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ABSTRAGT In the squid giant axon, Sjodin and Mullins (1958), using 1 msec 
duration pulses, found a decrease of threshold with increasing temperature, 
while Guttman (1962), using 100 msec pulses, found an increase. Both results are 
qualitatively predicted by the Hodgkin-Huxley model. The threshold vs. tem- 
perature curve varies so much with the assumptions made regarding the tem- 
perature-dependence of the membrane ionic conductances that quantitative 
comparison between theory and experiment is not yet possible. For very short 
pulses, increasing temperature has two effects. (1) At lower temperatures the 
decrease of relaxation time of Na activation (m) relative to the electrical (RC) 
relaxation time favors excitation and decreases threshold. (2) For higher tem- 
peratures, effect (1) saturates, I , t  the decreasing relaxation times of Na inacti- 
vation (h) and K activation (n) 16 ~r accommodation and increased threshold. 
The result is a U-shaped thresholQ -mperature curve. R. Guttman has ob- 
tained such U-shaped curves for 50 ~ec  pulses. Assuming higher ionic con- 
ductances decreases the electrical relaxation time and shifts the curve to the 
right along the temperature axis. Making the conductances increase with tem- 
perature flattens the curve. Using very long pulses favors effect (2) over (1) 
and makes threshold increase monotonically with temperature. 

I .  I N T R O D U G T I O N  

Experimental studies on the effect of temperature on the threshold stimulating 
current  of the squid giant axon have been made by Sjodin and Mullins (1958) 
and Gut tman (1962, 1966). Sjodin and Mullins, using stimulating pulses of 1 
msec duration, found that the threshold decreased with increasing tempera- 
ture, while Gut tman  (1962), using 100 msec pulses, found that it increased. 
Gut tman  (1966), using 50 #sec pulses, finds that some fibers give a U-shaped 
curve with a minimum in the neighborhood of 15 °C. 

All the above results are predicted qualitatively by computations of the 
effect of temperature on threshold, using the Hodgkin-Huxley model (Hodg- 
kin and Huxley, 1952). However,  since the exact shape of the curve of thresh- 
old vs. temperature varies markedly, both experimentally with the condition 
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of the axon, and theoretically according to the assumptions made regarding 
the effect of temperature on ionic conductances of the membrane,  a quanti ta-  
tive agreement cannot yet be made between theory and experiment. 

I I .  E Q U A T I O N S  

Temperature  is assumed to affect the Hodgkin-Huxley (HH) equations in 
two ways. The  first (which was the only one assumed originally by Hodgkin 
and Huxley) is to multiply the rates of change-of the conductance variables 
m, h, and n by a factor 4~: 

4' = 3 (~'~'3)m ( 1 ) 

where T is the temperature in degrees centigrade. This formula gives to 
m, h, and n a Q~0 of 3. 

The  second way is to assume changes in the ionic conductances in ac- 
cordance with Moore's experiments (1958). Moore found that the Na and K 
conductances increased linearly with temperature at a rate per degree centi- 
grade which was about 4% of their values at 15°C. Moreover, his values of 
conductance were greater than Hodgkin and Huxley's at their reference 
temperature of 6.3°C. Both effects are provided for by multiplying the con- 
ductance constants gsa, g~, and, f- mathematical  simplicity, a l so  gL, i by 
the following factor ~/: 

~/ = A[1 + B ( T  - -  6.3)] .  (2) 

A is the ratio between the ionic conductances of the axon at 6.3°C and the 
values used by Hodgkin and Huxley (which they assumed to be independent  
of temperature).  A depends on the condition of the axon. Recent experiments 
by my colleagues have shown that at 6.3 °C an axon in very good condition 
may  be about four times as powerful (A = 4) as those used by Hodgkin and 
Huxley. 

The  parameter  B determines the rate of change of conductance with 
temperature. For the above figure of 4 %  quoted from Moore (1958), B = 
0.061. FitzHugh and Cole (1964) use the values A = 1.1389 and B = 0.05853, 
which were taken from a representative axon in Moore's original data. Since 
the values of A and B vary considerably from axon to axon, computations 
a r e  made here only for A = 1 and 4, B = 0 and 0.061, in order to show how 
changing A and B affects the temperature-threshold relation. 

t N o t e  that  this assumption makes the resting potential independent of temperature. Hodgkin and 
Katz (1949) and Gut tman  (1965) actually found no change of resting potential below 25°C, and 
only a alight decrease above 25°C. 
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I I I .  R E S U L T S  O F  C O M P U T A T I O N  

The stimulus assumed was a rectangular pulse of membrane  current  I and  
duration D. Two limiting cases are of importance, because they are mathe  ~ 
matically simpler than the general case. The  first is the case of an instantaneous 
shock (D ~ 0), in which I is proportional to a unit impulse or Dirac delta 
function, and the second is a step current  (D -+ oo ). 

The  first case is equivalent to displacing V from its resting value by an 
amount  proportional to the amplitude of the stimulus (the displacement being 
simply the potential change of the membrane  capacitor resulting from in- 
stantaneously applying a certain charge per unit area to the membrane)  
and keeping I = 0 thereafter. The  value of charge which is just threshold is 
denoted as Q. Fig. 1 shows Q as a function of temperature T, for the four 
assumed combinations of values of A and B. This curve has a min imum at 
an optimal value To of T. 

It  is shown below (section V) that  if B = 0, increasing A simply moves the 
whole curve to the right along the T axis without changing its shape. For a 
given value of A, increasing B flattens the curve, and also (if A > 1) increases 
the optimal temperature. For all curves the min imum value of Q is the same, 
6.51 ncoul cm -~. 

Fig. 2 shows the result of stimulating with step currents. The  threshold 
intensity (rheobase) of I, denoted as R, is plotted against temperature for the 
same four cases as in Fig. 1. These curves have no minimum; R is an increasing 
function of T. For B = 0, increasing A raises the curve and shifts it toward 
the right without otherwise changing its shape. For a given value of A, in- 
creasing B tends to increase the slope of the curve. 

A qualitative explanation in physiological terms can be given for the 
different shapes of the curves in Figs. 1 and 2. For the instantaneous shock, 
there are two effects of increasing temperature.  (1) For low temperatures, 
below To, the relaxation times r~, rh, and z~ of m, h, and n, are all large 
compared to r r ,  the electrical (RC) relaxation time of the membrane.  In- 
cr.easing T decreases all these relaxation times, but, since r~ is less than the 
other two by a factor of about ten, the effect of its decrease appears first. 
Decreasing r~ speeds up the sodium activation process, and therefore the 
excitation process which depends on it. This decreases the amount  of stimulus 
necessary to cause excitation, giving the curve of Q vs. T a negative slope. 
In  this region of the T axis, (T  < T0), rh and r .  are still both so large that 
they have little effect on excitation. (2) For T > To, r~ is so small compared 
with rv that  effect 1 saturates and a second process becomes important. ~'h 
and r .  are here small enough to affect excitation; the accommodative proc- 
esses of sodium inactivation and potassium activation, which tend to raise 
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the threshold, are accelerated with increasing temperature.  Thus  in this 
region the curve has a positive slope. The  resulting value of To, where the 
m i n i m u m  occurs, is de termined by these two antagonistic processes. If  A is 
increased, the resultant increase of conductance at all temperatures decreases 
r r  and  shifts the transition point  between effect 1 and effect 2 to higher tem- 
peratures, where the other relaxation times are correspondingly decreased. In- 
creasing B makes ~'v progressively smaller for higher temperatures,  thus 
slowing the progress of effects 1 and 2 as T is increased and flattening the 
c u r v e .  
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FIotraE 1. The charge Q contained in a threshold instantaneous current stimulating 
pulse, plotted on a logarithmic scale as a function of temperature T, for the Hodgkin- 
Huxley equations. Solid curves, B = 0 in equation (2). Broken curves, B ffi 0.061. A as 
labeled. Vertical line represents the logarithmic increase for a factor-of-two change in 
the ordinate. Circles, experimental data of Guttman (1966), reduced by one-half. 

For a step current,  which is a weaker but  longer lasting stimulus than  an 
instantaneous pulse, effect 2 always has long enough to act and overshadows 
effect 1 for all temperatures.  The  curve thus has a positive slope everywhere. 
Increasing A, and therefore the conductances,  tends to short-circuit the 
applied current,  which must  therefore be increased to excite (curve raised). 
Increasing B progressively strengthens this effect as T is increased, and makes 
the curve steeper. 

Using an intermediate pulse durat ion produces curves (Fig. 3) which are 
intermediate in form between those of Figs. l and  2. Stimulating with rec- 
tangular  current  pulses of different durat ion D and threshold ampl i tude l 
gives a strength-durat ion curve of customary shape, as shown in Fig. 4. Both 
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axes are logarithmic. For small D, the curve approaches the (broken) straight 
line with slope - 1. This line corresponds to a fixed value of total charge (Q) 
contained in the pulse, as shown in the following equations: 

O.,=ID 
(~) 

log I = log Q - log D 

In the limit, as D approaches zero, I approaches infinity, and Q is the charge 
contained in a threshold instantaneous pulse. The  fact that  the curve is nearly 
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Fmmu~ 2. Threshold value of a step stimulating current (rheobase R), plotted against 
temperature. Curves and vertical line as in Fig. 1. Ch'cle~ data of Guttman (1966). 

a straight line for D sufficiently small is expressed in the "constant quantity 
law" of nerve excitation. Q may be measured with sufficient accuracy by 
using a pulse of duration of 0.1 r or less (r is defined below). 

For large D, the curve approaches the horizontal (broken) line at I = R. 
The  intersection point of the two broken lines is at D = r. Substituting D = 
and I = R into (3) gives: 

R~ = ID  = Q ( 4 )  

r is the duration which a pulse of rheobasic amplitude would have to have in 
order to deliver the same total charge as given by the constant-quantity law. 
Such a pulse (duration r, amplitude R) is, however, subthreshold, because the 
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actual strength-duration curve lies above the intersection point by a factor 
denoted here as o-. 

The four parameters R, Q, T, and ~ help to determine the strength-dura- 
tion curve. ~ The  effect of temperature change on R, Q, and r is shown in 
Figs. 1, 2, and 5. How ~r changes with temperature has not been investigated. 
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FIGURE 3. Threshold current for a stimulating pulse of I msec duration, plotted against 
temperature. Curves and vertical line as in Fig. I. Circles, data of Sjodin and Mullins 
(1958), with arbitrary vertical position (see text). 

I V .  C O M P A R I S O N  W I T H  E X P E R I M E N T A L  D A T A  

Average values of experimental measurements by Gut tman (1966) have 
been plotted in Figs. 1, 2, and 5 for comparison with the theoretical curves. 

In Fig. 1, the values of threshold charge, averaged from six experiments 
(Guttman, personal communication) have been reduced by a factor of two 
to bring them on to the diagram. These points do not lie along a smooth 
curve of the theoretical shape, but  the scatter of points may  only reflect ex- 
perimental error on the enlarged vertical scale. The vertical arrow shows the 
logarithmic difference of ordinate corresponding to a factor of two. The  data 
from one experiment (Guttman, 1966, Fig. 5), not plotted in Fig. 1, do sug- 
gest the U shape predicted theoretically. In Fig. 2, the experimental values 
of rheobase (Guttman, 1966, Fig. 8) lie close to the theoretical curve for 
A = 4, B = 0.061. If, however, these points were lowered by a factor of two 
(vertical arrow), as in Fig. I, they would lie closer to the curve for A = 1, 

2 Two other classical parameters,  the utilization time and the chronaxie, do not seem to be so useful 
for this purpose. 
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FIGURE 4. Strength-duration curves, showing threshold current I plotted against pulse 
duration D, for three temperatures. Both scales logarithmic. Each curve approaches a 
straight ]ine with a slope of -- l ,  for very short pulses, and a horizontal straight line for 
very long pulses. The vertical position of the first line is determined by Q (Fig. 1), that 
of the second by R (Fig. 2). The two lines intersect for D = 7, the characteristic time of 
excitation. See text for meaning of 1". 
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FIO~P.~ 5. Characteristic time of excitation (~') as a function of tcmperature. Vertical 
scale logarithmic. Curves as in Fig. I. Broken straight lines fit curves over part of thcir 
range. Circles, data of Guttman (]966). 
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B = 0. In  Fig. 5, the experimental  points for r (Guttman,  1966, Fig. 7) lie 
close to the two curves for A = 1. 

Al though only an approximate  agreement  between theory and exper iment  
in Figs. 1, 9, and 5 is obtained, it does not  seem advisable to try to obtain a 
better fit, because of the difficulties of choosing between similar curves ob- 
tained by various combinations of the parameters A and B. Both in order of 
magni tude  and general shape of the curves, the computed  curves in Figs. 1, 2, 
and  5 strongly resemble the experimental  data  and account  for the general 
differences in shape seen with st imulation using long and short pulse dura-  
tions. A closer comparison would require further experimental  study of the 
conductance values and temperature-dependence of the squid giant  axon, 
preferably on those which are known to be in similar condition to those used 
for the threshold measurements.  

In  Fig. 3, the da ta  of Sjodin and Mullins (1958) have been plotted as 
circles. Since their published threshold values are not  absolute, but  relative 
to the threshold at 20 °C, the vertical position of the curve of circles in Fig. 3 
is arbitrary. In  comparison with the theoretical curves, their curve appears 
to tend toward a m i n i m u m  well to the right of the theoretical ones. With  
B = 0, increasing A raises the curve and moves the o p t i m u m  value to the 
right. I t  is possible that  their axons, which were not  in sucrose, were in a 
different condition than  Gut tman ' s  and had  a still higher value of A. However,  
since their axons were not  space-clamped (as in both Gut tman ' s  experiments 
and the computations),  it is not  certain how close an agreement  one would 
expect with the computations.  

In  Fig. 4 are shown strength-duration curves for A = 1, B = 0, at three 
temperatures.  The  values of ¢ do not  differ widely from each other (1.31 to 
1.34). Gut tman ' s  (1966) value of ~r, 1.38, is not  greatly different. 

As shown in the Appendix,  theoretical upper  and lower bounds for ¢ can 
be calculated from Young's  excitation model, the most general one for which 
an explicit formula for the strength-duration curve is available. The  bounds 
depend  on whether  the eigenvalues of the characteristic equat ion of the model  
are real or complex;  i.e., whether  the potential  transient is nonoscillatory 
or oscillatory. As shown in Table  I, the lower bound  for ~r (1.445) for the 
case of real roots (e.g., in Hill's (1936) model)  is significantly above early 
experimental  and theoretical results (see Gut tman,  1965, for discussion). 
The  lower bound for the oscillatory cases is, however, m u c h  lower. 

The  values for the Hodgkin-Huxley model  (1.31-1.34) and from Gut tman ' s  
experiments (1.38) lie wi thin  the range for complex eigenvalues, which is to 
be expected, since this model  has a pair of complex eigenvalues (as well as a 
pair  of real ones) and shows an oscillatory or unde rdamped  response to 
small stimuli (Hodgkin and Huxley, 1952). An  unde rdamped  response is 
expected when the inductive reactance of the membrane  predominates over 
the resistance (Cole, 1941). 
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V .  D E T A I L S  O F  C O M P U T A T I O N  

The  computations were done with a Honeywell 800 digital computer.  The  
differential equations were solved using Gill's modification of the fourth-order 
Runge-Kut ta  process (Gill, 1951; Romanelli,  1960). For a given step in t, 
the equations are solved once for a full step and a second time for two half- 
steps. The  two results are combined (1) to estimate the truncation error and 
(2) to improve the values of the dependent  variables at the end of the full 
step. The  step size is continually adjusted by Anderson's (1960) method to 
provide an approximately constant accumulated truncation error per unit  
time. This method uses less computing time for a given accuracy than does 

T A B L E  I 

BOUNDS FOR ¢ IN YOUNG'S  MODEL 

Accommodation 

Eigm values Bound for o" Incomplete Complete 

Real Upper  1.582 1.582 
Lower 1.445 1.445 

Complex Upper  1.582 1.445 
Lower 1.188 1.188 

specifying a constant step size in advance. A max imum step size, determined 
by trial and error, is specified to prevent instability in the numerical  method 
(Carr, 1958). To prevent excessive accumulation of round-off error when 
very short steps are used, a min imum step size is also specified, calculated by a 
formula of Gorn and Moore (1954). The  threshold is found to the desired 
accuracy by a convergent process in which repeated solutions of the equations 
are tested to determine whether  each stimulus tried is above or below thresh- 
old; i.e., whether  the resulting peak value of V is above or below 50 my. 

The  function x/[exp (x) - 1], used to compute Hodgkin and Huxley's 
functions a~ and a. ,  is indeterminate at x = 0. For I x l < 1, this function 
was computed using the expansion in Bernoulli numbers (Knopp, 1951), as 
suggested by Gorn (1962). 

Most of the threshold determinations took between 5 and 10 min of machine 
time. The  following parameter  values were used for most of the computations: 

Max imum relative threshold error 
Max imum step size in t 
Min imum step size in t 
Allowable truncation error for V 
Allowable truncation error for m, h, n 

0.5% 
1 msec 
0.001 msec 
0.001 mv/msec 
0 .01/msec 

Considerable computing time was saved, in the cases of zero and infinite 
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pulse durations, by making use of a transformation of time. The H H  equa- 
tions, with the two factors defined by (1) and (2) included, are called here 
the original equations: 

C dV/dt  = I -- ~I~ 

din~dr = q~[(1 -- m)a,~ -- rn/~,~], etc. 

(5) 

(6) 

where L, the expression for the total ionic current, is a function of m, h, and 
n, and "etc."  means that  the equations for h and n are similar in form to that 
for m (Hodgkin and Huxley, 1952). 

To transform the time variable, define 

u = ~/t. (7) 

Then  d/d t  = ~1 d/du. Substitute and rewrite (5) and (6) as the transformed 

equations: 

C dV/du = 1' -- l i  

dm/du = ~b'[(1 -- m)a,, -- ra/~,,], etc., 

(8 )  

(9) 

where, by definition, 

i ' =  I/,7 (10)  

4¢ = ~ / ~  = 3 (T'-8"3)/1° ( 11 ) 

For every solution of the original equations, there is a solution of the trans- 
formed equations, and vice versa; either one can be obtained from the other 
by use of the transformations (7), (10), (I 1). The  transformed equations do 
not contain ~/; they are of the same form as given by Hodgkin and Huxley 
(1952). If the transformed equations are solved for a number  of different 
values of T '  in (11), solutions of the original equations call be obtained for 
any combination of values of A and B in (2). From (1) and (11) comes the 
relation: 

T = T' -4- 10 log______~ ( 12 ) 
log 3 

For every value of T', one can calculate, using (12), the corresponding 
value of temperature T in the original equations, as described below. 

For the case of an instantaneous stimulus pulse, the threshold is measured 
as Q, the total charge delivered by the pulse. This quantity is not changed 
by the transformation, since, by (7) and (I0), 

fi, . = fz t = ( l z )  
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After solving the transformed equations and computing threshold, express 
Q as a function of T':  

Q = f(r') (14) 

For the c a s e A  = 1 a n d B  = 0, one has ~? = 1 and T = T', therefore 
Q = f ( T ) .  T h e  function f ( T )  is plotted in Fig. 1 for this case. For A = 4 
and B = 0, one has ~ = 4 by  (2), and, by  (12) and (14), 

Q =  f ( r - -  12.619) (15) 

The  corresponding curve in Fig. 1 differs from the first one only in that  it 
is shifted 12.619°C to the right. 

For B = 0.061, ,7 varies with T, and (12) becomes 

T' = T -- 20.959[log A + log(0.061 T + 0.6159)] (16) 

For a given value of T', T is the root of the transcendental equation (16), 
which was solved both graphically and then, for greater accuracy, numerically 
with a digital computer  by an iteration method. There are either two roots 
or none. However,  no more than one root is positive, and, since the H H  equa- 
tions are here assumed to be  valid only for temperatures greater than or 
equal to zero, only the positive root was used. 

By using the values of T obtained in this way, one plots the two curves in 
Fig. 1 for B = 0.061, A = 1 and 4. Since only the temperature values are 
transformed, not those of Q, all curves in Fig. 1 have the same minimum 
value. 

For the case of stimulation by step currents, the threshold is measured a s / ,  
which transforms according to (10). From the solutions of the transformed 
equations, I is computed as a function of T':  

F rom (10), 

z '  = g ( T ' )  (17) 

I = ~?I'= ~?g(T') (18) 

For A = 1 and B = 0, one hasy  = 1, T = T', and, therefore, I = g(T) .  
The curve of g(T)  is plotted in Fig. 2 for this case. For A = 4 and B = 0, 
one has ,1 = 4, and, by  (10), (12), and (17): 

I = 4 g ( T -  12.619) (19) 

For B = 0.061, T is found from T'  as before, by finding positive roots of 
(16), ~?(T) is calculated from (2), and I = ~?I'. 

Because the ranges of T and T'  are not identical, the points of all curves 
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could not be obtained by this method for the desired range of T. The addi- 
tional points needed were obtained by direct computation from the original 
equations. Because the transformation changes the pulse duration this 
method cannot be used to obtain the values in Fig. 3. 

Appendix 
Since no exact formula is known for the general solution of the Hodgkin-Huxley 
equations, strength-duration curves can be obtained only by computation of specific 
cases. An explicit formula can, however, be obtained for the mathematically simpler 
model of Young (1937), from which upper and lower bounds for the parameter 
can be computed. Young's model, though less complete than later ones, is still useful, 
and its connection with the HH and BVP (Bonhoeffer-Van der Pol) models is shown 
elsewhere (FitzHugh, 1966). 

The two variables of state of Young's model are called here V, the membrane 
potential, and U, the accommodation variable. I is the stimulating current applied 
to the membrane. Young's differential equations are: 

¢" = k l l ( v  - v0) + k l , ( u  - v 0 )  + a /  

fJ = k21(V-  Vo) + k ~ ( U -  Uo) + abI 
(2o) 

Vo and Uo are the resting values of V and U (steady-state values for zero/), and V0 
< U0. Excitation occurs when V = U for the first time after the application of a 
stimulus. The time course of the impulse and its recovery are not described by Young's 
model. 

To make Young's model a useful description of a nerve membrane, according to 
present ideas as embodied in the Hodgkin-Huxley model, restrictions are placed on 
the constants in (20). Assume that a positive I is eathodal and increases V, but does 
not act directly on U. The processes represented by V and U, if isolated from each 
other, would be stable. The cross-effect of increasing U is to decrease V; that of in- 
creasing V is to increase U. All these properties are expressed in the following rela- 
tions: 

Let 

a > 0, b = 0, ku < 0 ,  
(21) 

kl~ < 0, k21 > 0, k2~ < 0. 

y =  ( v -  ~ )  - ( u - u o )  
U0-Vo 

Y = 0 in the resting state. When Y = 1, excitation occurs. 
Y obeys the differential equation 

(22) 

+ P Y  + DY = EI + Fi (23) 
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where 

P = - - k l l - - k 2 2  > 0 

M = k l l k 2 2  - -  k12k21 > 0 
(24)  

F =  a/ (Uo--  Vo) > 0 

E = --F(k21 + k22) 

Let p t ,  p~ be the eigenvalues, or roots of the characteristic equation corresponding 
to (23) : 

p z + p p +  M = 0 (25) 

pt and p, are either both real or a complex conjugate pair. Real eigenvalues cor- 
respond to an overdamped, complex ones to an underdamped response to a sub- 
threshold stimulus. In  either case, since, by (24), P and M are positive, the real parts 
of pl and p2 are negative, and the singular point of (23) for constant I is stable. 

Let I be the amplitude of a step current starting at t = 0. Then 

Y(t) = I [E/M -- Clexp(plt) + C2exp(p2t)] (26) 

where 

CI - Ep21M + F EpxlM + F 
P 2 - - P l  ' C2 - p ~ - - P l  ( 2 7 )  

Now let I be the amplitud6 of a just threshold rectangular current pulse of dura- 
tion D starting at t = 0. Then, from (26) and (27): 

Y(D) = 1 = I{C1[1 -- exp(plD)] -- C~[I -- exp(psD)]} (28) 

Solve for I to get the strength-duration relation for rectangular current pulses: 

1 
I (D)  = (29 )  

C1[1 -- exp (Pl D)] -- C2[1 -- exp (p~ D)I 

Equation (29) holds only for values of D less than the time at which Y reaches 1 
for the first time; i.e., for D < Do,  where Do is the time of the first maximum in Y 
in (26) : 

exp[(p2 -- px)D0] = Clpl/C,,,.,pg. (30) 

Do is the utilization time, and I(Do) is the rheobase. For D > Do,  I(D) = I(Do). 
Suppose that I is constant and below rheobase, and Y is at its steady-state value 

EI/M. To this constant current add a just threshold instantaneous shock Q.d~(t). Then, 
by (23), Y jumps by an amount  FQ.j and 

Y(+0)  = 1 = E I / M  + FQ.t (31) 
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Solve (31) for Qj and let Q0 be its value for I = 0. From (27), 

Qo = 1 / F  = I/(C2p± -- C~pl) > 0 (32)  

Define a new parameter  Z :  

Z = (Qo -- Q~)IQoI = E l M  (33)  

Z is a measure of the steady-state accommodat ion  to a constant current,  as meas- 
ured by the change of threshold to an instantaneous added shock. I f  Z = 0, the ac- 
commoda t ion  is complete, as in Hill 's (1936) model. I f  Z > 0, it is incomplete. 
Assume that  Z > 0. Then  E = 0, and in addition to (21) there is, f rom (24), the 
assumption: 

k i t  + k22 ~ 0 (34)  

I f  p l ,  Ps are both real and negative, assume that  p~ =< p2 < 0. Then  CI ,  Ci are 
real, by (27). Assume that  the utilization time Do is positive and finite. Define p = 
p~/p2 _-> 1 and # = C1/C2. Then,  by (30), 1 < uP = Clpl/C2p2 < ~ and C, # 0. 
I f  C2 < 0, then Clpl > Clpz, contradicting (32). Therefore C, > 0. Since uP > 1, 
/~ > 0 and C1 = #C2 > 0. S incepl  < p2 < 0, (27) gives the result 0 < C2 ~_ C1, 
and g _< 1. I f Z  = 0, E = 0, C~ = C~, and ~ = 1. I f Z  > 0, E >  0, C1 # C2; 
therefore U > 1. 

The  value of D at which the two straight line asymptotes in Fig. 4 intersect is 

r = Qo/I(Do) 

T he  parameter  ~ is defined as follows: 

(35) 

u = I ( r ) / I (Do)  (36)  

Define the parameters 

0 -- (UP) I----~, n = 0 1 --  + U - -  1 ( 3 7 )  

Then,  from (24), (30), (32), (35), (37), and earlier definitions, 

exp(p2Do) = O, exp(piDo) = O/Up, 

1 
I(Do) = C2[U(1 -- O/Up) -- (I --  0)] 

1 

Qo = C2p2(1 - u p ) '  T - - p ~ ( 1  - -  pp)  

1 

I ( r )  ---- C~{exp [r//(1 --  UP)] --  U exp [or//(1 --  UP)] + U -- 1} 

(38) 
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Then,  from (36): 

003 

Tab le  I gives upper  and lower bounds on ~ as obtained by digital computa t ion  
for p > 1. T h e  bounds are the same for /z  = 1 (complete accommodat ion)  and for 
# > 1 (incomplete accommodat ion) .  

For  the case of complex conjugate roots of (25), let 

pl = --or -- i¢~, 

From (24) and (25), 

a = P / 2  > O, 

From (27), C2 = --C*. T h e n  

C I = A - - i B ,  

A = E / 2 M  >= O, 

p2 = - - a  --k ifl (40)  

= -~v/M -- / n /4  > 0 

C~ = - - A  --  iB (42)  

B - -  ( F  -- ~---a-a)/2/3 ( 4 3 )  

T h e n  from (40) and (42), 

Consider the quant i ty  ]~(0) obtained from (26): 

Y(0)  = I(C2p~ --  Cxp~) 

= --  2r  Re(Clp~) 

Re(t ipS)  = A ( a '  - fl~) + 2Bai l  

From (21), (24), (41), (43), (45), 

Re(Cxp~)  = (F /2 ) (k , x  - -  ku) > 0 

Le t  X = f l / a  > 0. T h e n  from (45) and (46), 

A(1 -- X 2)-b  2 B x  > 0 

Let  H = B / A .  If  A > 0, 

H > (X -- X- ' ) /2  

I f  A -- 0, let H = + oo, and (48) is still true. 
Define: 

(41)  

(44)  

(45) 

( 4 6 )  

(47)  

(48) 

= e x p [ 7 / ( 1  -- /~P)l -- #exp [p~ / / (1  -- #P)] - b # - -  1 ( 3 9 )  
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From (30), 

'y = 1/X = ~/~,  

q~ - arc tan  X, 

• = arcoot  H,  

r ~- (1 + ~2)112, 

(40), (42), (49): 

G = 1 / H  = A / B  

0 < 4, < ~-/2, 

0 < 0 < 1 r ,  

R = (1 + G2) 1/2. 

(49)  

pip2 = exp(2i$) ,  CIC~ = exp(2iO) (50)  

Do = (q~ + 0) / /3  (51)  

D o ,  the t ime of the first m a x i m u m  in I (D),  is positive. T h e n  cos • = (sgn G)/R,  
sin • ~ G(sgn G)/R,  where sgn G = 1 if G >- 0, sgn G = - -1  f i G  < 0. F rom (29), 
(42), (50): 

I(Do) = 1/[C1 --  C2 --  2 Re(C1 exp p~D0)] 

= 1/2BX, (52)  

where  

X = {G --  [G cos(4~ -t- O) --  sin(~ + O ) ] e x p [ - v ( ¢  -t- 0)]  } - '  

( } = G - -  G(V --  G) - -  (1 -I- q,G) (sgn G) exp [ -3 ' (q~ -t- 0 ) ]  
rR 

= {G + R(sgn  a)exp[--q, (q~ + O)] /r}  -1 

Then,  by  (32), (35), (40), (42) 

(53) 

By (29): 

T - -  
2BX BX ~b 

C~ P2 --  C1 Pl Aa  + B/3 ~ ' 

X 
- G ~ +  1 

(54) 

1 

I ( r )  = 2B[G -- (G cos ff --  sin ~b) exp (--'l,~b)] 

T h e  formula  for ~r, by  (36), is: 

( 5 5 )  

X 
= G --  (G cos ~b --  sin ~b) exp ( - -~/~)]  

( 5 6 )  

For  complete  accommodat ion ,  E = 0, A = 0, and therefore G = 0. Compu ted  
bounds for a in the case of complex roots of (25), for X > 0 and  assuming condit ion 
(48), are given in Tab le  I. 
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