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Summary 
Taxol, a microtubule-binding diterpene, mimics many effects of  lipopolysaccharide (LPS) on 
mouse macrophages. The LPS-mimetic effects of  taxol appear to be under the same genetic 
control as responses to LPS itself. Thus we have postulated a role for microtubule-associated 
proteins (MAP) in the response of macrophages to LPS. Stimulation of  macrophages by LPS 
quickly induces the activation of  mitogen-activated protein kinases (MAPK). MAPK are gen- 
erally considered cytosolic enzymes. Herein we report that much of  the LPS-activatable pool 
of  MAPK in primary mouse peritoneal macrophages is microtubule associated. By immunoflu- 
orescence, MAPK were localized to colchicine- and nocodazole-disruptible filaments. From 
both mouse brain and RAW 264.7 macrophages, MAPK could be coisolated with polymerized 
tubulin. Fractionation of  primary macrophages into cytosol-, microfilament-, microtubule-, 
and intermediate filament-rich extracts revealed that "~10% of  MAPK but none o fMAPK ki- 
nase (MEK1 and MEK2) was microtubule bound. Exposure of  macrophages to LPS did not 
change the proportion of  MAPK bound to microtubules, but preferentially activated the mi- 
crotubule-associated pool. These findings confirm the prediction that LPS activates a kinase 
bound to microtubules. Together with LPS-mimetic actions of taxol and the shared genetic 
control of  responses to LPS and taxol, these results support the hypothesis that a major LPS-sig- 
naling pathway in mouse macrophages may involve activation of  one or more microtubule- 
associated kinases. 

M itogen-activated protein kinases (MAPK), originally 
termed microtubule-associated protein (MAP) 2 ki- 

nase and later also called extracellular signal-regulated ki- 
nases (ERK), are rapidly activated in response to various 
extracellular stimuli in many cell types via a cascade (1-4) 
that eventuates in phosphorylation of  the enzymes on both 
tyrosine and threonine residues (5). Substrates for MAPK 
are found in the nucleus, plasma membrane, cytosol, and 
cytoskeleton (4, 6), but it is not entirely clear which are 
physiologic and how MAPK, generally considered cyto- 
solic, encounter them. Activation of  MAPK by bacterial 
LPS (7, 8) is one of  the most rapid knowneffects of  LPS on 
macrophages (9) and may be required for the LPS-triggered 
release ofeicosanoids (7) and cytokines (10, 11). 

Taxol, a microtubule-binding diterpene, exerts cell cy- 
cle-independent effects on macrophages strikingly similar 
to those of LPS (12). These include downregulation of  
TNF receptors (12), activation of  MAPK (9, 13), mobiliza- 
tion of  nuclear factor (NF)-gB (14), and induction of  TNF 
(12) and other early genes (13, 15). These responses are ab- 
sent in macrophages from C3H/HeJ mice (12-15), which 
bear a defective allele of  the Lps gene on chromosome 4. 
LPS-mimetic responsiveness to taxol cosegregated with the 

normal Lps allele in nine recombinant inbred strains (12). 
Inactive LPS analogues blocked taxol-induced protein ty- 
rosine phosphorylation and expression of  proinflammatory 
genes (16). These observations support the hypothesis that 
LPS and taxol share a common target in a signaling path- 
way controlled by the Lps gene (12). Although LPS and 
taxol may activate such a target directly from the cell sur- 
face, both enter cells rapidly (17, 18) and bind specifically 
to [3-tubulin in a cell-free system (19-21). Thus, whether 
they are activated directly or indirectly, the common target 
of  LPS and taxol may be MAP. The present report estab- 
lishes that MAPK itself is one such LPS- and taxol-acti- 
vated MAP. 

Materials and Methods 
Reagents. Anti-MAPK mAb against a 21-amino acid se- 

quence near the COOH terminus recognizes ER.K1 and EKK2 
(Zymed Laboratories, Inc., South San Francisco, CA). Rabbit IgG 
anti-MAPK kinases (MEK1 and MEK2) was from Transduction 
Laboratories (Lexington, KY). Anti--a-tubulin mAb and goat an- 
tiserum against mouse vimentin were from ICN Biomedicals, Inc. 
(Costa Mesa, CA). Antiactin was from Miles-Yeda, Ltd. (Tel Aviv, 
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Israel). tLITC-conjugated donkey anti-mouse IgG was from Jack- 
son ImmunolLesearch Laboratories, Inc. (West Grove, PA). LPS 
prepared by phenol extraction of Escherichia coli serotype 0111B4 
was from List Biological Laboratories, Inc. (Campbell, CA). Other 
reagents were as cited or from Sigma Chemical Co. (St. Louis, MO). 

Cell Culture. For immunofluorescence, thioglycollate broth- 
elicited peritoneal macrophages from CD-1 female mice (22) 
were seeded at 2 • 10 s cells per 13-mm glass coverslip in 100 ~1 
of complete medium (ILPMI 1640 with 10% fetal bovine serum 
[FBS], 2 mM r-glutamine, 200 U/ml penicillin, and 200 p.g/ml 
streptomycin), and nonadherent cells were removed after 2-4 h. 
For fractionation studies, cells were cultured in 100-ram-diameter 
dishes (Coming Glass, Inc., Coming, NY). For isolation of MAP, 
RAW 264.7 cells were maintained in spinner flasks. 

Immunofluorescence Microscopy. Monolayers were fixed and per- 
meabilized with methanol (-20~ for 4 rain. Cells were then 
covered with 30 Izl ofanti-MAPK mAb (37~ 60 rain) followed 
by rhodamine-conjugated donkey anti-mouse IgG (37~ 30 
min), mounted in PBS/glycerol (5:1), and examined under a flu- 
orescence microscope (Labophot; Nikon Inc., Melville, NY). 

Isolation of MAP. MAP were prepared from 10 mouse brains 
by the procedure of Vallee (23). In brief, tubulin in the homoge- 
nate supemate (180,000 g) was polymerized at 37~ by the addi- 
tion oftaxol and GTP, and the resulting microtubules were cen- 
trifuged through sucrose. MAP were stripped fi'om the microtubules 
with 0.4 M NaCI and recovered in the 30,000 g supemate. By sil- 
ver-stained SDS-PAGE, the MAP preparation contained one ma- 
jor species migrating at 220 kD and one minor species at 55 kD. 
These were specifically recognized by antibodies against MAP-2 
and tubulin, respectively (not shown). The 30,000 g sediment 
(used below) contained only tubulin and no MAP by silver- 
stained SDS-PAGE and immunoblot. Similarly, ,,o101~ RAW 
264.7 cells were homogenized in 10 mM EDTA, 1 mM MgSO4, 
pH 6.6, with 1 mM PMSF and 5 ~g/ml each pepstatin A, leu- 
peptin, aprotinin, and chymostatin, and sequentially centrifuged 
at 4~ (170, 30,000, and 180,000 g) to remove unbroken cells, 
nuclei, and microsomes. MAP were then isolated as for brain ex- 
cept that 0.6 mg purified brain tubulin was added as scaffold. 

Differential Cytoskeletal Extractions. Based on the procedure of  
van Bergen en I-Ienegouwen et al. (24), macrophages were washed 
in cytoskeleton-stabilizing buffer (CSK) containing 10 mM Pipes, 
pH 6.8, 250 mM sucrose, 3 mM MgC12, 150 mM KC1, 1 mM 
EGTA, and 1 mM PMSF and lysed at 37~ in CSK buffer con- 
taining 0.15% Triton X-100 (lysis buffer) for 5 min. Supemate $1 
(14,000 g, 10 rain, room temperature) was considered the cyto- 
solic fraction. Pellet1 was washed three times in lysis buffer at 
37~ Microtubules were depolymerized by chilling the samples 
to 4~ in the same buffer and collected as $2 (14,000 g, 10 rain) 
followed by two washes with cold lysis buffer. Pellet2 containing 
actin-based microfilaments was solubilized with 0.6 M KC1 in 
CSK buffer in the presence of  DNase (0.2 mg/ml) and MgC12 (10 
mM), followed by centrifugation (14,000 g, 20 rain), generating 
$3. The remaining pelle h containing intermediate filaments was 
dissolved in Laemmli's sample buffer with SDS. For kinase assay, 
extracts were prepared in the presence of 1 mM each of sodium 
vanadate, sodium pyrophosphate, and sodium fluoride. 

Immunoblot. Samples separated by SDS-PAGE were trans- 
ferred to a nitrocellulose membrane (Schleicher & Schuell, Inc., 
Keene, NH) in an ice-water bath. Membranes were blocked in 
20 mM Tris, 137 mM NaCI, pH 7.4, plus 0.1% Triton X-100 
(TBST) containing 10% FBS or 5% dry milk at 4~ overnight, 
incubated with first antibody for 1 h at room temperature, washed 
three times with TBST, and incubated with horseradish peroxi- 

dase-conjugated secondary antibody (1:10,000 in TBST) for 45 
min at room temperature. After extensive washing with TBST, 
immunoblots were developed using an enhanced chemilumines- 
cence kit (Amersham Corp., Arhngton Heights, IL). 

MAPKAssay. Cell lysate was incubated with 10 Izg of mye- 
lin basic protein (MBP) in kinase assay buffer (20 mM Hepes, pH 
7.4, 10 mM MgC12, 2 mM EGTA, 1 mM dithiothreitol, 1 mM 
vanadate, and 0.5 IzM protein kinase A inhibitor; 25) plus 1 ~Ci 
of 5'-[~/-32p]ATP (Amersham Corp.) and 50 IzM cold ATP for 
10 min at room temperature. The reaction was terminated by 
boiling in Laemmli's sample buffer. After SDS-PAGE, autoradio- 
grams were subjected to densitometry. 

R e s u l t s  

Localization of M A P K  to Microtubules in Intact, Primary 
Macrophages. Anti-MAPK mAb-stained filamentous struc- 
tures were unaltered by prior exposure to LPS (Fig. 1 A) 
but were dissassembled by preincubation (2 h) with the mi- 
crotubule-disrupting agents colchicine (10 IzM) (Fig. 1 B) 
or nocodazole (10 ~M) (not shown). The  pattern o f  MAPK 
distribution matched that observed with antitubttlin mAb, 
except that ant i -MAPK did not decorate microtubule- 
organizing centers (Fig. 1 C). Entirely different staining 

Figure 1. Localization of 
MAPK in intact macrophages. 
Thioglycollate-elicited macro- 
phages were preincubated with (B) 
or without (.4, C-E) 10 p.M of 
colchicine followed by staining 
with anti-MAPK mAb (A and B), 
anti=tubulin (C),  anti-vimentin 
(D) or rhodamine-conjugated 
phalloidin (E). 
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patterns resulted with antivimentin (marking intermediate 
filaments, Fig. 1 D) or rhodamine-conjugated phaUoidin 
(revealing actin-rich microfilaments, Fig. 1 E). In contrast 
to the situation with growth factor-treated fibroblasts (26, 
27), LPS did not cause MAPK to translocate to the mac- 
rophage nucleus. 

MAPK Are among the MAP Isolated fiom Mouse Brain and 
RA W 264. 7 Cells. MAP are operationally defined by their 
cosedimentation with polymerized microtubules through a 
sucrose gradient (28). MAP from mouse brain and from the 
macrophage-hke cell line RAW 264.7 prepared in this way 
contained 42- and 44-kD MAPK (Fig. 2), well separated 
from actin (here migrating at <40 kD) and tubulin (55 
kD), the identity of the latter proteins being confirmed by 
immunoblot. The several species binding anti-MAP-2 (Fig. 
2) may correspond to known MAP-2 isoforms (29). 

A Portion of MAPK Specifically Cofractionates with Microtu- 
bules in Primary Macrophages. The next experiments used a 
sequential extraction scheme (24) that yields fractions en- 
riched in each of  three major classes of cytoskeletal struc- 
tures. About 75% of total cellular protein was recovered as 
cytosolic ($1). After three washes of  pellet1, microtubule 
proteins (-'~7%) were recovered by depolymerization in the 
cold ($2). Actin filaments ("~8%) were removed by high salt 
extraction ($3), and a portion of intermediate filaments re- 
mained associated with the final pellet and were extracted 
in SDS ($4). Each fraction was immunoblotted with anti- 
bodies against compamilent markers (Fig. 3): MAPK kinase 
(MEK1 and MEK2) for cytosol, tubulin for microtubules, 
actin for microfilaments, and vimentin for intermediate ill- 
aments. MEK was detected only in the cytosolic fraction, 
in contrast to observations in NIH/3T3  cells mentioned in 
abstract form (30). Tubulin was present in both cytosohc 
and microtubule fractions, consistent with the normal equi- 
hbrium between polymerized and depolymerized microtu- 
bules. Similarly, as expected, actin was both soluble and 
microfilament associated. Vimentin was insoluble in Triton 
X-100 and was only detected in the high salt extract and its 
SDS-soluble residue (Fig. 3). 

Figure 3. Sequential extraction of cytoskeletal proteins from primary 
macrophages. Isolated cytosolic ($1; 5% of total recovered), microtubule- 
($2; 10%), actin- ($3; 10%), and vimentin-containing fractions ($4; 10%) 
were immunoblotted with Abs against MEK, tubulin, actin, and vimenfin. 

MAPK was absent in the microfilament- and intermedi- 
ate filament rich fractions (Fig. 4 A, lanes 3 and 4) and 
present in the cytosolic and microtubule-rich fractions (Fig. 
4 A, lanes 1 and 2). As already noted, MEK was present in 
cytosol but not in microtubule-rich fractions, arguing 
against nonspecific contamination of  the latter with the 
former. Moreover, supernates of three washes of  pelleh 
were analyzed to exclude the possibility that MAPK from 
$1 may have associated nonspecifically with pellet1 and thus 
persisted in S 2. No MAPK were detected in the second or 
third of these washes. Thus, in primary macrophages, a por- 
tion of  MAPK is specifically associated with the microtu- 
bule network, but not with any other major cytoskeletal 
fraction. Densitometric comparison of  dilutions of  these 
fractions indicated that the microtubule-associated portion 
of  MAPK averaged 10% of  the total (8, 9, and 14% in three 
experiments) (Fig. 4 B). 

LPS Preferentially Aaivates Microtubule-Associated MAPK. 
Macrophages were incubated with 0 or 100 ng/ml of  LPS 
for 15 min, 2 h, or 18 h and subjected to sequential extrac- 
tion as above. As seen in intact macrophages by immuno- 
fluorescence, LPS caused no detectable redistribution of  
MAPK in fractionated macrophages (Fig. 5 A). However, 
LPS (100 ng/ml, 15 min) enhanced the enzymatic activity 
of MAPK more markedly in the microtubule-associated 
fraction (3.7 + 1.1-fold, six experiments) than in the cyto- 
sohc fraction (1.6 + 0.3-fold) (P <0.015, Student's t test; 
Fig. 5 B). 

Figure 2. MAP from brain and macrophages include MAPK. Proteins 
cosedimenting through sucrose with polymerized tubulin were isohted 
from mouse brain (60 ~g/hne, lanes 1-4) and RAW 264.7 macrophages 
(30 ~.g/lane,/anes 1'-4% separated on SDS-PAGE and probed with anti- 
bodies against MAP-2 (lanes 1 and 1'), et-tubulin (lanes 2 and 2'), actin 
(lanes 3 and 3'), and MAPK (/anes 4 and 4'). Arrows indicate positions of 
MAPK. 

Discussion 

Several parallel MAPK cascades regulate growth hor- 
mone-,  cytokine- and stress-stimulated responses in diverse 
cell types (4-6, 31-36). The pleiotropic nature of MAPK 
action is evident from the complex array of  substrates local- 
ized in different cellular compartments and executing di- 
verse functions (31, 37-43). The postulate that MAPK 
must be, at least transiently, in direct contact with their 
physiological substrates has led to refinement of the initial 
description of MAPK as strictly cytosolic enzymes. In fi- 
broblasts, mitogenic signals induce translocation of  MAPK 
to nuclei and plasma membrane (26, 27). MAPK were 
found in dendritic microtubules of  rat brain cells (44), in 
microtubule-organizing centers in mouse oocytes during 
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Figure 4. Association of MAPK with microtubules. (A) Samples ofcy- 
tosolic (lane 1), microtubule- (lane 2), actin- (lane 3), and vimentin (lane 
4)=containing fractions of macrophages plus the supernatants from three 
washes of pellet1 before extraction of $2 (lanes 5-7) were probed with 
anti-MAPK mAb. (B) Semiquantitative immunoblot comparison of 
MAPK contents in cytosolic ($1) and micrombule (Sz) fractions. Percent- 
age oflysates from 4 • 10 v cells loaded on the gel from S1 were as fol- 
lows: lane 1, 2%; lane 2, 1%; lane 3, 0.5%; lane 4, 0.25%; lane 5, 0.125%; 
and fi'om $2: lane 6, 10~ hne 7, 5%; lane 8, 2.5%; lane 9, 1.25%. 

meiotic maturation (45), and in the microtubules o f  cycling 
mouse fibroblasts (46). To  our knowledge, this report is the 
first to document  a microtubule localization o f  M A P K  in 
noncycling cells outside the nervous system, and to relate 
this association to responses to a microbial product. 

Many MAPs, including tau, MAP=l,  MAP-2,  MAP=5, 
and caldesmon, can serve as facile substrates o f  M A P K  (4, 
47, 48). Microtubule=associated M A P K  may be the physio= 
logically relevant pool acting on MAP substrates. Phos- 
phorylation o f  MAP regulates microtubule polymerization 
(49). l~eorganization ofmicrotubules is an important aspect 
o f  cell remodeling in such diverse situations as dendrite for= 
mation, mitosis, cell spreading, and migration. 

The discovery o f  LPS-mimetic effects o f  taxol on mac- 
rophages from C 3 H / H e N  (LPS-normoresponsive), but not 
C 3 H / H e J  (LPS-hyporesponsive) mice led to the hypothe= 
sis that these two agents might share a common  target (12). 
LPS=mimetic effects o f  taxol, however, are cell cycle inde= 
pendent (12, 16). So far no other intraceUular binding site 
for taxol besides polymerized tubulin has been identified. 
Thus, binding o f  taxol to microtubules may evoke two dis- 

Figure 5. Effect of LPS on microtubule associated MAPK. (A) Primary 
macrophages were incubated without or with 100 ng/ml of LPS for 15 
min, 2 h, or 18 h at 37~ Microtubule=associated fractions (Sz) were ex- 
tracted as in Fig. 3 and immunoblotted with and-MAPK mAb. (B) Mac- 
rophages treated with or without 100 ng/ml of LPS for 15 rain were se- 
quentially extracted in the presence of phosphatase inhibitors to obtain 
the cytosolic ($1) and micrombule-associated fractions (Sz). MAPK activ- 
ity was assayed using MBP as a substrate in the presence of'y-[32P]ATP as 
disphyed. Autoradiogram was from one of six similar experiments. The 
histogram shown, in fold increase over control, is mean + SE for all six 
experiments. 

tinct signals: one leading to micrombule stabilization, the 
other to activation o f  one o f  LPS's signaling intermediates, 

It has not  been answered by what mechanism,LPS and 
taxol activate MAPK, nor whether MAPK themselves are 
critical mediators o f  the actions o f  LPS and LPS-mimetic 
actions o f  taxol. Nonetheless, the microtubule association 
o f  an LPS-activatable pool o f  M A P K  may help explain ge- 
netic and biochemical evidence that LPS and taxol share a 
signaling intermediate(s). It has not been excluded that other 
intermediates may also be activated in c o m m o n  by these 
two signals. The relevant target o f  M A P K  or related kinases 
in transducing responses to LPS and taxol may itself be mi- 
crotubule associated. Among  other enzymes known to as- 
sociate with microtubules are cAMP-dependent  protein ki- 
nase (50), protein tyrosine kinase ZAP=70 (51), protein 
phosphatase (52), p34CaC2/cyclin B complex (53), and the 
protooncogene products mos (54), fyn (55), and Vav (51). 
Indeed, MAPK can activate c - m o s  (56), and vice versa (57). 
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