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INTRODUCTION

The yellow-orange jaundice pigment, bilirubin (BR), has attracted
the attention of physicians who have described the many syndromes
associated with its accumulation in tissues and easily observed as
jaundice. Because its accumulation is considered a sign of disease, BR,
its synthesis, and elimination from the body have been studied exten-
sively.

Investigation of the control of BR formation has directed the atten-
tion of scientists towards heme degradation and, ironically, a recon-
sideration of the roles of BR (1-3) and its biochemical siblings, carbon
monoxide (CO) (4), biliverdin (5), and iron (6) in biological systems.
These studies have shown that most of the heme entering the pathway
is derived from the red blood cell (RBC) recycling process (7) (Figure 1).
The remainder arises from the turnover of many non-hemoglobin he-
moproteins, such as myoglobin, catalase, cytochromes, glutathione
peroxidase, and nitric oxide synthase (NOS) that play essential roles in
physiologic homeostasis (8). Although most of the aged RBCs are
trapped and degraded by the spleen, it has been suggested that the
liver may also play an important role in this process. Furthermore, the
heme from hemoprotein turnover is most likely degraded locally within
the cell.

The enzyme responsible for the degradation of heme is heme oxy-
genase (HO). In conjunction with cytochrome (P,;,) reductase, it con-
trols the rate-limiting step in the heme degradation pathway, binds
with heme, and in turn binds to oxygen. In the presence of NADPH, the
complex then oxidizes the tetrapyrrole ring structure at the a-carbon,
to yield equimolar quantities of the green-colored linear tetrapyrrole,
biliverdin, and CO. This reaction also results in the release of the
central iron ion (Fe?") (9,10). The biliverdin is then immediately re-
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Fic. 1. Heme degradation pathway.

duced to BR by an excess of biliverdin reductase (11). In adult humans,
BR is conjugated with one or two sugar molecules to form water-
soluble mono- or diglucuronides, which facilitate its transport into the
circulation and subsequent excretion from the body with the bile into
the intestine (12).

The CO, on the other hand, binds to the hemoglobin of circulating
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RBCs to form carboxyhemoglobin (COHb) for ultimate transport to the
lungs, where COHDb equilibrates with the inhaled oxygen and then CO
is excreted from the body in the breath. Because CO is produced
primarily from the degradation of heme in a one to one ratio and is
excreted from the body primarily via the lungs, measurements of CO in
the blood (i.e. COHb) and in the breath can serve as indicators of the
rate of heme degradation as well as BR formation (7,13). Consequently,
much of our information on the rates of heme degradation and BR
formation in animal models and humans has been obtained through
invasive as well as noninvasive measurements of total body CO pro-
duction.

Until recently, the HO pathway was considered to be primarily a
process for the conservation and recycling of valuable iron. The Fe?*
released as a result of heme degradation is sequestered by transferrin
and is returned to iron stores as ferritin, the major iron storage protein
(6). The mechanisms and regulation of iron reutilization in the bone
marrow and other cells is still incompletely understood (14). What is
known is that free Fe?* and/or Fe?" are powerful promoters of oxida-
tive reactions (Fenton chemistry) that result in membrane damage and
CO production (15-17).

Endogenous Sources of CO

A long time ago, Paracelsus (1493-1541) remarked that “All sub-
stances are poisonous. Only the dose differentiates a poison from a
remedy.” His observation very aptly describes the components of the
heme degradation pathway. Carbon monoxide, like BR, has had a
long-standing reputation as a biological villain. It is an odorless, taste-
less, and invisible poison, lethal to humans through its interference
with oxygen delivery and use. A telltale rosy hue of a victim’s skin and
mucous membranes belies the fatal truth that CO has surreptitiously
replaced oxygen on the hemoglobin molecule, rendering its circulation,
not only a futile, but also fatal, exercise. Recently, however, CO has
been credited with beneficial biochemical and physiologic properties
similar to those of its companion gas, nitric oxide (NO) which, when
bound to soluble guanylyl cyclase (sGC), stimulates the production of
cyclic GMP (18-21).

In humans, the production rate of CO per kg body weight is 2 to 3
times higher in newborns than in adults (22-24). Under pathologic
conditions, however, such as hemolysis, increased ineffective eryth-
ropoiesis, or increased hemoprotein turnover, the rate of CO produc-
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tion can increase many fold in the adult male from 18-160 ymol/hr
(22).

The non-enzymatic production of CO is one of the more intriguing
phenomena recently confirmed in biological systems devoid of heme.
Originally reported in 1968 (25), lipid peroxidation was suggested as a
source of CO again in 1976 and 1978 (17,26). A role for CO-derived
from in vivo lipid peroxidation in tissues, like the brain, remains
speculative, but worthy of serious consideration as potential CO-me-
diated processes are investigated (15). Photooxidation, mediated by
natural (riboflavin and BR) or synthetic photosensitizers [some met-
alloporphyrins (MPs)], may be another potential source of CO, espe-
cially in more translucent subjects, such as premature infants receiv-
ing phototherapy (27,28). As animals have become dependent upon
bacteria, for example intestinal colonization, CO produced by bacteria
(29) may also turn out to be relevant to the understanding of not only
intestinal physiology but also dysfunction.

Heme Oxygenase

Although HO biology is a formidable topic in itself, CO detection can
not only provide insight into the various aspects of the HO reaction, but
also information about CO biology itself, a burgeoning field of investiga-
tion. Measurements of CO production in animals can serve as a means to
expand investigation into the role of CO in the physiology of animals and
possibly plants. More detailed and informative reviews on HO- and CO
biology have been presented earlier (13,18,20,21,27,30-33).

CO production by lower animals, and possibly plants, is also linked
to the enzymatic formation of biliverdin, a precursor of chro-
mophores, that are attached to proteins functioning as photorecep-
tors involved in regulating important metabolic pathways. For ex-
ample, the photosynthetic light-harvesting biliproteins of the red
alga, Cyanidium caldarium, are derived from biliverdin (34). CO and
biliverdin are formed in equimolar quantities by algal HO (35),
which can be inhibited by the synthetic heme analogue, tin proto-
porphyrin (34). Phytochrome, which regulates photo-induced mor-
phogenesis in higher plants, also contains a biliverdin-derived chro-
mophore. In studies of vascular plants, we have found HO-like
activity to vary between plant species, organs (root, stem, leaf, fruit,
flower), and subcellular organelles, reminiscent of the mammalian
circumstance (36). HO activity has also been observed in vertebrates,
such as the frog and chicken, while biliverdin and BR have been
identified in fish (37,38). In addition, biliverdin is incorporated into
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the blue hemolymph protein, insecticyanin, used by the invertebrate
tobacco hornworm in camouflage (39). Although the role of CO has
not been thoroughly investigated in these few examples, the remark-
able conservation of the heme degradation pathway and its regula-
tion among diverse phylogenetic groups suggests an important role
for this process in both animals and plants, and supports a legiti-
mate inquiry into the physiologic roles that CO might play in bio-
logical systems.

HO is nearly ubiquitous throughout the body. Only anucleated,
mature RBCs have been found to lack HO (40). At this time, three
isozymes have been identified. HO-1 is the isoform inducible by a large
number of physiological stresses, such as heavy metals, UV light (free
radicals), heat, hyperoxia, infection, etc. (41). HO-2 is the constitu-
tively expressed (housekeeping) isozyme, which appears to control the
basal heme degradation process. HO-3 is the putative third isozyme
with very little demonstrable activity and an as yet unknown function
(42).

The HO isozymes are not distributed evenly across tissues. Not

HOOCH,CH,CH,

HOOCH,CH,CH,

Porphyrin Type Based on Ring Substituent

Deuteroporphyrin  Mesoporphyrin  Protoporphyrin  Bis Glycol Porphyrin

Metal (R=-H) (R=-CH,-CH;) (R=-CH=CH,) (R =-CH,0OH-CH,0OH)
Iron (Fe?*) FeDP FeMP FePP (Hemin) FeBG
Zinc (Zn**) ZnDP ZnMP ZnPP ZnBG
Tin (Sn*") SnDP SnMP SnPP SnBG
Chromium (Cr**) CrDP CrMP CrPP CrBG

Fic. 2. Basic metalloporphyrin (MP) structure with central metal and ring modifica-
tions representing the various MPs and their abbreviations.



66 DAVID K. STEVENSON ET AL.

A.
HO-1 promoter Reporter gene
DE2 DE1 PEP
HO-1-lucls -- Luciferase
-10,000 -4,000 +1
HO-1-luc fusion
B.

Cr3+ Sné+ v Zn*

Fold Induction
"

T T T T T T T T g
20858 gle Eaerthgon o 6 25 (PSS Ol B ol o' 725 5.5 7757706 “12)s

Time (h) Time (h) Time (h)

BG Dp | mp PP

Fold Induction
-

R g T T
5§ 180 128 0-225 . § S5 ¥H0 125 OMZS S 7.5 100128 0, 5285 .75 2.y . 10128

Time (h)

Oh 8h 72h

Fic. 3. A. HO-luc reporter construct. The HO-1-luc15 expression vector was con-
structed by cloning a 15 kb, 5'-upstream regulatory region of HO-1 gene from pMHO-
catl5 (kindly provided by Dr. J. Alam et al (91), a 1.8 kb DNA fragment containing a
modified firefly luciferase coding sequence (Promega, Madison WI), and 3’ poly-A signal
sequence into pBluescriptKS(+) vector (P-promoter, PE-proximal enhancer, DE-distal
enhancer); B. Effects of metalloporphyrins (MPs) on HO-1 transcription in a stable
HO-1-luc15 murine cell line in culture. MPs with chromium (Cr3*), tin (Sn**), or zinc
(Zn%*) and various ring substituents were tested and compared to chloride salts of each
metal. The symbols indicate side groups for each set of MPs containing a specific metal
(see Figure 2): B bis glycol porphyrin; O deuteroporphyrin; ® mesoporphyrin; O proto-
porphyrin; and A chloride salt. C. Effects of MPs on HO-1 transcription in a stable
HO-1-luc15 murine cell line in culture. In these comparisons the porphyrin ring was
unaltered but the metals were changed. The symbols indicate metals for each set of MP
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surprisingly, the spleen contains predominantly HO-1, whereas, the
HO activity of neuronal- and testicular tissues is almost exclusively
due to HO-2. The liver, however, contains both HO-1 and HO-2
isozymes in nearly equal amounts. Tissue HO enzyme activity is the
combined action of all isozymes and can be quantitated in vitro via
measurements of BR (43). More convenient and less subject to error
and matrix limitations are assays based on the quantitation of CO in
tissue homogenates, cells, slices, and even intact animals (13,40).

HO isozymes are competitively inhibited in vitro and in vivo by
micromolar concentrations of natural and synthetic derivatives of
heme or metalloporphyrins (MPs) (Figure 2). The administration of
these MPs allows clinicians the potential for preventive control of
hyperbilirubinemia (44,45). Even though tin proto- (46) and meso-
porphyrin (47) have undergone clinical trials, chromium mesopor-
phyrin and zinc bis glycol porphyrin warrant further consideration
as therapeutic agents because they lack undesirable side effects (48).
However, the ultimate “magic bullet” for this approach does not
exist. Some of the MPs are long-acting (months). Others are photo-
sensitizers (48), yet others increase transcription of the HO-1 mRNA
gene, possibly producing more of the enzyme that they are supposed
to inhibit (Figure 3). Others are not orally absorbable, requiring
invasive intravenous or intraperitoneal injection. Even though dif-
ferent MPs inhibit HO-1 and HO-2 to varying degrees, the difference
is not great enough for any MP studied to completely inhibit HO-1
without inhibiting the housekeeping HO-2 (32). Furthermore, MPs
also bind to NOS and sGC, thereby affecting the production of NO
and the processes it regulates (49). All these properties of MPs need
to be investigated further.

The observed increase in HO-1 mRNA levels after treatment with
inhibitors is another subject deserving closer scrutiny. It needs to be
determined unequivocally if increases in HO-1 transcription lead to
proportional increases in HO-1 protein and activity, which could com-
plicate the efficacy and safety of MP administration. Nonetheless, the
various MPs affect HO-1 transcription differently, depending on both
metal and ring substituents (50) (Figure 3). Therefore, regulation of

families: 0 = Cr®"; O = Zn?"; and -+ = Sn*"; D. Effects of 10 uM CdCl, on HO-1
transcription in HO-1-/uc Tg mouse line. The second HO-1-luc founder line was bred to
homozygosity and the level of induction of the HO-1 promoter was assessed over time
following the injection of CdCl, by measuring the luminescent signal over the animals.
Pretreatment signals are noted at the 0-time point and levels at 8 and 72 h are shown.
This demonstrates that the spatiotemporal regulation of gene expression can be moni-
tored in living animals (51).




68 DAVID K. STEVENSON ET AL.

HO-1 by MPs at the level of transcription should be considered when
these compounds are evaluated for clinical use. The use of unique tools
such as HO-1 promoter-luciferase constructs in transformed cell lines
and transgenic animals in conjunction with in vivo CO-measuring
technology may provide access to these levels of regulation in real time
(51) (Figure 3).

That the activity of HO has been linked in nature to the production
of CO, biliverdin (and BR), and iron suggests that understanding the
interrelationships between heme and the products of the heme degra-
dation pathway may yield some interesting insights into how life has
adapted to Earth’s oxidative challenge.

Physiologic Role of Carbon Monoxide

Since 1991, CO has been considered as possibly more than an inert
waste product (Figure 1) (4). Instead, this small volatile diatomic
molecule may be an important physiologically active gas, with a
biochemistry as complex as that of NO. In fact, it is now suggested
that CO may regulate the production of cGMP through the activation
of sGC (18-21,52). In particular, the HO-CO-cGMP pathway in the
central nervous system is of interest, and similar mechanisms have
been proposed for regulation of vascular smooth muscle tone (53),
myometrial contractility (54), carotid body sensory activity (55), and
olfactory neuroreceptors (56). However, it is unlikely that the role of
CO in physiology is singular and simplistic. It is more likely that the
heme catabolic pathway participates in orchestrated responses to a
variety of stimuli, mediated through regulation of HO-1, for example
by oxidative stress (57). That intracellular heme levels can affect
protein phosphorylation, protein synthesis, and cellular differentia-
tion, and BR can inhibit protein phosphorylation, suggests a coordi-
nated regulation of intracellular heme, CO, and BR levels related to
cellular adaptation to changing environments (57). The effects of
MPs on this regulation are important to understand, and may be
more complicated because some MPs can inhibit other hemoproteins
like NOS and sGC (52,58). Even presumed beneficial effects, such as
the modulation of excessive BR production or inhibition of oxidation
of membrane lipids, which influence intracellular and pericellular
membrane integrity, require further study. A special emphasis, the
interrelationships between CO- and NO-producing processes and
their metabolites, should yield fundamental information about cel-
lular homeostasis as well as disease.
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Historical Perspective

Roughton and Root conclusively demonstrated in 1946 that human
blood carries a small, but measurable amount of CO (59). Sjostrand in
1949 and 1952 (60,61) and Coburn and others in 1964 and 1967
(30,62,63) demonstrated that its source was heme. They improved
CO-measuring technology for physiologic and pathophysiologic (hemo-
lytic) studies in humans. Since then, physicians and scientists have
been stimulated to learn more about CO biology. While Tenhunen and
colleagues devised biochemical methodologies for the study of HO (64),
the gas chromatographic (GC) assay for CO developed by Collison and
co-workers (65) laid the groundwork for a modification that provided
scientists improved accuracy, sensitivity, and decreased sample vol-
ume and throughput time. Additional adaptations have been devised
for detection of tissue CO (66), inviting researchers to explore the role
of extravascular CO in regulation of tissue function, independent of
intravascular and intracellular CO.

CO Technology and Applications

In our ongoing investigations, we employ in vitro and in vitro CO-
measuring methodology to monitor perturbations that impact upon
endogenous CO production. In vitro measurements of CO are applied
primarily to the studies quantitating endogenous CO generation as a
measure of HO enzyme activity (40). Determinations of basal and
upregulated HO enzyme activity have been reported in many animal
and plant species and tissues, such as newborn and adult rats (67,68),
neonatal monkeys (69-71), and mice (72) at various developmental
stages (73) and using various drug administration routes (68,74). Fur-
thermore, (48,49,75) MP inhibitory effects on HO activity have also
been widely studied in vitro and in vivo. In order to assess MP-induced
photosensitization, in vitro (48,76,77) and in vivo (78) CO measure-
ments can be used to quantitate the severity of potential photoreactiv-
ity of MP compounds. In vitro CO measurements can also be adapted
to study non-heme CO-producing processes, such as lipid peroxidation,
in order to assess the potential for oxidative tissue damage under
certain conditions (15).

In addition, in vivo CO measurements, such as COHb, total body CO
production (VeCQO), and end-tidal breath CO corrected for inhaled CO
(ETCOc), can also be used to monitor heme degradation, and thus BR
formation, in human neonates and in animal models. Reports on he-
molytic disease such as glucose-6-phosphate dehydrogenase deficiency
(79-83), ABO-(84,85), Rh isoimmune diseases (84,86), sickle cell ane-
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mia (87), and thalassemia (87,88) show that all hemolytic conditions
lead to increased production and excretion of CO (and BR). In addition,
evaluation studies of different populations of premature and newborn
babies on the basis of sex, ethnicity (84,89), and health factors, such as
diabetes in the mother (90), polycythemia (84), and sequestered blood
(84), can also be performed using in vivo CO measurements.

Finally, it may be possible to uncover, under rigorously controlled
experimental conditions, the contribution to endogenous CO by other
processes, such as lipid peroxidation. Consequently, this finding could
complicate the interpretation of measurements of CO resulting from
heme degradation. However in this case non-CO based tests could
possibly be used to differentiate the possible origins of CO.

SUMMARY

Even though the heme degradation pathway consists of only two
reactions, it and its major enzyme (i.e. HO), nonetheless, impact other
processes not only through the removal of excess heme, but also
through the production of several metabolically active compounds.
Thus CO and biliverdin along with reactive iron, Fe2, are the primor-
dial products of this ancient, highly conserved reaction. That every
component of the heme catabolic pathway is directly or indirectly
related to other reactions involving oxygen or light is, perhaps, no
accident of nature. That a fundamentally destructive event can be
linked with a multiplicity of synthetic events and various biological
effects, depending on the timing and location of the HO activity, is
testament to the economy and the ultimate beauty of nature. Further-
more, the interaction of the heme catabolic pathway with that of the
NOS system may lead to even more exciting avenues of research. It
may be shown that the integrity of the heme catabolic pathway, which
is ever present and plays a role in every tissue, is central to the
existence of most complex organisms.
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DISCUSSION

BLOOMER, Alabama: You have talked about the possible biological roles of carbon
monoxide. There have been some studies to indicate that carbon monoxide alters vas-
cular tone. Do you see any situations in which overproduction of carbon monoxide could
exert a beneficial effect on some pathophysiologic process by altering vascular tone?

STEVENSON: That is an interesting and important question. I do not know the
answer to it yet. We do know that vascular tissue in vitro can produce CO via the heme
oxygenase reaction. In vivo it is less clear whether the vascular system is affected to a
measurable extent during pathologic hemolysis, upon administration of heme, or
through upregulation of the heme oxygenase gene. For that matter, it is not known
conclusively whether endogenous CO production does affect neuronal transduction in
the brain in vivo, which is another area of great interest. Your question does raise issues,
of course, about environmental exposure to CO or conditions that might induce the
production of CO in the body; and one of the most intriguing things to me is the potential
for having non-enzymatic, non-heme source of CO —sometimes endogenous, perhaps
exogenous to the body —generate amounts of the gas large enough to influence the brain
or some other tissue and lead to fairly profound effects on biological processes.



