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Abstract. During mitosis in Ptkl cells anaphase is not 
initiated until, on average, 23 +_ I min after the last 
monoor iented  chromosome acquires a bipolar attach- 
ment  to the spindle--an event that may require 3 h 
(Rieder, C. L., A. Schultz, R. W. Cole, and G. Sluder. 
1994. J. Cell Biol. 127:1301-1310). To determine the na- 
ture of this cell-cycle checkpoint signal, and its site of 
production, we followed PtK~ cells by video microscopy 
prior to and after destroying specific chromosomal re- 
gions by laser irradiation. The checkpoint was relieved, 
and cells entered anaphase, 17 +- i min after the cen- 
t romere (and both of its associated sister kinetochores) 
was destroyed on the last monoor iented  chromosome. 
Thus, the checkpoint mechanism monitors an inhibitor 
of anaphase produced in the centromere of monoori-  
ented chromosomes. Next, in the presence of one 
monoor iented  chromosome, we destroyed one kineto- 
chore on a bioriented chromosome to create a second 

monoor iented  chromosome lacking an unattached ki- 
netochore.  Under  this condition anaphase began in the 
presence of the experimentally created monooriented 
chromosome 24 ___ 1.5 min after the nonirradiated 
monooriented chromosome bioriented. This result re- 
veals that the checkpoint signal is not generated by the 
attached kinetochore of a monooriented chromosome 
or throughout  the centromere volume. Finally, we se- 
lectively destroyed the unattached kinetochore on the 
last monoor iented  chromosome. Under  this condition 
cells entered anaphase 20 ___ 2.5 min after the operation, 
without congressing the irradiated chromosome. Cor- 
relative light microscopy/elctron microscopy of these 
cells in anaphase confirmed the absence of a kineto- 
chore on the unattached chromatid. Together,  our data 
reveal that molecules in or near the unattached kineto- 
chore of a monooriented PtK1 chromosome inhibit the 
metaphase-anaphase transition. 

tNETOCHORE fibers (K-fibers) 1 are bundles of dy- 
namic microtubules (MTs) formed in animal so- 
matic cells as kinetochores capture growing cen- 

trosome-nucleated MTs. These fibers tether chromosomes 
to the poles and act as force-production scaffolds for kinet- 
ochore-based chromosome motion (reviewed in Rieder, 
1990; Mclntosh, 1994; Desai and Mitchison, 1994). During 
spindle formation in animal cells K-fibers form asynchro- 
nously on sister kinetochores. As a result forming spindles 
in these cells typically contain a variable number of "mono- 
oriented" chromosomes that are attached to and posi- 
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tioned near one spindle pole. Because MT capture at the 
unattached kinetochore of a monooriented chromosome is 
a stochastic process, and because this kinetochore is posi- 
tioned a variable distance from the pole to which it must 
ultimately attach, the time required for all monooriented 
chromosomes to achieve biorientation is highly variable 
(Rieder et al., 1994). Thus, a high incidence of chromo- 
some non-disjunction would occur if the time of anaphase 
onset was determined by an invariant timing mechanism. 
To avoid this many cells have evolved a feedback mecha- 
nism, or checkpoint control (concepts reviewed in Hartwell 
and Weinert, 1989; Murray, 1994), that delays anaphase 
until the last monooriented chromosome acquires a bipo- 
lar attachment (Rieder et al., 1994). 

The checkpoint pathway that delays anaphase in re- 
sponse to monooriented chromosomes is presumably ac- 
tive by the time of nuclear envelope breakdown when the 
sister kinetochores on each chromosome begin to interact 
with centrosome-nucleated MTs to form the spindle. It is 
then turned off or "relieved" after the last monooriented 
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chromosome becomes bioriented, a process that may re- 
quire as many as several (/>3) hours in PtK1 cells (Rieder 
et al., 1994). As argued by Mclntosh (1991) this check- 
point is probably based on a negative feedback control 
that monitors monooriented rather than bioriented chro- 
mosomes; in the presence of numerous bioriented chro- 
mosomes, it is easier for the cell to distinguish one mono- 
oriented chromosome rather than to detect relatively small 
changes in the percentage of chromosomes attached in a 
bipolar fashion. Since the difference between a mono- and 
bioriented chromosome involves the attachment of its pre- 
viously unattached kinetochore to spindle MTs, it is also 
assumed that the checkpoint delaying anaphase in re- 
sponse to monoorientation monitors an activity (or lack of 
activity) associated with centromere region of the chromo- 
some that contains the sister kinetochores (e.g., Mclntosh, 
1991; Earnshaw et al., 1991; Gorbsky and Ricketts, 1993; 
Tomkiel et al., 1994; Rieder et al., 1994; Li and Nicklas, 
1995; Jang et al., 1995). However, as emphasized by Earn- 
shaw and MacKay (1994) the concept that the centromere 
region of a monooriented chromosome produces any kind 
of checkpoint signal, yet alone an inhibitory one, has never 
been directly tested. Indeed, recent experimental observa- 
tions on sea urchin zygotes suggest that the delay in 
anaphase caused by monoorientation is positively con- 
trolled by an activity asssociated with those chromosomes 
attached in a bipolar fashion (Sluder et al., 1994; see also 
Murray, 1994). 

To gain insight into the mechanism that delays anaphase 
in response to chromosome monoorientation in somatic 
animal cells we have sought to directly determine whether 
the checkpoint pathway works through a positive or nega- 
tive feedback control, and whether it involves the cen- 
tromere. Our approach has been to use a laser microbeam 
to selectively destroy specific areas on monooriented and 
bioriented chromosomes in living PtK1 cells. 

Materials and Methods 

Cell Culture 
Stock cultures of PtK1 ceils (2N = 12) were grown in 75 cm 2 T-flasks at 
37°C in MEM supplemented with nonessential amino acids and 10% fetal 
calf serum. For study the ceils were enzymatically removed from the flasks 
and pipetted into Petri dishes containing Hepes-buffered L-15 medium 
with 10% fetal calf serum and 25 mm 2 glass coverslips (Rieder et al., 
1994). After a 1-2-d incubation at 37°C the coverslips were mounted in 
Rose chambers filled with L-15 medium. These chambers allow cells to be 
viewed at high resolution yet contain enough media to support continued 
growth of the culture for several days. 

Laser Microsurgery and Video-enhanced 
Light Microscopy 
Rose chamber cultures of PtK1 cells were mounted on a NIKON Diaphot 
200 inverted microscope (Nikon, Garden City, NY) equipped with a Ludl 
MAC 2000 (Ludl Electronics Ltd., Hawthorne, NY) motorized stage. The 
cultures were maintained at 35-37°C with a Rose chamber heater (Rieder 
et al., 1994), and selected cells were followed by time-lapse differential in- 
terference contrast (DIC) video light microscopy (LM) using framing 
rates of 15-60 frames/min. The illumination, provided by a 100 W high 
pressure mercury arc lamp, was filtered with Nikon GFI 546 -+ 20 nm, 
Omega KG5 (Omega Optical, Brattleboro, VT), and Omega GG400 fil- 
ters and was shuttered between frames with a Uniblitz shutter controlled 
by IMAGE 1 software. Cells were viewed with a 60X DIC objective (NA 
= 1.4) and a 0.85 NA condenser. Video images, obtained by integrating 

two video frames directly on a Paultek P100 CCD chip (Paultek, Princeton, 
NJ) were routed through an IMAGE 1 (Universal Imaging Corp., West 
Chester, PA) image processor prior to storage on a Panasonic TQ 2028 
optical memory disk recorder. Electronic and optical noise within the sys- 
tem was eliminated by background subtraction, and recording an eight 
frame jumping average. 

The laser-based microscopic cutting system used in our study was simi- 
lar to that developed by Berns and colleagues (reviewed in Berns, 1978; 
Berns et al., 1980, 1991; Liang et al., 1994) and used D1C optics. In brief, 
the 1,064 nm output from a pulsed (5 nanosecond) Neodymium-YAG 
(yttrium-aluminum-garnet) laser (Surelite II; Continuum, Santa Clara, 
CA) was frequency doubled to 532 nm and filtered to remove stray 1,064 
nm light. This beam was then steered into the epiport of the Diaphot 200 
where it was reflected, via a custom-made Omega dichroic mirror, through 
the Wollaston prism and onto the back aperture of the Nikon 60x (NA = 
1.4) objective. The objective then focused the beam to a diffraction lim- 
ited spot. The original diameter of the laser beam was 7 mm, but in order 
to completely fill the back aperture of the objective it was increased to 10 
mm by running it several meters along the optical bench. After passing 
through the specimen the laser light was blocked in the condenser assem- 
bly by an Omega filter that reflected all wavelengths below 540 nm. 

Theoretically the waist of the laser beam at the focal point of our objec- 
tive lens can be approximated by the Bessell equation: 

waist = 1.22 h/NA (1) 

(where waist = diameter of the laser beam at focus; h = the wavelength of 
laser light in micrometers (i.e., 0.532 ixm); and NA = the numerical aper- 
ture of the objective (i.e., 1.4). This equation predicts that the spot size 
should be approximately 0.5 Ixm, and indeed direct measurements of the 
central spot in the airy disk pattern formed when the objective lens fo- 
cuses the laser beam confirms that the beam diameter is approximately 0.5 
izm (data not shown; see also Schneider and Webb, 1981). 

In our system the focused laser spot at the specimen plane was set near 
the center of a video screen, and its exact position was determined daily 
by irradiating a dried film of red blood cells (see Berns, 1978). Once lo- 
cated, the position of the laser on the video screen was marked with cross- 
hairs. Cutting was then achieved by using the Ludl motorized stage to pass 
the specimen through the fixed laser beam path, using the cross-hairs as a 
reference mark for the laser beam. Optimal chromosome cutting with our 
system was produced by operating the laser at 10 Hz with 5 ns pulses, each 
of which contained ~400 nJ of power as measured at the focal point of the 
objective lens. In practice it took ~1-2 s, or 10-20 laser pulses, to com- 
pletely sever a PtK~ chromosome across its short axis. 

Electron Microscopy 
Cells followed in vivo were fixed for electron microscopy by rapidly re- 
moving the Rose chamber from the microscope stage and exchanging the 
media with 2.5% glutaraldehyde in 0.1 M Millonig's phosphate buffer (pH 
7.3). This procedure took no longer than 15 s to complete, after which the 
culture was placed back on the microscope stage and the cell relocated, 
circled with an objective scribe, and photographed for future reference. 
After 30 min the chamber was disassembled and the cell-containing cover- 
slip was washed in phosphate buffer. After postfixation in 2% OsO4 for 1 h 
at 4°C, the cells were dehydrated up to 70% ethanol. They were then left 
in 70% ethanol containing 2% uranyl acetate for 2-12 h, prior to complet- 
ing the dehydration and flat embedding steps (see Roos, 1973). Ceils fol- 
lowed in vivo were then relocated, excised, and serially thin sectioned (see 
Rieder, 1981 for details). The ribbons of sections were collected on Form- 
var-coated slot grids and subsequently stained by uranyl acetate and lead 
citrate. The pertinent areas of each section were then photographed with a 
Zeiss 910 EM operated at 80 kV, and the sequential photographs stacked 
into a three-dimensional volume and rendered using STERECON soft- 
ware (Marko et al., 1988). 

Results 

Severing Chromosome Arms Does Not Affect the 
Timing of Anaphase Onset Relative to Biorientation of 
the Last Monooriented Chromosome 

PtK1 do not enter anaphase in the presence of monoori- 
ented chromosomes and initiate anaphase 23 -_+ 1 min after 
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Figure 1. (A-H) Selected 
video frames of a prometa- 
phase PtK~ cell proceeding 
through anaphase after the 
arms of 4 chromosomes (B- 
E, arrowheads ) were severed 
with the laser over a 1-min 
period. The last monoori- 
ented chromosome (A and B, 
white arrows) initiated con- 
gression between frames B 
and C, and the cell entered 
anaphase ,-o16 min later (G). 
A number of severed chromo- 
some arms can be seen be- 
tween the separating groups 
of anaphase chromosomes 
(H, asterisk). Time in min/sec 
at lower right corner of each 
frame. Bar, 10 i~m. 

the last monooriented chromosome biorients at 35-37°C - -  
an event that may require several hours (Table I; Rieder et 
al., 1994). To determine if laser microsurgery on chromo- 
somes influences the duration of this "metaphase" stage of 
mitosis, we severed one or both chromosome arms from 
one or more monooriented or bioriented chromosomes in 
prometaphase cells containing monooriented chromosomes 
(Fig. 1). Under these conditions the cells entered anaphase 
within a normal period of time after the last monooriented 
chromosome initiated congression (22 ± 2 min; Table I). 
Thus, laser microsurgery on prometaphase or metaphase 
chromosomes outside of the centromere region does not 
effect the timing or progression of prometaphase ceils into 
anaphase. 

Irradiating Near  A Kinetochore Does No t  Disrupt 
Chromosome Motion 

Hays and Salmon (1990) reported that irradiating a K-fiber 
near its kinetochore in grasshopper spermatocytes with 
pulsed 532 nm laser light does not effect chromosome be- 
havior. To determine if this is the case for PtK1 cells we ir- 
radiated K-fibers for 1-2 s ~0.50 Ixm in front of one of the 
kinetochores on an oscillating bioriented chromosome in 
prometaphase/metaphase cells. Such irradiation did not 

produce monoorientation or inhibit chromosome motion 
(data not shown). 

On average PtK1 chromosomes are 1.3 ± 0.1 Ixm (N = 
20; range = 1.5-1.1 t~m) wide at the primary constriction, 
and 2.0 --- 0.20 p,m (N = 70; range = 2.7-1.5 txm) wide out- 
side of this region. To clearly define the functional radius 
of damage caused by the laser in chromatin we followed 
oscillating bioriented chromosomes for several minutes 
and then used the laser to cut through the centromere, 
along the chromosome long axis. Under this condition the 
laser beam had to have approached one of the kineto- 
chores within ~<0.35 p~m (i.e., the width of the primary con- 
striction [1.25 wm] minus the diameter of the laser [0.50 
v,m] divided by 2). Using this approach we could create 
two various sized kinetochore-containing chromosome 
fragments which quickly began to move towards their re- 
spective poles (Fig. 2). When the centromere region just 
under one kinetochore was cut, the kinetochore remained 
tethered to the bulk of the chromosome by thin compliant 
chromatin strands (see also Skibbens et al., 1995). Impor- 
tantly, this kinetochore remained functional after the cut 
as evidenced by the fact that it moved poleward and then, 
after adopting a new average position, began to undergo 
the same directionally unstable behavior seen on attached 
kinetochores on monooriented chromosomes (Fig. 2). 

Table L Duration between Biorientation of the Last Monooriented Chromosome or Laser Irradiation and Anaphase Onset 
in PtK 1 Cells 

Number of cells Average and S.E. of mean Range 

Controls  
No  laser irradiat ion* 
Arm(s)  severed f r o m / >  1 chromosomes* 

Exper imenta l  
W h e n  the cent romere  on last  monoor ien ted  ch romosome  is complete ly  des t royed 
W h e n  one Kine tochore  on  a congress ing  c h r o m o s o m e  is des t royed in the presence o f  

a natural ly  monoor ien ted  ch romosome  § 
After  destruct ion o f  the unat tached  kinetochore  on the last  monoor ien ted  ch romosome  

rain min 

126 23 ¢- 1 9--48 
11 22 ± 2 14-31  

11 17 ----- 1 1 1 - 2 2  

24 24 ----- 1.5 1 5 - 4 2  
12 20 ± 2.5 7--42 

* Duration between biorientation of the last monooriented chromosome and anaphase onset (from Rieder et al., 1994). 
*From bioriented and/or monooriented chromosomes, at least one of which was cut in the presence of/> 1 monooriented chromosomes. Duration represents time between biorien- 
tation of the last monooriented chromosome and anaphase onset. 
§Timed, in the presence of the laser-generated monooriented chromosome, from biorientation of the last naturally occurring monooriented chromosome to anapbase onset. 
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Figure 2. (A-F) Selected 
video frames of a prometa- 
phase PtK 1 cell in which the 
centromere of one bioriented 
chromosome (A and B, ar- 
row) was severed (C, arrow) 
close to one of its kineto- 
chores. The focused (green 
light) laser is not visible in 
this sequence as it cuts 
through the centromere and 
chromosome arms in C. As a 
result of this operation two 
kinetochore-containing chro- 
mosome fragments were pro- 
duced. One possessed most 
of the (stiff) centromeric re- 
gion and monooriented to 
the right pole (D-F, arrow) 
where it began to undergo 
normal oscillatory motions. 

The kinetochore on the other chromosomal fragment (D-F, arrowhead) contained much less associated centromere material but re- 
mained tethered to the bulk of the chromosome by thin compliant strands of chromatin. It also moved towards its associated pole where 
it began to oscillate normally (D-F, arrow). Note that the initial laser cut (C, arrow) was very close to this kinetochore. Time in min/sec 
at lower right corner of each frame. Bar, 10 ~m. 

This functional assay reveals that laser-induced damage to 
chromatin is restricted to the width of the beam spot size. 

The Checkpoint Delaying Anaphase Is 
Relieved by Destroying the Centromere on the Last 
Monooriented Chromosome 

We have defined the centromere, for all of the experi- 
ments reported here, to be that region in the primary con- 
striction of the chromosome that lies between and includes 
the sister kinetochores. If  the delay in anaphase onset ef- 
fected by the last monooriented chromosome is associated 
with an inhibitory activity within its centromere, then 
anaphase should start on average ~<23 rain after this re- 
gion is destroyed by the laser. For  this experiment we lo- 
cated cells containing a single monooriented chromosome 
and then completely severed the chromosome through its 
centromere (Fig. 3). This operation took 1-2 s, and pro- 
duced two acentric chromosome fragments that were no 
longer attached to the spindle. Under  this condition 
anaphase was initiated on average 17 _+ 1 rain (see Table 
I) after the centromere on the last monooriented chromo- 
some was destroyed. In most cases each of the two chro- 
mosome fragments produced by the laser microsurgery 
disjoined into two separate chromatid fragments at ana- 
phase onset. The results of this experiment demonstrate 
clearly that the signal transducers delaying anaphase in re- 
sponse to monoorientat ion are located in the centromere 
of monooriented chromosomes and that they produce an 
inhibitor of the metaphase-anaphase transition. 

Anaphase Onset Is Not Delayed by Monooriented 
Chromosomes with Largely Intact Centromeres That 
Lack Unattached Kinetochores 

If the checkpoint that delays anaphase in response to chro- 
mosome monoorientat ion monitors and activity associated 
with the unattached kinetochore on a monooriented chro- 

mosome, then the presence of a monooriented chromo- 
some lacking an unattached kinetochore should not delay 
anaphase onset. Conversely, if the checkpoint monitors 
something produced by the only attached kinetochore, 
stretching within the centromere caused by biorientation 
(Mclntosh, 1991), or unequal numbers of K-fibers in op- 
posing half spindles, then a laser-generated monooriented 
chromosome with no distal (unattached) kinetochore 
should continue to inhibit anaphase onset. 

We created monooriented chromosomes with largely in- 
tact centromeres by selectively destroying one of the kine- 
tochores on a bioriented chromosome (Fig. 4). We con- 
ducted this experiment on mid-to-late prometaphase ceils 
containing one or more monooriented chromosomes so 
that we could determine whether the laser-generated mono-  
oriented chromosome delayed anaphase onset relative to 
the 23 min average period required to initiate anaphase af- 
ter biorientation of the last naturally monooriented chro- 
mosome. For  this experiment we positioned the laser 
beam in front of the most highly stretched kinetochore re- 
gion on a bioriented chromosome and irradiated for 1-2 s 
while slowly moving the chromosome towards the beam 
with the motorized stage. After  this kinetochore was de- 
stroyed the chromosome immediately changed its direc- 
tion of  motion and began moving away from the laser 
beam and towards the pole to which its undamaged kine- 
tochore was attached (Fig. 4; see also Brenner et al., 1980; 
McNeil and Berns, 1981). Once near the pole it began to 
undergo normal oscillatory motions which, in some cells, 
carried the chromosome very close to the metaphase plate. 
Anaphase  onset occurred 24 _+ 1.5 min (see Table I) after 
the last non-irradiated monooriented chromosome initi- 
ated congression, and in the presence of the laser generated 
monooriented chromosome. During anaphase one intact 
chromatid of the laser-generated monooriented chromo- 
some remained associated with the pole while the other ei- 
ther remained associated with the attached chromatid or 
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Figure 3. (A-F) Selected 
video frames of a prometa- 
phase PtK1 cell in which the 
kinetochore/centromere com- 
plex on the last monooriented 
chromosome (A, white ar- 
row) was destroyed with the 
laser by cutting the chromo- 
some through its primary 
constriction perpendicular to 
the chromosome long axis 
(B, arrowheads). The two 
acentric chromosome frag- 
ments produced by this pro- 
cedure remained at the pe- 
riphery of the spindle (C and 
D) until the cell entered ana- 
phase 11 min later (E). They 
were then found in the cyto- 
plasm between the separat- 
ing groups of anaphase chro- 
mosomes (17, asterisk). Time 
in rain/see at lower left comer 
of each flame. Bar, 10 ~m. 

f loated away into the cytoplasm. In many cases the cen- 
t romere  of the exper imenta l  chromosome was I>50% in- 
tact as evidenced by the fact that  the una t tached  chroma-  
tid was not  b roken  after chromat id  disjunction (Fig. 4). The 
results of this exper iment  reveal  that  the checkpoint  does 
not  delay anaphase  in response to unequal  numbers  of  
K-fibers in opposing half-spindles. I t  also demonstrates  that  
the checkpoint  does not  moni to r  a signal p roduced  by the 
a t tached k ine tochore  on a monoor i en ted  chromosome or  
throughout the majori ty (/>50%) of the centromere volume~ 

Destroying the Unattached Kinetochore on the Last 
Monooriented Chromosome Relieves the Checkpoint 

In our final exper iment  we sought to des t roy the unat-  
tached k ine tochore  on the last monoor ien ted  chromosome 

in late p rometaphase  cells. Fo r  this s tudy we i r radia ted  
that  region of  the last monoor ien ted  chromosome where 
the una t tached  kinetochore  was predic ted  to be for 1-2 s, 
and then followed the cell (Fig. 5). One  of two outcomes 
were then observed:  in 60% of the cells (N = 18) the chro- 
mosome bior iented  after a highly variable per iod  of  t ime 
and moved  to the spindle equator .  Since bior ienta t ion re- 
quires two functional  kinetochores ,  and since laser i rradia-  
t ion near  a k inetochore  does not  affect its behavior ,  we 
concluded that  in these cases the unat tached kinetochore  
was not  destroyed. By contrast  in 40% of the cells (N = 12) 
the chromosome remained  associated with the pole  to 
which it was monoor ien ted  and the cell en tered  anaphase  
20 --- 2.5 min after  the i r radia t ion (see Table  I). 

In one cell, not  included in Table  I, we des t royed the un- 
a t tached kinetochores  on two different  monoor ien ted  

Figure 4. (A-H) Selected 
video flames of a prometa- 
phase PtK1 cell in which one 
of the kinetochores of a 
bioriented chromosome (.4, 
arrowhead) is selectively de- 
stroyed by the laser (B) in 
the presence of a single natu- 
rally occurring monoofiented 
chromosome (A-E, arrows). 
After its right kinetochore 
was destroyed the chromo- 
some monooriented to the 
left pole (D-F, arrowhead) 
and remained associated 
with this pole until anaphase 
onset (F) which occurred 
,'~26 rain after the last natu- 
rally occurring monooriented 
chromosome (A-D, arrows) 

initiated congression (E). During anaphase one of the chromatids of the experimentally produced monooriented chromosome remained 
associated with the pole (G, arrow) while the other (G and H, arrowheads) drifted flee into the cytoplasm. Note that the flee chromatid 
is intact. Time in min/sec at lower fight corner of each flame. Bar, 10 Ixm. 
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chromosomes. At  the beginning of the observational pe- 
riod this cell contained one monooriented chromosome at 
each spindle pole. Initially we irradiated the area contain- 
ing the unattached kinetochore on one of the chromo- 
somes. Both chromosomes were still monooriented 69 min 
later. At  this time we then irradiated the unattached kine- 
tochore on the other monooriented chromosome. After 
this irradiation the cell entered anaphase 16 min later, and 
in the presence of both laser-irradiated monooriented 
chromosomes (data not shown). 

One of the cells that entered anaphase in the presence 
of a laser-irradiated monooriented chromosome (Fig. 5) 
was fixed and processed for EM. A three-dimensional re- 
construction from serial sections revealed that this chro- 
mosome possessed only one kinetochore (Fig. 6). 

Discussion 

The primary goals of our study were to determine if the 
signal that prevents anaphase in response to chromosome 
monoorientat ion in vertebrate somatic cells is a negative 
"wait anaphase" signal produced in the centromere of the 
monooriented chromosome, and if so whether it is gener- 
ated throughout the centromere, and/or in the attached or 
unattached kinetochores. To achieve these goals we used a 
laser to destroy specific regions of chromosomes in living 
PtK1 cells, and then followed the behavior of the cells by 
time-lapse video microscopy. As reported by Berns and 
others (e.g., Rat tner  and Berns, 1974; Brenner et al., 1980; 
McNeil and Berns, 1981; Rieder et al., 1986; Hays and 
Salmon, 1990; Liang et al., 1994; Skibbens et al., 1995) a 
pulsed N d : Y A G  laser can be used to destroy chromatin 
and chromosome-associated organelles in living untreated 
cells without damage to other spindle components includ- 
ing MTs and centrosomes. Why chromatin is so sensitive 
to destruction with pulsed visible laser light remains to be 
determined (Berns et al., 1980). 

Our  control experiments confirm Hays and Salmon's 
(1990) finding that irradiating K-fibers near kinetochores 
on bioriented chromosomes with 532 nm laser light does 
not inhibit chromosome motion or lead to monoorienta-  

tion. We also found that extensive laser microsurgery on 
the arms of monooriented or biorienting chromosomes 
does not affect the timing of anaphase onset after the last 
monooriented chromosome biorients (see Table I). Fi- 
nally, using kinetochore behavior as a functional assay, 
our control work indicates that the damage created in the 
chromosome by the laser is restricted to the 0.5-1~m diam 
irradiated area. We base this contention on our observa- 
tions that sister kinetochore(s) exhibit normal behavior 
when one of the chromosome arms is severed 0.25--0.50 
ixm from the centromere (data not shown); that an unat- 
tached kinetochore on a monooriented chromosome can 
still attach when the chromosome is irradiated in its imme- 
diate vicinity (e.g., in those cases where the last monoori-  
ented chromosome congressed after we shot at but missed 
its unattached kinetochore); and that kinetochores exhibit 
normal behavior when the laser beam hits 0.35 txm from 
the kinetochore (Fig. 2). 

The Checkpoint Monitoring Bipolar 
Chromosome Attachment in Vertebrate Somatic 
Cells Is Based on an Inhibitory Signal Produced 
by Monooriented Chromosome 

The experiment in which we destroyed the centromere on 
the last monooriented chromosome allowed us to distin- 
guish whether monooriented chromosomes produce an in- 
hibitor of anaphase onset or whether bioriented chromo- 
somes produce a promoter  of anaphase. Untreated PtK1 
cells may contain one or more monooriented chromo- 
somes 3 h after nuclear envelope breakdown, and as long 
as they do, anaphase is inhibited (Rieder et al., 1994). 
However,  we found that the checkpoint was rapidly re- 
lieved after the centromere on the last monooriented 
chromosome was destroyed. The fact that the checkpoint 
was relieved by this operation clearly reveals that it is 
based on an inhibitory "wait anaphase" signal produced 
within the centromere of monooriented (or unattached) 
chromosomes. 

We also found that PtK1 cells entered anaphase signifi- 
cantly faster (with a 95% confidence level using the 

Figure 5. (A-F) Selected 
video frames of a prometa- 
phase PtK1 cell in which the 
unattached kinetochore on 
the last monooriented chro- 
mosome (A, arrow) was de- 
stroyed by the laser (B, ar- 
row). As in Fig. 2 the focused 
laser is not visible in this se- 
quence. The irradiated chro- 
mosome remained monoori- 
ented (C-F, arrow) until the 
cell entered anaphase (E) 
N17 min after the laser oper- 
ation. It was then fixed for a 
three-dimensional EM analy- 
sis immediately after F (see 
Fig. 6). Time in min:sec at 
lower right hand corner of 
each frame. Bar, 10 I~m. 
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Figure 6. Stereo pair of a three-dimen- 
sional surface-rendered ultrastruc- 
rural reconstruction, generated from 
serial thin sections, of the centromere 
region on the laser-irradiated mono- 
oriented chromosome pictured in 
anaphase in Fig. 5. In this reconstruc- 
tion the chromatin is blue and the sin- 
gle (attached) kinetochore is orange. 
The two green patches are the nucle- 
olaf organizers that are positioned 
very near the centromere on the op- 
posing chromatids of the small X 
chromosome (Shaw and Krooth, 
1964). Only one kinetochore could be 
found in the complete serial series 
through this chromosome and it was 
attached to its associated pole by 16 
microtubules. Bar, 1.0 i~m. 

Kruskal-Wallis one-way nonparametric ANOV) when the 
centromere on the last monooriented chromosome was 
destroyed (average [av.] 17 min) relative to when it was al- 
lowed to become naturally bioriented (av. 23 min; see Ta- 
ble I). A similar relationship was found when the unat- 
tached kinetochore on the last monooriented chromosome 
was destroyed by the laser. However, under this latter con- 
dition the time difference between the exerpimental (av. 
20 min) and controls (av. 23 min) was not statistically sig- 
nificant because of a high standard error in the experimen- 
tal data set (see Table I). This timing difference between 
our control and experimental cells indicates that the "wait 
anaphase" signal produced in the centromere is only grad- 
ually shut off once the chromosome becomes naturally 
bioriented. 

The Signal Delaying Anaphase Onset Is 
Produced at or near the Unattached Kinetochore 
of a Monooriented Chromosome 

The inhibitor of anaphase produced in the centromere of 
monooriented chromosomes could be generated between 
the sister kinetochores (e.g., Mclntosh, 1991; Earnshaw et 
al., 1991; Bernat et al., 1991), in the unattached kineto- 
chore (e.g., Gorbsky and Ricketts, 1993; Tomkiel et al., 
1994; Campbell and Gorbsky, 1995), in the attached kine- 
tochore, or in all three. By destroying one attached kine- 
tochore on a bioriented chromosome we could generate 
monooriented chromosomes that separated at anaphase 
onset into two intact chromatids, only one of which con- 
tained a functional kinetochore. For these chromosomes 
to separate into two complete chromatids, and not one 
chromatid and two chromatid fragments, />50% of the 
original centromere had to be structurally intact. We 
found that these laser-generated monooriented chromo- 
somes did not delay anaphase, thus demonstrating that the 
"wait anaphase" signal is produced primarily at or near 

the unattached kinetochore (which is missing from these 
chromosomes). This conclusion is supported by our subse- 
quent finding that a monooriented chromosome which 
had never been bioriented does not delay anaphase onset 
after its unattached kinetochore is destroyed by the laser 
(Figs. 5 and 6). 

The primary event associated with kinetochore attach- 
ment that gradually turns off the signal transducers inhib- 
iting anaphase in somatic vertebrate cells remains to be 
determined. The most logical candidate is the acquisition 
of MTs by the kinetochore. In this context it is possible 
that the "wait anaphase" signal is produced by unoccupied 
MT binding sites within the kinetochore that become pro- 
gressively filled with MTs as the nascent K-fiber matures 
over time. In mantid spermatocytes the failure of one X 
chromosome to pair as a XXY trivalent leads to a mono- 
oriented X univalent, lacking an unattached kinetochore, 
that checkpoints the cell in metaphase (Li and Nicklas, 
1995). In this meiotic system anaphase is inhibited even 
though all of the kinetochores are attached to the spindle. 
The fact that anaphase can then be induced in these sper- 
matocytes by pulling on the univalent X chromosome (Li 
and Nicklas, 1995) clearly reveals that the checkpoint is re- 
lieved when the kinetochore/chromosome junction on the 
X univalent is placed under sufficient tension. If the check- 
point in mantid spermatocytes is based on a "wait ana- 
phase" signal produced in the kinetochore it is possible 
that tension, through its effect of stabilizing the attach- 
ment of MTs to the spermatocytes kinetochore (e.g., Ault 
and Nicklas, 1989; Nicklas and Ward, 1994), relieves the 
checkpoint by allowing the kinetochore to become fully 
saturated with MTs. However, the role of tension in re- 
lieving the checkpoint controling entry into anaphase is 
not universal since tension between homologous kineto- 
chores during meiosis in Drosophila oocytes does not pro- 
mote anaphase onset but instead leads to a metaphase ar- 
rest (Jang et al., 1995). The role of tension in the pathway 
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that monitors chromosome monoorientation in vertebrate 
somatic cells remains to be determined. Unlike mantid 
spermatocytes, monooriented chromosomes lacking unat- 
tached kinetochores in vertebrate somatic cells do not in- 
hibit anaphase (our Figs. 4-6). In this respect it is possible 
that the tension experienced by the only and attached ki- 
netochore on our experimentally created monooriented 
chromosomes is sufficient, e.g., due to the antagonistic ac- 
tion of kinetochore-based poleward pulling forces and 
away-from-the-pole aster ejection forces (see Rieder and 
Salmon, 1994), to turn off production of the "wait ana- 
phase" signal. Alternatively, abrogation of the "wait ana- 
phase" signal upon kinetochore attachment in vertebrate 
somatic cells may have more to do with structural changes 
induced in the kinetochore as it acquires MTs (e.g., con- 
densation of the single large kinetochore plate into a smaller 
trilaminar structure; see Rieder, 1982; Cassimeris et al., 
1990) than with tension. 

Our conclusion that unattached kinetochores in verte- 
brate somatic cells inhibit anaphase onset until they be- 
come attached to the spindle provides an important crite- 
rion for identifying potential candidates for this signal 
transducer. It is, for example, consistent with Gorbsky and 
Ricketts (1993) contention that the phosphorylated epitope 
detected in PtK1 kinetochores by the 3F2/3 antibody is in- 
volved in the checkpoint signaling pathway. This epitope is 
strongly expressed on unattached kinetochores, but its ex- 
pression becomes progressively weaker as the chromo- 
some biorients and moves to the spindle equator, and it is 
no longer detectable near the time of anaphase onset 
(Gorbsky and Ricketts, 1993). It is also consistent with our 
observation that the "wait anaphase" signal produced by 
unattached PtK1 kinetochores becomes shut off only grad- 
ually after the kinetochore attaches to the spindle. Impor- 
tantly, when microinjected into PtK1 cells the 3F2/3 antibody 
does not block chromosome biorientation or congression 
to the spindle equator, but it does significantly delay both 
the disappearance of the epitope and anaphase onset 
(Campbell and Gorbsky, 1995). 
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