
Figure 1: The DEME data model. Labels on arcs show the probabilities of choosing the labelled class,
C, of a sequence, and the true class, T . When T = 0, sequences are generated using just the background
model, θB . When T = 1, sequences contain a motif site, generated by motif model θM , inserted in random
sequence generated by θB .

The DEME data model

The input to DEME is a labelled set of sequences, D = {< X, C >}, where X is a sequence and C ∈ {0, 1}

is its class. Sequences with C = 1 are referred to as “positive” sequences; sequences with C = 0 are

“negative” sequences [1]. DEME models the sequences in its input set as being generated according to the

process illustrated in Fig. 1. First the labelled class, C, is chosen. Then, the true class of the sequence, T ,

is chosen. Then the sequence is generated. If T = 0, a random sequence without a planted motif site is

generated using a 0-order Markov process with parameter θB . Otherwise, a motif site is generated using

the motif PSFM, θM , and inserted at a random position in a random sequence generated using θB .

The labels on the arrows in Fig. 1 show the probabilities of each step of choosing the labelled and true

classes of a sequence. The probability of choosing labelled class C = 1 is Pr(C = 1) = γ. If C = 0, the true

class will always be T = 0, and the sequence will not contain a motif. If C = 1 is chosen in the first step,

the sequence will have a motif with probability Pr(T = 1|C = 1) = λ. Thus, λ gives the probability that a

sequence labelled C = 1 contains a site.

If requested by the user, DEME can fix λ = 1, in which case all positive sequences are assumed to contain

a motif site. This is referred to as the oops data model. By default, DEME assumes that some positive

sequences may not contain a motif, and will attempt to learn the value of λ. This is referred to as the
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noops data model.

In what follows, we will assume that the motif sites have w columns, and that the sequences have length L.

For convenience, we introduce variable N to represent the number of possible positions for a motif site,

N = L − w + 1.

Derivation of the objective function

To find motifs, DEME optimizes an objective function that is the sum of the log conditional probabilities

of the class of each sequence,

F (D, θ) =
∑

<X,C>∈D

log Pr(C|X, θ), (1)

where D is the dataset of labeled sequences < X, C >, X is a DNA or protein sequence, C is the class label

(positive or negative) of the sequence, and θ is the parameters of the data model. In particular, θ consists

of a motif model, θM , and a background model, θB , which describes non-motif sequence, λ, the probability

of a positive sequence containing a motif site, and γ, the prior probability of a sequence being labelled

positive.

The objective function is a sum of functions on single sequences, so we derive the objective function for a

single sequence,

F (X, C, θ) = log(Pr(C|X, θ)). (2)

To do this, we derive a formula for Pr(C|X, θ). When C = 1, this is equal to

Pr(C = 1|X, θ) = Pr(C = 1|T = 1,X, θ)Pr(T = 1|X, θ)

+Pr(C = 1|T = 0,X, θ)Pr(T = 0|X, θ)

= Pr(T = 1|X, θ) + Pr(C = 1|T = 0,X, θ)Pr(T = 0|X, θ)

= Pr(T = 1|X, θ) + qPr(T = 0|X, θ),

since Pr(C = 1|T = 1,X, θ) = 1, and where, for convenience, we define

q = Pr(C = 1|T = 0,X, θ).

Therefore,

Pr(C|X, θ) =

{

(1 − q)(1 − Pr(T = 1|X, θ)) if C = 0,
P r(T = 1|X, θ) + q(1 − Pr(T = 1|X, θ)) if C = 1.
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The key quantities to compute are now Pr(T = 1|X, θ) and q = Pr(C = 1|T = 0,X, θ). We will derive q

first.

To derive q, we first observe that the probability of sequence X given its true class, T , and its labelled

class, C, is the same as the probability given only T . As a consequence, we have

q = Pr(C = 1|T = 0,X, θ)

=
Pr(X|C = 1, T = 0, θ)Pr(C = 1|T = 0, θ)

Pr(X|T = 0, θ)

=
Pr(X|T = 0, θ)Pr(C = 1|T = 0, θ)

Pr(X|T = 0, θ)

= Pr(C = 1|T = 0)

=
Pr(C = 1, T = 0)

Pr(T = 0)

=
γ(1 − λ)

γ(1 − λ) + (1 − γ)

=
γ(1 − λ)

1 − γλ
. (3)

The last relationships can be easily seen from Fig. 1.

We now derive Pr(T = 1|X, θ). It is easy to show using Bayes’ rule that

Pr(T = 1|X, θ) = sig(y), (4)

where

y = log
Pr(X, T = 1|θ)

Pr(X, T = 0|θ)
.

This allows us to rewrite the class probability in terms of y and q as

Pr(C|X, θ) =

{

(1 − q)(1 − sig(y)) if C = 0,
sig(y) + q(1 − sig(y)) if C = 1.

(5)

To finish the derivation, we must now derive y in terms of the data model parameters. We write

y = log
Pr(T = 1|θ)

Pr(T = 0|θ)

Pr(X|T = 1, θ)

Pr(X|T = 0, θ)

= log





V

N

N
∑

i=1

w−1
∏

j=0

θM [Xi+j , j]

θB [Xi+j ]





= log

(

V

N

N
∑

i=1

exp(si)

)

= log(V · µ), (6)
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where V is the ratio of the prior probabilities of a sequence containing or not containing a motif site,

V =
Pr(T = 1)

Pr(T = 0)
,

=
γλ

γ(1 − λ) + (1 − γ)

=
γλ

1 − γλ
, (7)

and where we define si to be the log odds score of the site starting at position i in sequence X,

si =
w−1
∑

j=0

log
θM [Xi+j , j]

θB [Xi+j ]
, (8)

and the variable µ is the mean of the odds of a length-w substring in X being a site vs. a non-site,

µ =
1

N

N
∑

i=1

w−1
∏

j=0

θM [Xi+j , j]

θB [Xi+j ]
. (9)

We have now written q, V and µ entirely in terms of the model parameters. We now plug the expressions

for V (Eqn. 7) and µ (Eqn. 9) into the equation for y (Eqn. 6). We then plug the expression for y into

Eqn. 4. Finally, we plug the expressions for y and q into the single-sequence class probability, Eqn. 5, and

substitute that into Eqn. 2 to give

F (X, C, θ) =

{

log((1 − q)(1 − sig(y))) if C = 0,
log(sig(y) + q(1 − sig(y))) if C = 1.

The objective function, Eqn. 1, is the sum of these quantities over all points in the dataset, D.

Derivation the partial derivatives of the objective function

We now derive the partial derivatives of the objective function for a single sequence,

F (X, C, θ) = log(Pr(C|X, θ)),

with respect to the reparameterized θ =< W, Wλ, γ >. DEME estimates the value of γ from the fraction

of positive sequences in the input dataset and treats it thereafter as a constant, so we do not derive the

partial derivatives with respect to it.

The relationship of the real model parameters to W and Wλ is as follows. Firstly, DEME maps W to an

“observed” PSFM, f ,

fa,i =
exp(Wa,i)

Zi

, (10)
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where fa,i is the observed frequency of a letter a in position i and Zi is a normalising constant for the

column i,

Zi =
∑

a

exp(Wa,i). (11)

Secondly, DEME converts the observed frequencies, f , to “observed counts”, N, by multiplying by the

number of positive sequences predicted to contain a site, λNp, where Np is the number of sequences in the

positive class (C = 1) in the input dataset, giving

Na,i = λNp · fa,i. (12)

Finally, θM is given by

θM [a, i] =
Na,i + αa,i

λNp + Ai

, (13)

where αa,i are “pseudocounts” for letter a in column i, and Ai is the sum of the pseudocounts in column i.

The mapping from Wλ to λ is

λ = sig(Wλ). (14)

Partial derivatives with respect to W

We now derive the partial derivatives of the objective function on a single sequence, log(Pr(C|X, θ)) with

respect to W. We note that that q does not depend on variables x ∈ {Wa,i}, but that function y does. So,

for x ∈ {Wa,i}, the partial derivative with respect to x is of the single-sequence objective function is

∂

∂x
F (X, C, θ) =

∂

∂x
log(Pr(C|X, θ))

=
1

Pr(C|X, θ)

∂

∂x
Pr(C|X, θ)

=
1

Pr(C|X, θ)

∂

∂y
Pr(C|X, θ)

∂y

∂x
. (15)

So we have reduced the problem to two tasks–deriving the partial derivative of y with respect to each

variable, and deriving the derivative of Pr(C|X, θ) with respect to y.

We address the second task first. When C = 0, the partial derivative of F (X, C, θ) with respect to y is

∂

∂y
Pr(C = 0|X, θ) =

∂

∂y
(1 − q)(1 − sig(y))

= −(1 − q)sig(y)(1 − sig(y))

= −sig(y)Pr(C = 0|X, θ),
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since

∂

∂x
sig(x) = sig(x)(1 − sig(x)).

Now, since Pr(C = 1|X, θ) = 1 − Pr(C = 0|X, θ), the derivative when C = 1 is just the negative of the

derivative when C = 0. Hence, derivative with respect to y for both cases is

∂

∂y
Pr(C|X, θ) =

{

−sig(y)Pr(C = 0|X, θ), if C = 0,
sig(y)Pr(C = 0|X, θ), if C = 1.

(16)

We can now rewrite Eqn. 15 as, for x ∈ {Wa,i},

∂

∂x
F (X, C, θ) =

1

Pr(C|X, θ)

∂

∂y
Pr(C|X, θ)

∂y

∂x

=



















−sig(y)
∂y

∂x
if C = 0,

sig(y)

R

∂y

∂x
if C = 1,

(17)

where R is the ratio of the posterior probabilities of the class labels,

R =
Pr(C = 1|X, θ)

Pr(C = 0|X, θ)
, (18)

which can be computed by plugging Eqn. 5 into Eqn. 18.

We now address the second task, that of deriving the partial derivatives of y with respect to the

parameters W. Since V is not a function of any of the Wa,i, and since y = log(V µ), we can write

∂y

∂Wa,i

=
1

µ

∂µ

∂Wa,i

Since

µ =
1

N

N
∑

j=1

exp(sj),

we have

∂µ

∂Wa,i

=
1

N

N
∑

j=1

exp(sj)
∂sj

∂Wa,i

. (19)

Now we derive the partial derivatives of the score functions, sj , j ∈ [1, . . . , N ], with respect to the Wa,i.

Note that the columns of θM are independent, so the partial derivative with respect to Wa,i of sj , the log

odds score for position j in the sequence, only depends on position j + i in the sequence. Let δ{} be the
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Kroenecker delta function, and is equal to one when its subscript is true, zero otherwise. Then the partial

derivatives of the log odds score functions sj with respect to the Wa,i are

∂sj

∂Wa,i

=
∂

∂Wa,i

log

(

θM [b, i]

θB [b]

)

=
θB [b]

θM [b, i]

1

θB [b]

∂θM [b, i]

∂Wa,i

=
1

θM [b, i]

1

(Np + Ai)

∂Nb,i

∂Wa,i

=
λNp

Nb,i + αb,i

∂(exp(Wb,i)/Zi)

∂Wa,i

=
λNp

Nb,i + αb,i

[

exp(Wb,i)δ{a=b}

Zi

+ exp(Wb,i)(−Z−2

i )
∂Zi

∂Wa,i

]

=
λNp

Nb,i + αb,i

[

exp(Wb,i)δ{a=b}

Zi

−
exp(Wb,i) exp(Wa,i)

Z2
i

]

=
λNp

Nb,i + αb,i

(

fb,iδ{a=b} − fb,ifa,i

)

=
Nb,i

Nb,i + αb,i

(

δ{a=b} − fa,i

)

, (20)

where b is the letter at position Xj+i. We have made the simplifying assumption that the pseudocounts,

αa,i, are constant, as they are with DNA sequences using a simple Dirichlet prior. For proteins, the

pseudocounts are a function of θM , so the above derivation is only approximate.

We can now plug and Eqn. 20 into Eqn. 19 to rewrite the partial derivatives of µ with respect to the Wa,i as

∂µ

∂Wa,i

=
1

N

N
∑

j=1

(

exp(sj)
Nb,i

Nb,i + αb,i

(

δ{a=b} − fa,i

)

)

= µa,i, (21)

where the new variables µa,i are defined for notational convenience. This allows us to rewrite the partial

derivatives of y as with respect to the Wa,i as

∂y

∂Wa,i

=
µa,i

µ
. (22)

We can now plug Eqn. 22 into Eqn. 17 to give the final equation for the partial derivatives with respect to

the Wa,i,

∂F (X, C, θ)

∂Wa,i

=



















−sig(y)
µa,i

µ
if C = 0,

sig(y)

R

µa,i

µ
if C = 1,

where R was defined in Eqn. 18.

7



Partial derivative with respect to Wλ

In this case, we note that both q and y depend on Wλ. So, when C = 0, the partial derivative of

Pr(C|X, θ) with respect to Wλ is

∂

∂Wλ

Pr(C = 0|X, θ) =
∂

∂Wλ

(1 − q)(1 − sig(y))

=
∂

∂λ
(1 − q)(1 − sig(y))

∂λ

∂Wλ

=

(

−(1− sig(y))
∂q

∂λ
− (1 − q)

∂

∂λ
sig(y)

)

∂λ

∂Wλ

= −

(

(1 − sig(y))
∂q

∂λ
+ (1 − q)

∂

∂λ
sig(y)

)

∂λ

∂Wλ

. (23)

We first note that since λ = sig(Wλ), the derivative of λ with respect to Wλ is

∂λ

∂Wλ

= sig(Wλ)(1 − sigWλ)

= λ(1 − λ).

Referring to the equation for q, Eqn. 3, we see that the partial derivative of q with respect to λ is

∂q

∂λ
=

(1 − γλ)(−γ) − γ(1 − λ)(−γ)

(1 − γλ)2

=
−γ + γ2λ + γ2 − γ2λ

(1 − γλ)2

=
γ(γ − 1)

(1 − γλ)2

Referring to the equation for y, Eqn. 6, and noting that µ is not a function of λ, the derivative of sig(y)

with respect to λ is

∂

∂λ
sig(y) = sig(y)(1 − sig(y))

∂

∂λ
log(V µ)

= sig(y)(1 − sig(y))
1

V µ
µ

∂

∂λ
V

=
sig(y)(1 − sig(y))

V

∂

∂λ

γλ

1 − γλ

=
sig(y)(1 − sig(y))

V

(1 − γλ)γ − γλ(−γ)

(1 − γλ)2

=
sig(y)(1 − sig(y))

V

γ − γ2λ + γ2λ

(1 − γλ)2

=
sig(y)(1 − sig(y))

V

γ

(1 − γλ)2

We can now substitute these equations into Eqn. 23 to yield

∂

∂Wλ

Pr(C = 0|X, θ) = −

(

(1 − sig(y))
γ(γ − 1)

(1 − γλ)2
+

(1 − q)sig(y)(1 − sig(y))

V

γ

(1 − γλ)2

)

λ(1 − λ)
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= −
γλ(1 − λ)(1 − sig(y))

(1 − γλ)2

(

(γ − 1) +
(1 − q)sig(y)

V

)

= −
λq(1 − sig(y))

1 − γλ

(

γ − 1 +
(1 − q)sig(y)

V

)

= λq(1 − sig(y))

(

(1 − q) −
(1 − q)sig(y)

γλ

)

= λq(1 − q)(1 − sig(y))

(

1 −
sig(y)

γλ

)

= q(1 − q)(1 − sig(y))(λ − sig(y)/γ). (24)

So, using Eqn. 2, we now complete the derivation of the partial derivative of F (X, C, θ) with respect to Wλ

as, when C = 0

∂F (X, C = 0, θ)

∂Wλ

=
q(1 − q)(1 − sig(y))(λ − sig(y)/γ)

Pr(C = 0|X, θ)

=
q(1 − q)(1 − sig(y))(λ − sig(y)/γ)

(1 − q)(1 − sig(y))

= q(λ − sig(y)/γ).

Rearranging Eqn. 5 we note that Pr(C = 1|X, θ) = q(1− sig(y)(1− 1/q)). Using the fact that the equation

for the partial derivative of Pr(C = 1|X, θ) is just the negative of Eqn. 24 whe have, for C = 1,

∂F (X, C = 1, θ)

∂Wλ

=
−q(1 − q)(1 − sig(y))(λ − sig(y)/γ)

Pr(C = 1|X, θ)

=
−q(1 − q)(1 − sig(y))(λ − sig(y)/γ)

q(1 − sig(y)(1 − 1/q))

=
(1 − q)(1 − sig(y))(λ − sig(y)/γ)

sig(y)(1 − 1/q)− 1
.

Therefore, the partial derivative of the objective function with respect to Wλ is

∂F (X, C, θ)

∂Wλ

=















q(λ − sig(y)/γ) if C = 0,

(1 − q)(1 − sig(y))(λ − sig(y)/γ)

sig(y)(1 − 1/q)− 1
if C = 1.

Derivations when sites can be on either DNA strand

If the positive sequence model allows sites on either DNA strand (+, positive or −, negative) with equal

probability, we write

Pr(X|T = 1, θ) =
Pr(X|T = 1, S = +, θ) + Pr(X|T = 1, S = −, θ)

2
,
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where S indicates the strand on which the motif site occurs. The first term in the numerator is identical to

the positive class-distribution in the case where sites must be on the positive (given) DNA strand. The

second term indicates when the strand occurs on the negative (reverse complement) strand.

For each DNA letter a, we write ā to indicate its complement. We make the simplifying assumption that

the background model is “balanced”, that is,

θB [a] = θB [ā] for all a ∈ Σ.

This leads to the following formula for the case when the motif site is on the negative strand:

Pr(X|T = 1, S = −, θ) =
1

N

(

L
∏

i=1

θB [Xi]

)





N
∑

i=1

w−1
∑

j=0

θM [Xi+w−1−j , j]

θB [Xi+w−1−j ]





= Pr(X|T = 0, θ)
1

N

N
∑

i=1

exp (si)

= Pr(X|T = 0, θ)µ̄,

where si is the log odds score on the reverse complement strand corresponding to position i of the positive

strand, and µ̄ is the average odds of subsequences in the reverse complement of X being site vs. non-site.

We can now write the distribution when sites can be on either DNA strand as

Pr(X|T = 1, θ) = Pr(X|T = 0, θ)
µ + µ̄

2
. (25)

It is trivial to show that, in this case,

y = log

(

V ·
µ + µ̄

2

)

,

and the equation for the objective function on one sequence in terms of y, Eqn. 2, is unchanged.

The derivation of the partial derivatives is also straightforward. The only change is the partial derivatives

of y with respect to the elements of W are now

∂y

∂Wa,i

=
1

µ + µ̄
·
∂(µ + µ̄)

∂Wa,i

=
µa,i + µa,i

µ + µ̄
,

where

∂µ̄

∂Wa,i

=
1

N

N
∑

j=1

(

exp(sj)δ{Xj+w−1−i=a}

)

= µa,i.
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This results in the following equations for the partial derivatives when the sites can be on either DNA

strand:

∂F (X, C, θ)

∂Wa,i

=



















−sig(y)
µa,i + µa,i

µ + µ̄
if C = 0,

sig(y)

R

µa,i + µa,i

µ + µ̄
if C = 1.
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