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Abstract. It has been proposed that the UDP- 
Glc:glycoprotein glucosyltransferase, an endoplas- 
mic reticulum enzyme that only glucosylates improp- 
erly folded glycoproteins forming protein-linked 
GlclMan7.9- GlcNAc2 from the corresponding ungluco- 
sylated species, participates together with lectin-like 
chaperones that recognize monoglucosylated oligosac- 
charides in the control mechanism by which cells only 
allow passage of properly folded glycoproteins to the 
Golgi apparatus. Trypanosoma cruzi cells were used to 
test this model as in trypanosomatids addition of glu- 
cosidase inhibitors leads to the accumulation of only 
monoglucosylated oligosaccharides, their formation be- 
ing catalyzed by the UDP-Glc:glycoprotein glucosyl- 
transferase. In all other eukaryotic cells the inhibitors 
produce underglycosylation of proteins and/or accumu- 
lation of oliogosaccharides containing two or three glu- 
cose units. Cruzipain, a lysosomal proteinase having 

three potential N-glycosylation sites, two at the cata- 
lytic domain and one at the COOH-terminal domain, 
was isolated in a glucosylated form from cells grown in 
the presence of the glucosidase II inhibitor 1-deoxy- 
nojirimycin. The oligosaccharides present at the single 
glycosylation site of the COOH-terminal domain were 
glucosylated in some cruzipain molecules but not in 
others, this result being consistent with an asynchro- 
nous folding of glycoproteins in the endoplasmic reticu- 
lum. In spite of not affecting cell growth rate or the 
cellular general metabolism in short and long term in- 
cubations, 1-deoxynojirimycin caused a marked delay 
in the arrival of cruzipain to lysosomes. These results 
are compatible with the model proposed by which 
monoglucosylated glycoproteins may be transiently re- 
tained in the endoplasmic reticulum by lectin-like an- 
chors recognizing monoglucosylated oligosaccharides. 

T 
RANSFER of the oligosaccharide Glc3Man9GlcNAc2 
from a dolichol-P-P derivative to nascent polypep- 
tide chains is followed by the immediate removal of 

the glucose units. Two glucosidases have been described to 
be involved in this process: glucosidase I, an et(1, 2) glu- 
cosidase that removes the more external residues and glu- 
cosidase II, an e~(1,3)glucosidase responsible for removal 
of the other two units. All reactions mentioned above have 
been described to occur in the lumen of the endoplasmic 
reticulum. One or two mannose units may be cleaved in 
the same subcellular location (Fig. 1 a) (21). 

An additional processing reaction also occurring in the 
endoplasmic reticulum is the transient glucosylation of 
high mannose-type, protein-linked oligosaccharides: as de- 
scribed to occur in mammalian cells GlclMan9GlcNAc2, 
GlclMansGlcNAc2 and GlclMan7GlcNAc2 are formed from 
the corresponding unglucosylated compounds (Fig. 1 a) 
(32, 33). The newly added glucose units are immediately 
removed by glucosidase II, as the glucoses are linked to the 
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same mannose and with the same bond as in GlclMan9- 
GlcNAc2-P-P-dolichol. The glucosylating enzyme (UDP- 
Glc:glycoprotein glucosyltransferase) has been detected in 
mammalian, plant, fungal, and protozoan cells (38). The 
enzyme appeared to be a soluble protein of the lumen of the 
endoplasmic reticulum and to have a remarkable property: 
it glucosylated in cell-free assays denatured glycoproteins 
whereas native species or glycopeptides were not glucosy- 
lated (12, 36, 38--40). Recognition by the glucosyltrans- 
ferase of a protein domain only exposed in denatured con- 
formations was required for the transfer reaction (36). The 
glucosyltransferase behaved, therefore, as a sensor of un- 
folded, partially folded and misfolded conformations. 

Proteins entering the secretory pathway acquire their fi- 
nal tertiary and in some cases also quaternary structures in 
the lumen of the endoplasmic reticulum. Species that fail 
to fold properly are retained in that subcellular location 
where they are proteolytically degraded (24). A very strin- 
gent quality control is therefore required to prevent pas- 
sage of misfolded proteins to the Golgi cisternae. A model 
for such quality control applicable to glycoproteins has 
been recently proposed (16, 18). According to it, high 
mannose-type oligosaccharides in the endoplasmic reticu- 
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Figure 1. Initial glycoprotein processing reactions occurring in 
mammalian (a) and T. cruzi (b) cells. G stands for glucose; M for 
mannose; GNAc for N-acetylglucosamine; D for dolichol; and Pr 
for protein. 

lum shuttle between monoglucosylated and unglucosy- 
lated structures, their formation catalyzed by the UDP- 
Glc:glycoprotein glucosyltransferase and glucosidase II. A 
membrane-bound chaperone, calnexin, that has a lectin- 
like activity that recognizes the monoglucosylated oli- 
gosaccharides (16), would bind the monoglucosylated 
structures, and thus retain glycoproteins in the endoplas- 
mic reticulum as long as the protein moieties are not prop- 
erly folded. On attaining the correct native conformations, 
glycoproteins would become substrates for the glucosidase 
but not for the glucosyltransferase and thus be liberated 
from the calnexin anchor. Glycoproteins would then be 
able to be transported to the Golgi apparatus. 

This model predicts that inhibition of removal of the 
glucos e units added by the glucosyltransferase would de- 
lay or abolish (depending on how tightly the lectin binds 
monoglucosylated oligosaccharides) exit of glycoproteins 
from the endoplasmic reticulum. This prediction cannot be 
tested, however, in most eukaryotic cells as glucosidase II 
is responsible for removal of both a(1,3)-linked glucose 
units. Moreover, known inhibitors of glucosidase II also 
inhibit glucosidase I (21). Addition of those drugs to cells 
leads to the accumulation of oligosaccharides having two 
or three glucoses that are not recognized by calnexin (16, 
17, 20). 

The prediction can be tested, however, in trypanosoma- 
tid protozoa. These parasites are the only known wild-type 
cells in which unglucosylated olgiosaccharides are trans- 
ferred in vivo to nascent polypeptide chains and, there- 
fore, only monoglucosylated oligosaccharides are formed 
in them (28). Initial glycoprotein processing reactions oc- 
curring in Trypanosoma cruzi cells are depicted in Fig. 1 b 
(31). The main drawback encountered with trypanosoma- 
tids when studying intracellular transit of glycoproteins is 
that there are almost no known glycoproteins that fulfill 
two basic requisites for this study, that is, to be synthesized 
in sufficient amounts to allow checking if in vivo they are 
indeed glucosylated, and to be soluble secreted or lysoso- 
mal glycoproteins to allow testing the effect of retention of 
glucose units on the time required for arrival to their final 
destinations. 

In this paper, we describe the effect of inhibiting re- 

moval of glucose units exclusively added by the UDP-GIc: 
glycoprotein glucosyltransferase on the time required by 
newly synthesized cruzipain, a cysteine proteinase having 
high mannose-type oligosaccharides, to reach the lyso- 
somes (2, 8). This is practically the only known trypanoso- 
matid glycoprotein that fulfills the above mentioned requi- 
sites. It is currently accepted that differences in the time 
required for arrival to their final destination among glyco- 
proteins having the same localization (external milieu, 
plasma membrane, lysosomes, etc.) reflect differences in the 
time required for leaving the endoplasmic reticulum (24). 

Materials and Methods 

Materials 
Jack bean (x-mannosidase, 1-deoxynojirirnycin (DNJ), 1 monosaccharide 
standards, bovine thyroglobulin, p-nitrophenyl-a-o-mannoside, endo-13- 
N-acetylglucosaminidase H (Endo H), trans-epoxysuccinyl-l-leucylamido 
(4-guanidino) butane (E-64) and Streptomyces griseus protease type XIV 
(Pronase) were from Sigma Chem. Co. (St. Louis, MO). Ham's F-12 me- 
dium (methionine, proline, and glycine free) was purchased from Bio- 
chrom KG (Berlin, Germany). [14C]Glucose (320 Ci/mol) was from ARC 
(St. Louis, MO) and [35S]methionine was from New England Nuclear 
(Wilmington , DE). Con A-Sepharose and Sephadex G-25 prepacked 
(NAP 10) columns were from Pharmacia (Uppsala, Sweden). 

Standards 
[14C]Man6.9GlcNAe standards from hen oviduct and [glucose-~4C]Glcl - 
ManT_9GlcNAc from rat liver microsomes were prepared as described pre- 
viously (30, 38). Treatment of [14C]Man6.gGlcNAc with ct-mannosidase 
produced ManGlcNAc and that of GlczMan7.9GlcNAc with the same en- 
zyme yielded GlclMana,sGlcNAc. 

Cells 
T. cruzi cells of the Tulahuen strain (Tul 2 stock) were grown as described 
before (7). For the purification of cruzipain, cells from a 20-ml culture 
containing 1-2 mCi of [z4C]glucose and where indicated also 6 mM DNJ 
were harvested at a density of 4-6 × 107 cells/ml and mixed with those ob- 
tained from an unlabeled culture. 

Purification and Self-Proteolysis of Cruzipain 
The proteinase was purified to homogeneity from the mixture of labeled 
and unlabeled ceils as previously described (6). It was submitted to self- 
proteolysis as before (19). 

Preparation of the COOH-Terminal Domain and of 
Glycopeptides from the Catalytic Domain 
The autolysis mixture was dialyzed against 5 mM triethylamine-acetate 
buffer, pH 7.2. The dialysate was lyophilized and the glycopeptides arising 
from the catalytic domain were separated from amino acids and small 
peptides by gel filtration chromatography through a 57 × 1.2 cm Sepha- 
dex G-10 column equilibrated against 7% 2-propanol. The COOH-termi- 
nal domain of cruzipain was separated from the undegraded enzyme by 
gel filtration through a Superose 12 column in a FPLC system as described 
before (9). 

Preparation of Endo H-sensitive Oligosaccharides from 
the COOH-Terminal Domain 
The COOH-terminal domain was incubated overnight at 37°C in 1 ml of 
0.15 M Tris-HCl buffer, pH 8.0, 5 mM CaCI2 and 15.0 mg of S. griseus pro- 
tease (Pronase). The solution was desalted through a 1.2 × 57 cm Sepha- 
dex G-10 column equilibrated with 7% 2-propanol. Material in the void 
volume was submitted to paper electrophoresis in 10% formic acid for 3 h 

1. Abbreviations used in this paper: DNJ, 1-deoxynojirimycin; Endo H, 
endo-13-N-acetylglucosaminidase H. 
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at 26 V/cm. Positively charged substances that migrated 8-20 cm to the 
cathode were eluted and treated with Endo H (0.01 U in 0.3 ml of 75 mM 
triethylamine-acetate buffer, pH 5.5, for 16 h at 37°G). The samples were 
then submitted to paper electrophoresis as above. Neutral substances rep- 
resented the sensitive compounds. 

Preparation of Endo H-sensitive Oligosaccharides from 
the Catalytic Domain 
The glycopeptides from the catalytic domain obtained as described above 
were treated with Endo H and the sensitive oligosacchafides isolated as 
performed for the oligosaccharides from the COOH-terminal domain. 

Preparation of Oligosaccharides from the 
Whole Enzyme 
Endo H-sensitive oligosaccharides from pure cruzipain were prepared as 
described above for those obtained from the COOH-terminal domain. 

Subcellular Fractionation and Cell Disruption by 
Freezing and Thawing 
Cells were ground in a mortar with silicon carbide and submitted to differ- 
ential centrifugation as described before (2). For cell disruption, by freez- 
ing and thawing, cells were twice washed with 0.25 M sucrose, 5 mM KCI 
and the pellet obtained upon a low speed centrifugation was kept frozen 
at -20°C for 48 h, after which cells were thawed and resuspended in 0.1 M 
sodium phosphate buffer, pH 7.1, 0.15 M NaC1. The suspension was cen- 
trifuged for 10 rain at 15,000 g. The supernatant was removed and the pel- 
let was resuspended in phosphate-buffered saline and sonicated. The sus- 
pension was centrifuged as above. 

Pulse Labeling of Cells with [14C]Glucose 
T. cruzi cells (1 g) from the late exponential phase were washed three 
times with 30 ml of the labeling solution described previously (11) and re- 
suspended in 80 ml of the same solution. Each tube in the assay contained 
1 ml of the suspension, 2.5 mCi of [14C]glucose (0.01 mM final concentra- 
tion) and the amounts of DNJ required to obtain molar ratios of DNJ/glu- 
cose of 0-25. Total volume was 1.2 ml. The inhibitor was added 5 rain be- 
fore the glucose. After 2 min at 28°C, incubations were stopped with 0.2 
ml of 50% trichloroacetic acid. The tubes were then heated for 2 min at 
100°C and the precipitates washed twice with 10% trichloroacetic acid and 
counted. 

Pulse-chase Labeling of T. cruzi Cells with 
[35S]Methionine 
Cells in the exponential phase (4.0 × 107 cells/ml) were harvested and 2.5 g 
of them were twice washed with Ham's  F-12 (methionine, proline, and 
glycine free) medium (10.65 g per liter) supplemented with 34.5 mg per li- 
ter of proline and 7.5 nag per liter of glycine and 1.2 g per liter of NaHCO3. 

The parasites were resuspended in 9 ml of the above indicated medium. 
The suspension was divided in halves. DNJ was added to one of them up 
to 6 mM final concentration. After 20 rain at 28°C, 2 mCi of [35S]methio- 
nine were added and both aliquots were incubated for 15 rain at 28°C. The 
suspensions were submitted to low speed centrifugations and the pellets 
were washed with 5 ml of T. cruzi normal growth medium (7) supple- 
mented with 3 mM methionine. DNJ (6 raM) was added to the medium 
used for washing cells incubated with the drug. Pellets were resuspended 
in 5 ml of the respective washing media and aliquots of 0.25 ml were with- 
drawn after 0, 5, 10, 20, 30, 50,100, 150, 200, and 300 min at 28°C. The sus- 
pensions were centrifuged and the pellets were frozen for 48 h at -20°C. 
The pellets were resuspended in 1 ml of 50 mM Tris-HCl buffer, pH 7.6, 
0.15 M NaCI, 2 mM CaC12, 2 mM MgC1 z 2 mM MnCI2 and 0.1 mM trans- 
epoxysuccinyl-L-leucylamido (4-guanidino) butane (E-64), the suspen- 
sions were then centrifuged for 10 rain at 15,000 g and the supernatants 
applied to 0.8 ml Con A-Sepharose columns. The columns were washed 
with the same buffer until no labeled substances were eluted. Cruzipain 
was eluted with 1 ml of the same buffer containing 0.5 M ct-methylmanno- 
side. The samples were desalted with Sephadex G-25 prepacked columns 
and concentrated in a Speed-Vac equipment. Samples were then submit- 
ted to SDS-containing 10% polyacrylamide gel electrophoresis and to 
autoradiography. Cruzipain-containing portions of the gels were sliced 
and counted. In the case of experiment shown in Fig, 4 c, freeze-thawed 

cells were resuspended in buffer and centrifuged. The supernatants were 
withdrawn and the pellets were resuspended in buffer, sonicated, and cen- 
trifuged again. The first and second supernatants were processed as 
above. 

Enzymatic Assays 
Cruzipain, et-mannosidase, glucosidase II, and UDP-Glc:glycoprotein glu- 
cosyltransferase were assayed as previously described (5, 23, 38, 41). For 
glucosidase II [glucoseA4C]Glcl ManT_9GlcNAc was used as substrate 
whereas for the glucosyltransferase UDP-[14C]Glc and 8 M urea-dena- 
tured thyroglobulin were employed. 

Methods 
Strong acid hydrolysis was performed in 1 M HCI at 100°C for 4 h. The 
samples were applied to a Dowex 1 (acetate form) Pasteur pipette column 
after hydrolysis. Chromatography was performed on Whatman 1 papers. 
The following solvents were used: A, 1-propanol/nitromethane/water (5:2: 
4); B, 1-butanol/pyridine/water (4:3:4); and C, 1-butanol/pyridine/water 
(10:3:3). Degradation with c~-mannosidase was as described before (11). 

Results 

Cruzipain Is Glucosylated In Vivo by the UDP-Glc: 
Glycoprotein Glucosyltransferase 

7". cruzi cells were grown in the presence or absence of 6 
mM DNJ in a medium containing [14C]glucose. Labeled 
cells were mixed with unlabeled ones and cruzipain was 
purified to homogeneity. The cysteine proteinase was then 
degraded with an unspecific proteinase (Pronase) and re- 
sulting glycopeptides were treated with Endo H. Oligosac- 
charides thus liberated were run on paper chromatogra- 
phy. The sample isolated from cells grown in the presence 
of the glucosidase II inhibitor showed peaks or shoulders 
in the position of GlclMan9GlcNAc, MangGlcNAc, Glcr  
MansGlcNAc, Man8GlcNAc , GlclMan7GlcNAc, ManTGlc- 
NAc, and Man6GlcNAc standards (Fig. 2 a) whereas cruzi- 
pain purified from cells grown in the absence of DNJ only 
showed peaks in the position of the unglucosylated stan- 
dards (Fig. 2 b). 

Oligosaccharides Linked to the Same Asparagine 
Residue Are Glucosylated in Some Cruzipan Molecules 
but Not in Others 

Cruzipain has three potential N-glycosylation sites, two in 
the catalytic domain and one in the COOH-terminal domain 
(4). Of both sites in the catalytic domain, that closer to the 
NH2 terminus is glycosylated whereas it is unknown whether 
the middle one is indeed occupied (unpublished results). 
On the other hand, it has been already established that the 
site at the COOH-terminal domain is glycosylated (9). 

As shown in Fig. 2 a, both glucosylated and unglucosy- 
lated oligosaccharides were present in cruzipain molecules 
isolated from cells grown in the presence of DNJ. Two 
possibilities may be envisaged: either only oligosaccha- 
rides at some glycosylation sites were glucosylated or, al- 
ternatively, oligosaccharides at the same glycosylation site 
were glucosylated in some cruzipain molecules but not in 
others. Oligosaccharides present at the COOH-terminal 
and catalytic domains can be easily separated because on 
self proteolysis cruzipain produces a COOH-terminal do- 
main with an apparent molecular weight of 25 kD. The 
COOH-terminal domain can be separated from glycopep- 
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Figure 2. Cruzipain oligosaccharides. The endo H-sensitive oli- 
gosaccharides were isolated from cruzipain purified from cells 
grown in the presence of [14C]glucose and DNJ (a), or in the ab- 
sence of the inhibitor (b) and run on paper chromatography in 
solvent A. For further details see Materials and Methods. Stan- 
dards: 1, GlclMan9GIcNAc; 2, GlclMansGlcNAc; 3, GlClMan7- 
GlcNAc; 9, Man9GlcNAc; 8, MansGlcNAc; 7, ManTGlcNAc; and 
6, Man6GlcNAc. 

tides generated from the NH2-terminal domain by dialysis 
and from undegraded cruzipain by gel filtration chroma- 
tography. 

The oligosaccharides at the single COOH-terminal do- 
main glycosylation site were isolated as described above 
for the whole cruzipain molecule. They were degraded 
with a-mannosidase and run on paper chromatography. 
As shown in Fig. 3 a, substances migrating as mannose, 
ManGlcNAc, GlclMan4GlcNAc, and GlclMansGlcNAc 
standards appeared as degradation products. The oligosac- 
charides at the NHE-terminal domain gave a similar pat- 
tern (Fig. 3 b). Chromatography of substances migrating 
as mannose and ManGlcNAc standards in Fig. 3 a in a dif- 
ferent solvent system confirmed the presence of mannose 
and ManGlcNAc among the degradation products (Fig. 3 
c). On the other hand, strong acid hydrolysis of the sub- 
stance migrating as the Glc,ManaGlcNAc standard in Fig. 
3 a confirmed that it was composed by N-acetylglu- 
cosamine, glucose, and mannose residues (Fig. 3 d). Treat- 
ment of oligosaccharides isolated from cruzipain purified 
from cells grown in the absence of DNJ (Fig. 2 b) with 
(x-mannosidase only produced mannose and ManGlcNAc 
(not shown). 

The presence of both the disaccharide ManGlcNAc and 
the hexasaccharide GlclMan4GlcNAc among the c~-man- 
nosidase degradation products of the oligosaccharides lo- 
cated at the COOH-terminal domain indicated that both 
glucosylated and unglucosylated species were present at 
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Figure 3. Characterization of cruzipain oligosaccharides. The oli- 
gosaccharides from the COOH-terminal (a) or catalytic (b) do- 
mains were isolated from cruzipain purified from cells grown in 
the presence of [14C]glucose and DNJ, treated with a-mannosi- 
dase, and run on paper chromatography in solvent B. (c) Sub- 
stances migrating as standards 1 and 2 in a were eluted and run 
on paper chromatography in solvent C. (d) Substances migrating 
as standard 3 in a were submitted to strong acid hydrolysis (1 M 
HC1 for 4 h at 100°C) and run on paper chromatography in sol- 
vent C. For further details see Materials and Methods, Standards: 
1, mannose; 2, ManGlcNAc; 3, GlclMan4GlcNAc; 4, GlclMans- 
GlcNAc; 5, glucose; and 6, glucosamine. 

that site: the disaccharide (with a [3-bond not cleaved by 
a-mannosidase) is indicative of the presence of unglucosy- 
lated oligosaccharides whereas the presence of GlclMan4. 
GlcNAc indicates the presence of glucosylated compounds 
(the presence of the glucose unit precludes further a-man- 
nosidase degradation, as this is an exoglycosidase). 

The proportion of glucosylated species at the COOH- 
terminal domain oligosaccharides was found to be 64%. 
The same procedure employed previously for calculating 
the proportion of glucosylated and unglucosylated oli- 
gosaccharides in whole cell glycoproteins was used now (13). 

The UDP-Glc:Glycoprotein 
Glucosyltransferase and Cruzipain Are Located in 
Different Subcellular Locations 

Although it has been firmly established that in mammalian 
cells the UDP-Glc:glycoprotein glucosyltransferase is lo- 
cated in the endoplasmic reticulum (39), it was necessary 
to establish the subcellular localization of the enzyme in T. 
cruzi cells. For this purpose parasite cells were ground 
with silicon carbide in a mortar and subsequently submit- 
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Figure 4. Subcellular distribution of en- 
zymes. (a) T. cruzi cells were ground 
with silicon carbide in a mortar and 
resulting material submitted to differ- 
ential centrifugation. UDP-Glc:glyco- 
protein glucosyltransferase and gluco- 
sidase II were assayed in the following 
fractions: 1, nuclear; 2, large granules; 
3, small granules; 4, microsomes; and 5, 
soluble. (b) T. cruzi cells were freeze- 
thawed, resuspended in buffered saline 
and centrifuged. The supernatants 
were withdrawn and the pellets were 
resuspended in buffer, sonicated, and 
centrifuged again. Cruzipain (C), c~-man- 
nosidase (M), glucosidase II (G), and 
UDP-Glc:glycoprotein glucosyltrans- 
ferase (GT) were assayed in the first 
and second supernatants. (c) T. cruzi 
cells were pulsed with [35S]methionine 
for 15 min and chased with the unla- 
beled amino acid for 300 min. Pulse 
and chase samples were freeze-thawed 
and processed as in b. The four super- 
natants were submitted to Con A affin- 

ity chromatography and material eluted with 0.5 M a-methylmannoside run on 10% polyacrylamide gel electrophoresis. FP and SP cor- 
respond to the first and second supernatants of the pulse sample and FC and SC to those of the chase one, respectively. 

ted to differential centrifugation. As depicted in Fig. 4 a, 
both UDP-Glc:glycoprotein glucosyltransferase and glu- 
cosidase II  appeared in the microsomal fraction. In mam- 
malian cells both are soluble proteins of the lumen of the 
endoplasmic reticulum, although the second one appeared 
to be loosely attached to membranes (37, 39). Most of 
cruzipain appeared in the soluble fraction when exactly 
the same fractionation procedure was employed (2). Lyso- 
somes are extremely fragile and most of them are ruptured 
when T. cruzi cells are ground with silicon carbide in a 
mortar. 

Another procedure employed for assessing the differen- 
tial localization of transient glucosylation of glycoproteins 
and cruzipain was to freeze and thaw intact T. cruzi cells 
and to assay two lysosomal enzymes, cruzipain and et-man- 
nosidase, and both enzymes responsible for transient glu- 
cosylation of glycoproteins, the UDP-Glc:glycoprotein glu- 
cosyltransferase and glucosidase II in the supernatant of a 
15,000 g for 10 min centrifugation as well as in a second su- 
pernatant obtained after resuspension, sonication, and 
centrifugation of the resulting pellet. As depicted in Fig. 4 
b, the majority of cruzipain and et-mannosidase appeared 
in the first supernatant whereas the glucosyltransferase 
and glucosidase II appeared mainly in the second one. 
This method afforded, therefore, a rapid procedure for 
separating the soluble content of the endoplasmic reticu- 
lum from that of lysosomes and was used below for assess- 
ing arrival of newly synthesized cruzipain to lysosomes. 

To confirm the reliability of the method, T. cruzi cells 
were pulsed with [35S]methionine for 15 min and chased 
for 300 min with the unlabeled amino acid. Cells were 
freeze-thawed and processed as above. The four super- 
natants (first and second from the pulse and chase sam- 
ples) were submitted to affinity chromatography in Con 
A-Sepharose columns. Material eluting with a-methylman- 

noside was run on polyacrylamide gel electrophoresis un- 
der denaturing conditions. Loss of cruzipain in the affinity 
chromatography was almost nil under the experimental 
conditions employed. Moreover, preliminary experiments 
had shown that cruzipain (that constitutes ~ 5 %  of all sol- 
uble cellular proteins) is by far the main soluble protein 
having high mannose-type oligosaccharides. As shown in 
Fig. 4 c, whereas after a 15-min pulse cruzipain appeared 
in the second supernatant, after a 300-min chase the cys- 
teine proteinase appeared mainly in the first one. In this 
case cruzipain was present as a double band, as described 
before for the mature enzyme (8). Results shown in Fig. 4 
c confirm, therefore, the reliability of the method em- 
ployed for separation of soluble proteins of the endoplas- 
mic reticulum from those present in lysosomes and indi- 
cate that the double band is the consequence of a 
posttranslational modification occurring in the Golgi ap- 
paratus or in lysosomes. 

D N J  Does No t  Af fect  T. cruzi Cell Growth Rate  or 
the Parasite General Metabolism but Partially Affects 
Cruzipain Synthesis and the Cruzipain Content  
of  Lysosomes 

DNJ did not noticeably affect T. cruzi cell growth rate 
when added at a concentration ~l,200-fold higher than 
that required for a 50% inhibition of glucosidase II (Fig. 5 
a). Samples of parasites were withdrawn from cultures 
having different cell densities and submitted to freezing 
and thawing to liberate cytosolic plus lysosomal proteins. 
The same protein concentrations were found in the super- 
natants of 15,000 g for 10 min centrifugations of inhibitor- 
containing and inhibitor-devoid samples, thus confirming 
the lack of effect of DNJ on cellular general metabolism. 
The glucosidase II inhibitor (a glucose analog) not only 
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Figure 5. The effect of DNJ on cell 
growth, general cell metabolism, 
and cruzipain content. (a) T. cruzi 
cells were grown in the presence 
(A--A) or absence (e - -e )  of 6 
mM DNJ. (a) Inset: where indi- 
cated in a (a, b and c) cells were 
withdrawn, submitted to freezing 
and thawing, and cruzipain activ- 
ity assayed in the supernatants of 
15,000 g for 10-min centrifuga- 
tions. The bars indicate the cruzi- 
pain content as compared with the 
respective controls, taken as 
100%. (b) T. cruzi cells were incu- 
bated with [14C]glucose for 2 min 
in the presence of increasing con- 
centrations of DNJ and labeled 
material insoluble in hot 10% 
trichloroacetic acid counted. For 
further details see Materials and 
Methods. 

did not affect the cellular general metabolism in long term 
incubations but also in short term ones: as depicted in Fig. 
5 b, incubation of T. cruzi cells with DNJ concentrations 
up to 23-fold higher than those of [14C]glucose for 2 min 
did not affect incorporation of label into hot 10% trichlo- 
roacetic acid insoluble material (mainly amino acids in 
proteins). This last result also strongly suggested that the 
inhibitors entered T. cruzi cells by facilitated diffusion and 
not through an hexose transporter, the same as has been 
reported to occur for the mannose analog 1-deoxyman- 
nojirimycin in mammalian cells (27). 

Nevertheless, the cruzipain total content of lysosomes 
was partially affected by the drug: as shown in Fig. 5 a, in- 
set, only 64%-75% of the proteinase was found in cells 
harvested from the DNJ-containing medium. This diminu- 
tion in cruzipain content reflected an inhibition of the syn- 
thesis of the proteinase: T. cruzi cells were pulsed for 15 
min with [35S]methionine and chased with the unlabeled 
amino acid for 300 min in the presence or absence of DNJ. 
Label in cruzipain was quantitated in both the lumen of 
the endoplasmic reticulum and in lysosomes after the ana- 
lytical procedure employed in Fig. 4 c. Results similar to 
those shown in that figure were obtained: whereas in the 
pulse samples of cells incubated with or without DNJ cruzi- 
pain appeared in the second supernatant (lumen of the en- 
doplasmic reticulum), in the chase ones the proteinase 
mainly appeared in the first supernatants (lysosomes). La- 
bel in cruzipain in both the pulse and chase samples iso- 
lated from cells incubated with DNJ was ~30% lower than 
that obtained from cells incubated without the drug. 

D N J  Causes a Delay in the Arrival o f  Cruzipain 
to Lysosomes 

T. cruzi cells were pulse chased with [35S]methionine in the 
presence or absence of DNJ, submitted to freezing and 
thawing and the supernatants of 15,000 g for 10-min cen- 
trifugations applied to Con A-Sepharose columns as de- 

scribed above for the experiment shown in Fig. 4 c. Material 
eluting with a-methylmannoside was run on polyacryl- 
amide gel electrophoresis under denaturing conditions. As 
shown in Fig. 6 a, cruzipain always appeared as a double 
band thus indicating that the lysosomal form of the en- 
zyme was being analyzed. Label in the sample devoid of 
DNJ reached a plateau after N100 min of chase, whereas 
that containing the drug did not reach it even after 300 min 
(Fig. 6 a). Quantitation of label in the bands confirmed 
this conclusion (Fig. 6 b). 

D i s c u s s i o n  

We have previously established that T. cruzi cells have a 
glucosidase II activity with characteristics similar to those 
of the mammalian enzyme, as (a) both had the same neu- 
tral optimum pH value, (b) both were more active on 
GlclMan9GlcNAc than on GlclMan4GlcNAc, and (c) sim- 
ilar amounts of the glucose analogs DNJ and castanosper- 
mine (5 ~M and 8 IxM, respectively) were required for at- 
taining a 50% inhibition of both enzymes in cell free 
assays (3, 13). 

Parasite cells grown in the presence of [14C]glucose and 
6 mM DNj, or 2.6 mM castanospermine or of both inhibi- 
tors at the same concentrations appeared to have a single 
glucose unit in N52-53% of whole cell N-linked oligosac- 
charides (13). The fact that not all the oligosaccharides ap- 
peared glucosylated could not be ascribed to the action of 
unspecific glucosidases not inhibited by the above men- 
tioned compounds and slowly acting during storage of gly- 
coproteins in their final destinations as the same percent- 
age of glucosylated oligosaccharides was obtained in 
glycoproteins isolated from cells grown in the presence of 
the drugs or in those incubated with them and [14C]glucose 
for only 60 min (13) (the doubling time for T. cruzi epi- 
mastigote cells is N36 h). Moreover, a crude microsomal 
T. cruzi fraction did not degrade GlclMan9GlcNAc in the 
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Figure 6. The effect of DNJ on the arrival of cruzipain to lysosomes. T. cruzi cells were incubated with [35S]methionine in the absence (6 
a, upper row) or presence (6 a, lower row) of 6 mM DNJ for 15 min after which they were centrifuged and incubated with the unlabeled 
amino acid. Aliquots were withdrawn after indicated chase periods, centrifuged, and submitted to freezing and thawing. The superna- 
tants of 15,000 g for 10-rain centrifugations were applied to Con A-Sepharose columns and material eluting with c~-methylmannoside 
was run on 10% polyacrylamide gel electrophoresis under denaturing conditions. (b) Portions of gels in a containing cruzipain were ex- 
cised and counted: O--O, with DNJ and Q--Q without the drug. Values obtained after 300 rain chase (9,260 cpm without DNJ and 5,743 
cpm with DNJ) were arbitrarily taken as 100%. 

presence of the inhibitors, thus strongly suggesting that all 
activities degrading the substrate were sensitive to the 
drugs (13). In addition, T. cruzi  cells were shown not to 
have the endomannosidase that liberates GlcMan from 
GlclMan7.9GlcNAc2 (13). This enzyme is not inhibited by 
castanospermine or DNJ and has been described to occur 
in the Golgi apparatus of certain mammalian cells (26). It 
may be concluded, therefore, that the percentage of ghico- 
sylated oligosaccharides found actually reflects the per- 
centage of oligosaccharides that are glucosylated in vivo. 

The oligosaccharides present at the single N-glycosyla- 
tion site of the COOH-terminal  domain of cruzipain were 
shown here to be glucosylated in some enzyme molecules 
and not in others. Therefore, the fact that only 52-53% of 
whole cell N-linked oligosaccharides were glucosylated 
was not apparently due to glucosylation being restricted to 
oligosaccharides linked to particular asparagine residues 
but to the fact that oligosaccharides linked to the same as- 
paragine residue in a glycoprotein may be glucosylated in 
some glycoprotein molecules and not in others. This result 
is consistent with the known glucosylation requirement of 
the UDP-Glc:glycoprotein glucosyl-transferase for not 
properly folded protein moieties and the fact that folding 
of proteins in the endoplasmic reticulum is an asynchro- 
nous process. It is known that time required for attaining 
the final tertiary structure may differ among molecules of 
the same species and may be related to which chaperones 
the individual glycoproteins bind during folding (10). It 
may be assumed that rapidly folding cruzipain molecules 
would be glucosylated to lower extents than slower ones. 

DNJ did not affect T. cruzi cell growth rate or the total 
content of soluble proteins. These results demonstrate that 
the inhibitor did not interfere with the parasite general 
metabolism in long term incubations. The same conclusion 

could be drawn from short term ones as no effect on the 
incorporation of label into 10% trichloroacetic acid insolu- 
ble material (mainly amino acids in proteins) was ob- 
served when p4C]glucose was added for 2 min to T. cruzi 
cultures containing up to 23-fold higher concentrations of 
DNJ than those of the added monosaccharide. 

Notwithstanding the lack of effect of DNJ on cell 
growth rate and on the parasite general metabolism, the 
inhibitor produced a 30% inhibition of cruzipain synthesis, 
a diminution in the same percentage in the lysosomal con- 
tent of the enzyme and at least a threefold increase in the 
time required for arrival of half cruzipain molecules to ly- 
sosomes. As mentioned above, it is assumed that this delay 
reflects an increased permanence of cruzipain in the endo- 
plasmic reticulum of inhibitor-containing cells. Inhibition 
of the synthesis of certain glycoproteins by DNJ has been 
observed before in mammalian cells (14, 22). The fact that 
synthesis and lysosomal content of cruzipain were dimin- 
ished to the same extent strongly suggests that compo- 
nents essential for folding, processing, and transport of the 
lysosomal enzyme precursor were not significantly af- 
fected in DNJ-treated cells and that the much more signif- 
icant increase in the time required to reach lysosomes was 
unrelated to the inhibition of synthesis. 

It is worth mentioning that it has been reported several 
years ago that addition of DNJ to mammalian cells pro- 
duced a delay in the secretion of glycoproteins or in their 
arrival to lysosomes (14, 22, 25). On the other hand, secre- 
tion of proteins as albumin was not affected by the drug, 
this result being consistent with the lack of effect on cellu- 
lar general metabolism observed in this report (25). The 
delay in glycoprotein transport cannot be ascribed in 
mammalian cells to an interaction of calnexin with glucose- 
containing glycoproteins because, as mentioned above, in 
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mammalian and yeast cells glucosidase inhibitors produce 
an accumulation of protein-linked oligosaccharides con- 
taining two or three glucose residues that are not recog- 
nized by calnexin (16, 17, 20). The delay in glycoprotein 
transport observed was probably due to a deficient glyco- 
sylation of proteins: DNJ inhibits the formation of gluco- 
sylated dolichol-P-P derivatives and produces an accumu- 
lation of lipid-linked Man9GlcNAe2 (34). Mammalian and 
fungal oligosaccharyltransferases require the presence of 
glucose units in the oligosaccharide in order to catalyze an 
efficient transfer reaction (21). In fact, in one of the re- 
ports mentioned above it was found that lysosomal en- 
zymes arriving to lysosomes in DNJ-treated cells had less 
oligosaccharide chains than under normal conditions (22). 
The inhibitory effect of DNJ on protein N-glycosylation 
was confirmed in other reports (14, 15). Folding of glyco- 
proteins in the endoplasmic reticulum is heavily depen- 
dent on the presence of oligosaccharides (18). On the 
other hand, several Saccharomyces cerevisiae mutants that 
are unable to synthesize glucosylated dolichol-P-P deriva- 
tives have been described (1, 35). The mutants accumu- 
lated and transferred to proteins Man9GlcNAc,2, the same 
as T. cruzi. Those yeast cells cannot be used for studies 
similar to those described here, however, as glycoproteins 
formed in them were found to be, as expected, heavily un- 
derglycosylated (1). Moreover, S. cerevisiae are the only 
cells described so far to be apparently devoid of the UDP- 
Glc:glycoprotein glucosyltransferase (12). 

Drawbacks encountered with mammalian and yeast 
cells were obviated in the present study because: (a) no 
glucosylated dolichol-P-P derivatives are formed in this 
parasite (29), (b) the T. cruzi oligosaccharyltransferase 
does not require the presence of glucose residues in the 
oligosaccharide in order to catalyze an efficient transfer 
reaction (3), and (c) protein-linked oligosaccharides 
formed in T. cruzi in the presence of DNJ only contain a 
single glucose residue (13). 

The results reported here are compatible with the model 
proposed for quality control of glycoprotein folding in the 
endoplasmic reticulum. It should be stressed, however, 
that not only an interaction of calnexin with cruzipain but 
also the existence in trypanosomatids of calnexin or other 
lectin-like proteins that recognize monoglucosylated oli- 
gosaccharides have not been demonstrated. Results pre- 
sented only show that retention of the single glucose residue 
added by the UDP-Glc:glycoprotein glucosyltransferase to 
high mannose-type oligosaccharides causes a delay in the 
exit of glycoproteins from the endoplasmic reticulum. If 
such lectin-like molecules occur in trypanosomatids, their 
interaction with the monoglucosylated oligosaccharides 
should be loose enough to allow glucosidase II to remove 
the glucose unit and to allow passage of properly folded 
but still glucosylated glycoproteins (as in DNJ-treated 
cells) to the Golgi apparatus. 
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