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Model’s generalities 
The mathematical model is a refinement of that developed by Flahault et al [1], based 

on the adaptation of the Rvachev and Longini [2] model published by Grais et al [3]. There is 
a deterministic model in discrete time, including, in the absence of any intervention, the 
classical four compartments (Susceptible-Exposed-Infectious-Removed; SEIR). It simulates 
the epidemic at the city level, all the cities being connected by air traffic. 

In the previous model formulation [1], the entire city was treated as a homogenous 
entity without differentiation between age or risk groups. Here, each compartment was 
divided into sub-groups to take into account heterogeneities in the transmission potential or in 
the propensity to travel. A second improvement concerns the transmission rate that was 
considered as having a periodic form. However, since there are very few data available to 
differentiate transmission rates, for the current analysis we made the assumption of 
proportional mixing [4] and considered identical individual number of contacts per unit time 
for all sub-groups. The fraction of contacts resulting in transmission was also taken identical 
for all sub-groups.  

In the absence of any control measure, the principal features of the model are the 
following: 

- the model is a system of difference equations in a discrete time space (time step = 1 
day); 

- the population is divided, in the absence of any treatment, in four disease states 
(Susceptible-Exposed-Infectious-Removed) within each city i (i = 1,2, …52). Each of 
the state variables are divided into k sub-groups (k= 1,…,ki; here ki,=K=5 for all cities). 
These sub-groups may correspond to age classes or different socio-economic 
categories. The default formulation is to consider these groups as age classes (0-14, 
15-24, 25-39, 40-64 and > 64). For each city in the model the age distribution was 
obtained from the International Population Database (http://www.census.gov). As the 
age distribution of the population was not available for each city in the model, we 
assumed that the age distribution of the city was that of the country as a whole. 

- the state variables of the model for each city i are: 
o Sik(t): number of susceptible individuals on day t in class k; 
o Eik(τ, t): number of latent individuals on day t infected τ days ago in class k 

(here latency is assumed to be equivalent to incubation); 
o Iik(τ, t): number of infectious individuals on day t infected τ days ago in class k 

(here all infectious individuals are assumed to be symptomatic); 
o Rik(t): number of recovered (immune) individuals on day t in class k. 
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To follow the evolution of the disease in each city, two additional state variables 
are introduced: 
o Wik(t): number of individuals who become infectious on day t (daily incidence) 

in class k; 
o Bik(t): number of new infectious individuals in class k reported to the health 

authorities on day t (computed as a fraction of Wik(t)); 
- for each city i and for each sub-group k, the population size (nik) is assumed constant 

over time: 
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where τ1 and τ2 are the maximum length of the latent and infectious periods 
respectively. 
Since the simulation horizon was relatively short, no natural demographic dynamic 
was included. 

- the infection distributions (probability of being in a given state or transition probability 
from one state to another) are defined, by the following discrete probability 
distributions similarly to [2] 

o f(τ): the probability for an individual to be in the latent state (τ = 0,1,…, τ1, 
f(0)=1); 

o g(τ): the probability for an individual to be in the infectious state (τ = 0,1,…, τ2, 
g(0)=0); 

o h(τ): the probability for an individual to be in the removed state (τ = 0,1,…, 
τ2+1, h(0)=0); 

o γ(τ): the probability that a latent individual becomes infectious on day τ+1 
given that he was latent on day τ (τ = 0,1,…, τ1) 

• γ(τ) = 1 - f(τ+1)/ f(τ) 
o δ(τ): the probability that an infectious individual recovers on day τ+1 given that 

he was latent on day τ (τ = 0,1,…, τ2) 
• δ(τ) = 1 – [f(τ+1)+ g(τ+1)- f(τ)]/ g(τ) 

These distributions were fixed at values close to those of Rvachev and Longini 
[2], calculated to reproduce the 1968 pandemic. 

- the infection process is described in each city by a separate but identical set of 
equations. Some parameters of these equations are equal for all cities; others are 
specific for each city. 

- the global spread of influenza is modelled by a symmetric matrix connecting all the 
cities, its elements being defined as the daily passenger flow from a city to another. 
Only susceptible and latent individuals travel (infectious individual do not). 

- the model takes into account the seasonal pattern followed by influenza (high winter 
and low summer incidence in Northern hemisphere) and the delay of approximately 6 
months in influenza activity between the Northern and Southern hemispheres. Thus, 
cities are divided into three zones according to the geographical position: Northern 
hemisphere, Southern hemisphere and equatorial zone. Following standard 
formulation for including seasonality in the transmission rate in influenza models [5], 
we found the function including harmonic terms that fits original estimates of the 
transmission parameter values cited in Grais et al [3]. The formulation of this function 
is as follows: 
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We assume that transmission rates are constant over one month. To distinguish the 
Northern and the Southern hemispheres we took a shift of phase in cosine arguments 
but equal values for β1. Cities from equatorial zone are not affected by the seasonal 
trends (β1=0). β0 represents the basic rate of transmission in the absence of any 
seasonality character of transmission and β1 is the amplitude of seasonal effect. 

Modeling of interventions 
Six prevention and control measures are considered in the model. These measures are 

applied, specifically for each city and for each sub-group inside the city, from a given date or 
if the number of total reported infectious cases since the beginning of the pandemic is above a 
predefined threshold. 

1. Antiviral prophylaxis reduces the transmission rate and the probability 
corresponding to a change in state (latent -> infectious) accounting for (i) the 
reduced susceptibility of treated individuals (ii) the reduction of the probability 
of an infection to be symptomatic (and hence infectious) for a treated 
individual and (iii) the reduction of the infectiousness of infected individuals 
previously prophylactically treated. Susceptible individuals treated are given a 
single course of antivirals. Once the duration of the antiviral prophylaxis is 
finished, the individuals are assumed to re-enter the untreated susceptible 
compartment. We assume that all the prophylactically treated individuals 
continue to receive antivirals (as therapy) if they become infectious.  

2. Masks use applied to susceptible and latent people, as prophylactic 
intervention, reduces the transmission rate, illustrating the decrease in the 
probability of becoming infected for an individual using a mask given contact 
with an infectious person. Once the use of masks implemented, independently 
of the use of other prophylaxis interventions, this measure is assumed to be 
applied during the entire duration of the pandemic. 

3. Vaccination as prophylactic measure was modeled by a parameter diminishing 
the number of susceptible individuals. Two policies of administration were 
considered here. First, vaccination with pre-pandemic influenza vaccines was 
globally modeled by a coefficient affecting the number of susceptible 
individuals and representing the global effect of the policy in population. 
Second, a pandemic vaccination campaign (with vaccine updated for matching 
pandemic circulating strains) was introduced by taking into account 
vaccination coverage and vaccine efficacy. During vaccination campaign, the 
proportion of population to be vaccinated is specified daily. 

4. Limitation of air travel between cities was modeled by the reduction of the 
entries of the transportation matrix, specifically for each origin-destination city 
pair. 

5. Antiviral therapy diminishes, for infectious treated individuals, the 
transmission rate (illustrating the reduction of infectiousness of those 
individuals) and the length of the infectious period and thus the probability of 
the transition infectious -> recovered. 

6. Isolation was applied to non-treated and treated infectious individuals but not 
to latent individuals (who are not symptomatic). Isolated individuals do not 
spread infection. 

In the mathematical formulation, the implementation of these interventions results in 
the introduction of five supplementary state variables for every sub-group within each city: 
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o SP
ik(t,tp): susceptibles under antiviral prophylaxis having started their 

prophylaxis tp days ago ; 
o ( )tE P

ik ,τ : latents under antiviral prophylaxis ; 
o ( )tI T

ik ,τ : infectious under antiviral treatment ; 
o ( )tI Is

ik ,τ : isolated but non treated infectious individuals; 
o ( )tI TIs

ik ,τ : isolated and treated infectious individuals. 
Three additional compartments (Vik, SM

ik and SPM
ik) explicitly represented in the Figure 

1 of the main text are only implicitly calculated, as part of Sik, SP
ik, Eik, EP

ik dynamics.  
As the model includes all six interventions described above, simulations may be 

performed including all, none or several of the control measures implemented. When a 
specific measure is not implemented all the corresponding parameters are set to zero. 

In the current analysis the parameters related to interventions were equal for all cities.  

New infections within each city 
The infection process is generated using the standard mass action formulation. The 

number of newly infected individuals (in latent state) on day t in each class k of every city i is 
calculated as the product of the number of susceptibles, number of infectious individuals and 
the transmission rate, βijk (taken identical for all sub-groups in a city) affected by coefficients 
modelling the interventions: 
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where ni is the population of city i, M
ike  and M

ikc  are, respectively, the efficacy in the 
transmission reduction and the coverage of the masks use, ijkβ  is the transmission rate for the 

infectious individuals of group j to the susceptibles of group k and T
ije  is the treatment 

efficacy. 
Another class of latents, EP, those coming from susceptibles treated by prophylaxis, is 

also incremented each day by new infections. Since an infected individual in latent state - here 
equivalent to incubating - does not exhibit any symptom, he continues to be considered 
susceptible and hence to be given propylaxis if that was the case before infection. 
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 (4) 
where 1P

ike  represents the efficacy of the prophylaxis in reducing the transmission rate (by 
diminishing the probability of acquiring infection) and dP is the duration of a prophylactic 
antiviral treatment. 

During the same time step, the number of newly treated susceptibles by prophylaxis is 
given by: 

( ) ( )tSctS ik
P
ik

P
ik =0,          (5) 

where P
ikc  is the coverage of antiviral prophylaxis. 

Travel between cities, transportation operator 
The transportation network is quantified by passengers flows between cities: σilk 

represents the average daily passenger from city i to city l belonging to the class k. 
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Susceptible and latent individuals are assumed to travel proportionally to their fraction in each 
city. As in [2], a transportation operator is applied to the dynamics of the susceptible and 
latent persons (equations 6 and 7): 
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where L represents the number of cities, here L = 52. In both equations Tr
ikc  and Tr

lkc  represent 
the proportions of transportation that is stopped in corresponding cities. 

The same operator is applied to the susceptibles and latents treated by prophylaxis (SP 
and EP respectively). 

For each pair of cities of the network, the distribution of travellers in sub-groups is 
assumed to be equal to the mean of the two demographic distributions (those of the origin and 
de destination cities). 

Infection dynamics within and between cities 
Modelling the potential natural immunity acquired during previous infections with 

similar strains, the initial number of susceptible individuals in class k of city i is assumed to 
be a proportion αik of the population in this subgroup of the city, nik. The global potential 
effect of the pre-pandemic vaccination is integrated by a supplementary parameter vik 
affecting the number of susceptible individuals. 

( ) ikikikik nvS α=0          (8) 
The number of susceptibles at time t+1 (equation 9) is obtained from the number of 

susceptible individuals at time t, taking into account the population migration (via the 
transport operator Ω, equation 6), from which one withdraws the number of new infections 
(calculated via the mass action term detailed in equation 3), the number of newly treated 
susceptibles (equation 5) and the number of vaccinated people and adds the number of 
previously treated susceptibles who have completed the course of prophylaxis. The coverage 
and the efficacy of the pandemic vaccination campaign are V

ikc  and V
ike  respectively. 

( ) ( )[ ] ( )[ ] ( )[ ] ( ) ( ){ }0,,01,11 tStEdtStSetctS P
ikik

PP
ikik

V
ik

V
ikik −−+Ω+Ω−=+   (9) 

The dynamics of susceptibles treated by prophylaxis is obtained in a similar manner: 
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(10) 
In the computational algorithm, the initial number of latent individuals is strictly 

positive for the city representing the pandemic source only and is zero for all other cities. 
The dynamic of the latent individuals receiving or not antivirals as prophylaxis is 

given by equations (11) and (12): 
( ) ( )[ ] ( )[ ] 10,1,...,     ,11,1 1 −=Ω−=++ ττττγτ tEtE ikikik    (11) 

( ) ( )[ ] ( )[ ] 10,1,...,       ,11,1 1 −=Ω−=++ ττττγτ tEtE P
ikik

P
ik    (12). 

The next equations describe the dynamics of non-treated (equation 13), treated 
(equation 14), isolated non treated (equation 15) and isolated treated (equation 16) infectious 
individuals; two expressions are given, according to the time of infection. For the non-isolated 
non-treated or treated infectious compartments, if the delay from infection is less than the 
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maximum of latent period, τ1, the number of infectious persons at time t+1 infected τ+1 days 
ago is given by the number of latents at the previous time step (via their transportation 
operator Ω) who become infectious plus the number of infectious persons at the previous time 
step who remain infectious and minus those who are isolated. If the delay from infection is 
between the maximum length of the latent period, τ1, and the maximum length of the 
infectious period, τ2, the equation only includes the infectious individuals at the previous time 
that did not recover minus those who are isolated. The initial number of infectious individuals 
is zero for all cities.  
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In the four equations above Is
ikc  is the proportion of isolated individuals and Is

ike  is the 
efficacy of isolation. In equation (14) 2P

ike represents the efficacy of the prophylaxis on the 
probability of illness given infection. In equations 14 and 16, transition probability I->R is 
different for individuals receiving treatment ( T

ikδ ) from that of those untreated, as a 
consequence of an assumed shorter infectious period (by one day) under therapy. 

The incidence on day t+1 (equation 17) is calculated as sum of all new infectious 
(viewed as the product of the transportation operator applied to the latent individuals on day t 
and the transition probability from the latent to the infectious state). The daily reported 
incidence is simply a fraction of the daily incidence, ρik denoting the reporting rate (equation 
18). 
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