actin. In fibroblasts, MARCKS cycles between 
the plasma membrane and lysosomes in a phosphorylation- 
dependent manner (21), and MARCKS accumulates on lyso- 
somes when acidification of the endocytic pathway is blocked 
(21). Although the function of MAKCKS on the lysosomal 
membrane is unknown, MARCKS clearly has recognition 
determinants for the lysosome membrane. It is tempting to 
speculate that both MAKCKS and PKC have a role in phago- 
some-lysosome fusion. Furthermore, phagosome-lysosome 
fusion represents a major intersection of the microtubule-based 
and actin-based cytoskeletons used for organelle motility. Par- 
ticle internalization has an absolute requirement for actin po- 
lymerization (1), whereas lysosomes (52, 53) and perhaps 
maturing phagosomes (42, 43) move primarily in associa- 
tion with microtubules. MARCKS has been associated both 
with actin-based motility (20, 22) and with membrane 
trafficking (21), and the current study suggests that MARCKS 
integrates signals from PKC and calcium/calmodulin to regu- 
late actin structure around the phagosome and perhaps phago- 
some-lysosome fusion. 
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