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Abstract. We have investigated the early cellular 
events that take place during the change in lineage 
commitment from hypertrophic chondrocytes to osteo- 
blast-like cells. We have induced this osteogenic differ- 
entiation by cutting through the hypertrophic cartilage 
of embryonic chick femurs and culturing the explants. 
Immunocytochemical characterization, [3H]thymidine 
pulse-chase labeling, in situ nick translation or end la- 
beling of DNA breaks were combined with ultrastruc- 
tural studies to characterize the changing pattern of dif- 
ferentiation. The first responses to the cutting, seen 
after 2 d, were upregulation of alkaline phosphatase ac- 
tivity, synthesis of type I collagen and single-stranded 

DNA breaks, probably indicating a metastable state. 
Associated with the change from chondrogenic to os- 
teogenic commitment was an asymmetric cell division 
with diverging fates of the two daughter cells, where 
one daughter cell remained viable and the other one 
died. The available evidence suggests that the viable 
daughter cell then divided and generated osteogenic 
cells, while the other daughter cell died by apoptosis. 
The results suggest a new concept of how changes in 
lineage commitment of differentiated cells may occur. 
The concepts also reconcile previously opposing views 
of the fate of the hypertrophic chondrocyte. 

YMMETRIC cell division refers to any cell division that 
produces two daughter cells with different fates 
(for a review see Horvitz and Herskowitz, 1992). 

These special types of divisions are repeatedly observed in 
the tissues of plants and invertebrates, where asymmetric 
cell divisions provide a mechanism for generating cell 
diversity during lineage commitment. In vertebrates, 
asymmetric cell divisions may be involved at branch points 
during lineage commitment, for example in human he- 
matopoietic cells (Mayani et al., 1993), in the rat corneal 
epithelium (Lamprecht, 1990) and during differentiation 
of thymocytes in the chicken, guinea pig, and mouse (Su- 
gimoto and Yasuda, 1983). Here we report that asymmet- 
ric cell divisions also occur during the phenotypic change 
from cartilage to bone-forming cells. 

This osteogenic differentiation of hypertrophic chon- 
drocytes takes place during endochondral ossification, i.e., 
the process whereby tissue that initially consists com- 
pletely of cartilage is replaced bone. Although the major- 
ity of the bone-forming cells differentiate from marrow 
stromal cells (Wolbach and Hegsted, 1952; Howlett, 1980; 
Pechak et al., 1986; Roach and Shearer, 1989; Beresford, 
1989), the notion that some hypertrophic chondrocytes 
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may also give rise bone-forming cells has been suggested 
repeatedly during the last three decades (Holtrop, 1966, 
1972; Crelin and Koch, 1967; Lufti, 1971; Shimomura et al., 
1975; Kahn and Simmons, 1977; Thesingh et al., 1986, 
1991; Weiss et al., 1987; Yoshioka and Yagi, 1988; Mos- 
kalewski and Malejczyk, 1989; Galotto et al., 1994). The 
alternative view is that all hypertrophic chondrocytes are 
terminal cells which degenerate and die (Anderson and 
Parker, 1966; Bentley and Geer, 1970; Brighton et al., 
1973; Hanaoka, 1976; Hunziker et al., 1984; Farnum and 
Wilsman, 1989; Farnum et al., 1990). 

In recent years even more compelling evidence for the 
osteogenic differentiation of chondrocytes has been ob- 
tained from a variety of in vitro systems (Strauss et al., 
1990; Closs et al., 1990; Roach, 1992a; Descalzi-Cancedda 
et al., 1992; Gentili et al., 1993). We have studied the pro- 
cess using an organ culture system of embryonic chick 
bones (Roach, 1990), where we had previously found that 
more chondrocytes could be induced to differentiate to 
bone-forming cells if the cartilage matrix was cut. This cut 
seemed to simulate the micro-mechanical changes that 
take place when cartilage matrix is resorbed in vivo. When 
cut explants of epiphyses and bone shafts were cultured 
for 12-15 d, bone matrix was present in many intact chon- 
drocytic lacunae (Roach, 1992a). Here we follow the early 
cellular events during the phenotypic change from chon- 
drocytes to bone-forming cells and show that one of the 
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crucial events is an asymmetric cell division, where the fate 
of the daughter cells diverges: one cell remains viable and 
becomes osteogenic while the other is destined to die by 
apoptosis. 

Materials and Methods 

Dissection and Organ Culture Methods 
Femurs were dissected from 14-d old chick embryos. At this stage the 
bones consist of approximately equal amount of epiphyseal cartilage and 
trabecular bone shaft with a central marrow cavity (Fig. 1). In avian bones 
the region of hypertrophic cartilage is fairly wide so that it is not difficult 
to cut through this region with a scalpel. The approximate site of the cut is 
indicated by a solid line in Fig. 1 a. The femurs were either cultured whole 
(uncut controls) or cut into three pieces, i.e., two epiphyses and one bone 
shaft. The whole or cut femurs were maintained in organ culture as previ- 
ously described (Roach, 1990, 1992b). Media were changed every 24 h 
when freshly prepared ascorbic acid (50 ~g/ml) was also added (Roach et 
al., 1985). The bones or explants were harvested after 2, 3, 4, 6, 9, and 12 d. 

Electron Microscopy 
Thin slices of material near the cut edge were either fixed in 2% glutaral- 
dehyde in neutral Na-cacodylate buffer or in 2.5% glutaraldehyde (in 0.1 M 
cacodylate buffer, pH 6.2) containing 1% Alcian blue. Alcian blue pro- 
tected proteoglycans from solubilization and preserved chondrocyte and 
matrix morphology in a similar manner to the Ruthenium hexamine 
trichloride used by Hunziker et al. (1982), provided the tissue pieces were 
very thin. The sections were postfixed in 2% osmium tetroxide and 2% 
uranyl acetate, processed for standard TEM, and embedded in Spurr's 
resin. Semithin sections were stained with toluidine blue, the ultra-thin 
sections were contrasted with lead citrate or double contrasted with ura- 
nyl acetate and lead citrate. 

Light Microscopy 
The tissues were fixed either in 4% buffered paraformaldehyde or in 85% 
ethanol. The latter was a better fixative for alkaline phosphatase activity, 
proliferating cell nuclear antigen (PCNA) 1 antigenicity (Casasco et al., 
1994) and [3H]thymidine autoradiography, whereas the aldehyde fixative 
was required for in situ detection of nuclear DNA fragmentation. Tissues 
were processed without decalcification through graded ethanols and chlo- 
roform into paraffin wax. Sequential sections were cut at 5-6 i~m (or 10- 
20 p.m for the confocal microscope) and stained by one of the following 
methods: Weigerts haematoxylin/alcian blue/sirius red (after Lison, 1954) 
was used as a nuclear stain and to distinguish bone matrix (red) from car- 
tilage matrix (blue). Alkaline phosphatase was demonstrated with an azo 
dye coupling method (modified from Bancroft and Stevens, 1982; de- 
scribed in detail in Roach and Shearer, 1989). 

Immunocytochemistry 
The following polyclonal antibodies were used: the antibody for type I 
collagen (LF-67 from Professor L. Fisher) had been raised against the hu- 
man COOH-terminal pro-peptide of the a-1 chain. This antibody detects 
pro-a- l ,  but also the fully processed a-1 chain (Fleischmajer et al., 1990). 
The osteopontin (details in McKee et al., 1990) and osteonectin (LF-8; de- 
tails in Pacifici et al., 1990) antibodies were specific for chick and were do- 
nated by Dr. Yoze Gotoh (Boston) and Professor Larry W. Fisher (Be- 
thesda), respectively. The osteocalcin antiserum (fi bovine) was a gift from 
Dr. Simon Robins (Aberdeen), and the bone sialoprotein antiserum (fi 
porcine, details in Chen et al., 1991) was kindly donated by Dr. Qi Zhang 
(Toronto). Although not specific for chick, the later two antiscra cross- 
reacted with the corresponding chick proteins. The primary antibodies 
were visualized using the avidin/biotin method with peroxidase and 
3-amino-9-ethylcarhazole (AEC). The sections were counterstained with 
0.2% Light green. Control sections were incubated with rabbit serum 
(negative control, Sigma Chem. Co., St. Louis, MO), and then treated as 
above. No staining was found in controls. Proliferating cells were identi- 

1. Abbreviations used in this paper: ALP, alkaline phosphatase; ISNT, in 
situ nick translation; PCNA, proliferating cell nuclear antigen. 

lied (a) by incubating with [3H]thymidine (2 p~Ci/ml) for 12-24 h followed 
by autoradiography of the paraffin sections and (b) by using a monoclonal 
antibody against PCNA (PC-10, DAKO).  [3H]Thymidine labels cells in 
the S-phase, whereas PCNA begins to accumulate during the G1 phase of 
the cell cycle, reaches maximal synthesis during the S-phase, and declines 
during the G2 phase (Kurki et al., 1988). 

Pulse-chase Experiments 
To determine the fate of those cells that had been in the S-phase during 
the early days of culture, [3H]thymidine was added to the culture medium 
between 24-48 h or 48-72 h. The cut or uncut bones were either harvested 
at the end of the labeling period or cultured for 6-9 d. 

Autoradiography 
Sections were dipped in photographic emulsion (K-5, Ilford, 1:1 dilution, 
45°C), exposed in a dark box at 4°C for 2 wk, developed with Kodak Dek- 
tol (2 min), and fixed with 30% Na-thiosulphate (5 min). The sections 
were either counterstained with Van Gieson after development or the au- 
toradiography was preceded by the alkaline phosphatase method, or im- 
munocytochemistry using any of the above antibodies. 

In Situ Hybridization 
A specific cDNA probe of the 5' end of the cd(I) cDNA (P1E1) was gen- 
erated by PCR (Dietz et al., 1993). The construct was linearized with Eco 
RI and transcribed in vitro using T7 RNA-polymerase (Promega South- 
ampton, England) to generate (a-35S)UTP-labeled antisense transcripts. 
Not incorporated nucleotides were separated by alcohol precipitation. In 
situ hybridization was performed as described in detail elsewhere (Aigner 
et al., 1992), Briefly, paraformaldehyde-fixed wax sections were deparaf- 
finized, digested with proteinase K (7 min, 20 ~g/ml, RT), postfixed with 
4% paraformaldehyde, and acetylated. The sections were hybridized for 
12-16 h at 43°C with the riboprobe at a final activity of 4 × 107 cpm/ml. 
After washing, the sections were treated with RNases A (20 ixg/ml) and 
T1 (50 U/ml), washed again for 2 h at 45°C, 2× SSC/50% formamide/0.5% 
13-mercaptoethanol, and then three times in 0.1× SSC at RT, followed by 
dehydration. Autoradiography was performed (Kodak NTB-2 nuclear 
track emulsion) for 4 d and sections counterstained in 5% Giemsa dye. 

In Situ Detection of DNA Breaks by Nick Translation 
or End Labeling 
Two methods were used on paraformaldehyde-fixed sections: (1) the in 
situ nick translation method (ISNT) was based on that of Oberhammer et 
al. (1993), as modified by Edwards and Tolkovsky (1994) and (2) the end- 
labeling method of Gavrieli et al. (1992). DNA polymerases (holoenzyme 
and the Klenow fragment) and terminal transferase were purchased from 
Sigma Chem. Co. None of the enzymes had any endonuclease activity. 
Nicks in the DNA breaks can be "translated" by DNA polymerase I 
which, using the other strand as a template, will incorporate labeled 
dUTP. The holoenzyme has 3'- and 5'-exonuclease activity in addition to 
its polymerase activity. This means that single-stranded "nicks" can be 
widened by removal of existing nucleotides before repair. The Klenow en- 
zyme lacks the 5'-exonuclease activity. It will label either "wide" single- 
stranded breaks or staggered double-stranded breaks. Terminal trans- 
ferase does not require a template strand and will add labeled nucleotides 
to staggered or blunt-ended double-stranded DNA breaks. 

Sections were dewaxed and hydrated, and then digested for 15 min at 
room temperature with proteinase K (5 i~g/ml in 0.1 M Tris/EDTA buffer, 
pH 8). The degree of digestion was crucial, higher concentrations of pro- 
teinase K (20 ixg/ml) resulted in labeling of almost every cell, while in ab- 
sence of proteinase K no cells were labeled, even in positive (DNase 
treated) controls. After washes, sections were refixed with 4% parafor- 
maldehyde for 20 min at 4°C, washed, and then pretreated with the re- 
spective reaction buffer for 15 min (ISNT: 50 mM Tris/HC1, pH 7.4, 10 
mM MgC12, 50 mg/ml BSA); (end-labeling: 30 mM Tris/HC1, pH 7.2, 1% 
BSA, 140 mM Na-cacodylate, 1 mM CoCI2). Samples were then incubated 
for 1 h at 37°C in 25 ~l of the respective reaction buffer containing 1 ILl 
dNTPs (DIG-labeling mix, Boehringer Mannheim Corp. UK, Lewes, En- 
gland) and the relevant enzyme (ISNT: 6 U of DNA polymerase, either 
holoenzyme or Klenow fragment); (end-labeling: 7.5 U terminal trans- 
ferase). The reaction was stopped with 50 mM TRIS/HCI, 20 mM EDTA, 
pH 7.4 (for ISNT) or 0.1 M Tris/HC1 containing 300 mM NaC1 and 30 mM 
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Na-citrate (for end labeling). After extensive washing, the incorporation 
of digoxigenin-labeled dUTP was detected using monoclonal anti-digoxi- 
genin FAB fragments, linked directly to alkaline phosphatase (Boehr- 
inger Mannheim Corp.; 1:1,000 dilution; 1-2-h incubation), followed by 
color development with NBT/BICP as recommended by the manufacturer 
(40 min). 

Controls. Positive controls were processed through proteinase K as de- 
scribed, and then treated with DNase (2 U/ml) for 1 h at RT (buffer = 30 
mM Tris/HCl, pH 7.2, 140 mM Na cacodylate, 4 mM MgCI2, 0.1 mM 
dithiothreitol). Negative controls were processed without any enzyme or 
without the anti-DIG antibody. Some negative controls were pretreated 
with DNase as above. No reaction was observed in negative controls, even 
when DNA breaks had been created with DNase. 

Results 

Location of  Chondrocytes Undergoing 
Osteogenic Differentiation 

Unlike  the mammal ian  growth plate  where the hyper-  
t rophic zone consists of a few cell layers only, the avian 
growth plate is very wide and i r regular  (Fig. 1, and Roach  
and Shearer ,  1989). Osteogenic  different ia t ion was ob- 
served near  the cut edges both  in the epiphyses and the 
cart i lage "plug" that  remained  within the cut bone shaft (* 
in Fig. 1 a, la ter  referred to as " transi t ion region").  The 
analyses of  the osteogenic different ia t ion pat terns  were 
confined to those areas  where  any invasion of per iosteal  
mesenchymal  or  bone  marrow st romal  cells could be ex- 
c luded by (a) absence of marrow tunnels and (b) intact- 
ness of  the chondrocyt ic  lacunae. The la t ter  was conf i rmed 
by serial sectioning and confocal microscopy (not shown). 
For  e lect ron microscopy,  we were careful to select lacunae 
that  were well away from any channels or  marrow tunnels. 
Al l  the cells shown in Figs. 2-4  were present  inside intact  
lacunae and were not  connected  via any channels to the 
cut edge or mar row tunnels. 

Immediate Responses: Type I Collagen, Alkaline 
Phosphatase, and DNA Breaks 

Within 48 h, changes were found in most  chondrocytes  in a 
region that  was more  extensive than the region where  in- 
t ra- lacunae bone matr ix was present  after 12 d. A r o u n d  
10-30% of the lacunae contained cell doublets ,  but  the re- 
sponses descr ibed below were equally found in single 
chondrocytes .  Type  I collagen was present  along the pe- 
r imeter  of  many lacunae containing both single chondro-  
cytes and cell doublets  (Fig. 2 a); alkaline phosphatase  ac- 
tivity was present  in the cytoplasm (Fig. 2 b) and many 
nuclei conta ined s ingle-stranded D N A  strand breaks,  as 
indicated with the ISNT method  using the holo D N A  
polymerase  I (Fig. 2 c). In the same sections differentiat ing 
cells, such as prol i ferat ing and al igned chondrocytes ,  and 
actively transcribing cells, such as osteoblasts ,  were also la- 
be led  by ISNT with the holoenzyme.  On the o ther  hand, 
no hyper t rophic  chondrocytes  were labe led  by the end- 
labeling method  nor  by ISNT when the Klenow enzyme 
was used, whereas  in the same sections those cells which 
die during culture, such as some osteocytes  and lots of 
marrow cells (Roach,  1990), were labeled.  This suggested 
that  the holoenzyme detec ted  D N A  nicks which were not  
re la ted to apoptosis  (Eas tman and Barry,  1992; Ansar i  et 
al., 1993) but  were perhaps  due to the transient  nicks 
which are p roduced  by topoisomerases  to relieve the tor- 
sional consequences of t ranscript ional  e longat ion (Stewart  
et al., 1990). In studies where  the holo D N A  polymerase  I 
was used for the detect ion of apopto t ic  cells (Gold  et al., 
1993; O b e r h a m m e r  et al., 1993; Edwards  and Tolkovsky,  
1994), actively transcribing or differentiat ing cells might  
have been  absent.  

A t  this early stage, no posit ive react ion product  was 
found in hyper t rophic  chondrocytes  with immunocy-  

a 

b 

Figure 1. Diagram of the epi- 
physis of a femur from 14-d 
old chick embryos. The 
stages of chondrocyte differ- 
entiation are outlined and 
the approximate site of the 
cut indicated by the solid line 
(Fig. 1 a). Osteogenic differ- 
entiation was found in the 
separated epiphyses and 
shaft at the locations indi- 
cated by stars. Fig. 1 b illus- 
trates the spatial progression 
of osteogenic differentiation 
with time in culture. Chon- 
drocytes undergoing asym- 
metric cell division and the 
subsequent stages of osteo- 
genic differentiation were 
first found near the bone 
shaft and a few cell.layers 
away from the cut edge (re- 
gion I in Fig. 1 a). With time 
in culture chondrocytes fur- 

ther away from this area also responded (regions II and III). At the end of marrow tunnels (triangles) osteogenic differentiation also 
took place, but these regions were not studied in detail because the proximity of the lacunae to the marrow tunnel made interpretation 
of the results ambiguous. 
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Figure 2. Cellular events during the osteogenic differentiation from chondrocytes. All examples are longitudinal sections from cut fe- 
murs after various times of culture. The cut edge is always at the bottom, but may be out of view. Bars, 10 ixm. (a) Type I collagen 
around chondrocytes after 2 d. The bone shaft is just visible on the left. All lacunae contain a layer of type I collagen around the inner 
perimeter, sometimes spreading into the interterritorial matrix. Many lacunae contain cell doublets (arrows). (b) Alkaline phosphatase 

The Journal of Cell Biology, Volume 131, 1995 486 



Table L Appearance of Typical Bone Proteins in Chondrocytic 
Lacunae in Cut and Uncut Cultured Femurs 

day2 day 6 day 9 

cut uncut cut uncut cut uncut 

Alkaline phosphatase + + - + + + ___ + + + + + + 
Type I collagen + + - + + - + + + _+ 
Osteonectin - - + + -4- + + + + 
Osteopontin - - + - + + + _+ 
Bone sialoprotein . . . .  + + + +_ 
Osteocalcin . . . .  + + + + 

Femurs were cultured intact (uncut) or were cut through the hypertrophic cartilage 
and the separated epiphyses and bone shafts were cultured for the days indicated. The 
number of positive cells in the hypertrophic region was scored from absent (-) to 
present in many cells (+ + + +). _+ indicates presence on very few chondrocytes near 
the bone shaft. 

tochemistry using antibodies to noncollagenous bone pro- 
teins (Table I). 

At  the ultrastructural level, hypertrophic chondrocytes 
were large, pale cells that filled their lacunae. Before cul- 
ture, they were relatively quiescent with some signs of se- 
nescence: few mitochondria,  rather short and narrow 
strands of R E R  and some fat globules (not shown). Cul- 
ture alone seemed to activate metabolic activity, as indi- 
cated by the larger and more numerous  mitochondria and 
more developed R E R  (Fig. 3 a). In cut femurs, cell dou- 
blets (Fig. 3 b) and single chondrocytes (not shown) were 
surrounded by collagen fibers that were thicker than the 
cartilage-specific type II collagen fibers and which showed 
the typical banding pat tern of type I collagen (inset in Fig. 
3 b), consistent with the light microscopic findings. 

In uncut  femurs, cultured for 2 d, chondrocytes were 
also activated, 1-2% of lacunae contained cell doublets, 
~ 5 %  of chondrocytes were labeled with the ISNT (ho- 
loenzyme) method, but otherwise the chondrocytes 
showed none  of the above responses. 

Two Different Cell Types within One Lacuna 

Cell doublets where the two cells had different character- 
istics or morphology were present in ,'-~5% of the lacunae 
in the transition region after 2--4 d. When  incubating with 
[3H]thymidine between 24--48 or 48-72 h, labeling was 
sometimes present in only one cell of cell doublets (arrows 
in Fig. 2 d), suggesting that only one cell was in the S-phase 
during the labeling period. In cell triplets (*), two cells 
were heavily labeled whereas the third was not, consistent 
with the not ion that only one cell had the capacity to con- 
t inue proliferation. 

After  4 d of culture, those cells that had gone through 
the cell cycle during day 2-3 were always positive for alka- 
line phosphatase (Fig. 2 e). Activity was still present in 
other chondrocytes, but  tended to concentrate at the pe- 
riphery of the lacunae. Some lacunae contained three cells 
in the plane of section (arrows in Fig. 2 e). The triplet 
where two of the nuclei were heavily radiolabeled and sur- 
rounded by alkaline phosphatase activity while the third 
one was not (double arrow in Fig. 2 e) suggested that the 
proliferating daughter cell maintained alkaline phosphatase 
activity while the other cell lost activity. 

Care needed to be taken when interpreting the in situ 
techniques as evidence for apoptosis. The nuclei of embry- 

activity in chondrocytes after 2 d. Most chondrocytes show enzyme activity in the cytoplasm. Again many cell doublets are present, in 
two such doublets enzyme activity is found in only one cell (arrows). In our view this ALP activity is not yet indicative of osteogenic dif- 
ferentiation. (c) Single-stranded DNA breaks after 2 d. Nuclei containing single-stranded nicks in the DNA were identified by in situ 
nick translation (ISNT) using the holoenzyme of DNA polymerase I. Most lacunae which contain a nuclear profile are labeled, in one 
instance both nuclei of a doublet are labeled. In parallel sections, using ISNT with the Klenow fragment or in situ end-labeling method 
with terminal transferase, no staining was found in the cells of this region. It is therefore unlikely that the labeling indicates apoptosis. 
(d) Burst of cell proliferation after 3 d. Many cells in the hypertrophic region have taken up [3H]thymidine between 48-72 h. Of the cell 
doublets present, some are unlabeled (small *), in others only one daughter cell is labeled, consistent with the notion that following 
asymmetric cell division, only one daughter cell is in the S-phase (arrows). In the lacuna marked by a large asterisk one daughter cell 
from the asymmetric cell division appears to have divided during the 24-h labeling period. (e) Alkaline phosphatase (ALP) activity and 
[3H]thymidine autoradiography after 4 d. 3[H]Thymidine had been present in the medium on day 2-3. Most cells that had been in the 
S-phase during that time have gone through the M-phase. Four examples are shown, where the lacuna contains three nuclei (arrows). In 
one case the third nucleus is unlabeled (double arrows), consistent with the interpretation that the asymmetric division took place be- 
tween day 1-2 and that the viable cell, which was in the S-phase during day 2-3, had now completed mitosis. In the other three cases the 
asymmetric division probably took place during the labeling period and the viable cell divided a second time during day 3-4. Note also 
that alkaline phosphatase activity is present in most cells, not just the radiolabeled ones. Q) In situ detection of apoptotic cells after 4 d. 
Apoptotic cells are characterized by double-stranded DNA breaks which were detected by end labeling with terminal transferase. Three 
lacunae contain doublets with one labeled nucleus (arrows). In one case (double arrows) two unlabeled cells share the lacuna with one 
labeled cell, similar to the example given shown in Fig. 2 e. Some single chondrocytes are also labeled. At the top left (*) a marrow tun- 
nel is present and two ceils are labeled which seem to be ready to be released into the marrow tunnel. (g) PCNA immunocytochemistry 
and [3H]thymidine autoradiography after 7 d. Labeling with [3H]thymidine took place during day 2-3. The approximate number of mi- 
toses can be estimated from the dilution of the radiolabel. Some cells have only divided once (doublet with two intensely labeled cells), 
but most have divided 2-4 times. Note that no radiolabel is present over those cells with condensed (green) nucleus. Such a cell may 
share one lacuna with radiolabeled cells (arrows). One doublet can be seen where one daughter cell is positive for PCNA, while the 
other has a pyknotic nucleus and neither cell is radiolabeled (large arrow). This suggests that these cells were not in the S-phase during 
day 2-3, but asymmetric cell division has taken place since that time. (h) In situ hybridization for type I collagen mRNA after 6 d. The 
message is particularly strong in those lacunae that contain cell doublets (*), whereas single cells with condensed nuclei (arrows) only 
contain background grains. This is consistent with the view that the former cells were now osteoblast-like, while the latter ceils were dy- 
ing. (i) [3H]Thymidine autoradiography and osteoid formation after 9 d. Labeling with [3H]thymidine took place during day 2-3. Os- 
teoid is identified by Acid fuchsin (red). All lacunae with osteoid contain diluted [3H]thymidine label, indicating that the bone-forming 
cells were derived via several mitoses from cells that were in the S-phase during day 2-3. 
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onic chick cells were much more sensitive to pr0teinase K 
digestion than rat ileum cells, since the usual regime of 20 
Ixg/ml for 15 min at RT resulted in the labeling of  almost 
every cell. However,  when only 5 ixg/ml of proteinase K 
were used, followed by ISNT with the Klenow enzyme or 
end labeling with terminal transferase, only those cells 
which are known to die in culture, such as osteocytes and 
marrow cells (Roach, 1990), were labeled together with 
~ 5 %  of chondrocytes in the transition region. The similar 
distribution of cells labeled by terminal transferase and 
the Klenow enzyme suggested that the labeled D N A  
breaks were "staggered" double-stranded breaks .  Such 
breaks would result f rom the cleavage of D N A  into nu- 
cleosome-sized fragments by an endogenous endonuclease 
that is characteristic for apoptotic cells (Kerr et al., 1987; 
Bowen and Bowen, 1990; Wyllie, 1992; Parchment,  1993; 
Coates, 1994). This suggested that end tailing with termi- 
nal transferase or nick translation with the Klenow en- 
zyme were selective for apoptotic cells. 

When using the end-labeling method, doublets could be 
identified where only one cell was labeled (arrows in Fig. 2 
f). In cell triplets, the cell between two unlabeled cells was 
heavily labeled (double arrows in Fig. 2 f). Comparing the 
triplets indicated by double arrows in Fig. 2, e and f sug- 
gested that the central cell (which had not proliferated and 
had lost alkaline phosphatase activity) was destined to die. 

Ultrastructural studies (Fig. 3, c and d) also showed cells 
of  different morphology in one lacuna. The cytoplasm of 
one cell remained pale (as in hypertrophic chondrocytes),  
while the other had darker, more basophilic cytoplasm 
which is characteristic for osteogenic cells. Some of the 
paler cell showed signs of disintegration (Fig. 3 d; note the 
diffuse RER) ,  whereas the darker cell contained many mi- 
tochondria and an active REM,  suggesting that it was a vi- 
able cell with active protein synthesis. In cell triplets, two 
smaller cells with basophilic cytoplasm, much R E R  and 
large nuclei surrounded a central cell with shrunken cyto- 
plasm and condensed chromatin (Fig. 3 e). The compac- 
tion of the chromatin at the periphery of the nucleus was 
very characteristic for apoptotic cells, providing ultrastruc- 
tural evidence for apoptosis of the central cell. 

Subsequent Fates of  the Apoptotic and Viable Cells 

After  6-9 d, the cells which had been in the S-phase on day 
2-3 had gone through 1-3 rounds of mitosis as judged by 

the dilution of the [3H]thymidine label (Fig. 2, g and i) and 
by the number  of  smaller cells now present in the lacunae 
(Fig. 4, a-d). Frequently, the radiolabeled cells (Fig. 2 g) 
or BSP-positive cells (Fig. 4 d) shared a lacuna with one 
other cell which had little or no cytoplasm, but whose nu- 
cleus stained intensely with light green. Alkaline phos- 
phatase activity, type I collagen, and the noncollagenous 
proteins were present in the smaller radiolabeled cells, but 
always absent from the condensed cell (not shown). No 
D N A  breaks could be identified in the condensed cells, 
even in DNase-treated positive controls, when all other 
cells were labeled by ISNT or end labeling. This suggested 
that the nuclei were so tightly condensed that the D N A  
was inaccessible to the D N A  polymerase or terminal 
transferase. It is possible that these nuclei were the rem- 
nants of apoptotic cells, presumably because their isola- 
tion inside lacunae prevented removal by phagocytosis. 
Immediately at the cut edge most lacunae contained single 
condensed cells after 6 d, whereas in the transition region 
up to 30% of lacunae contained such cells. With time in 
culture more and more lacunae were occupied by viable 
cells, possibly by migration of these cells from neighboring 
lacunae (Fig. 4, a and d). 

The viable cells became positive for the markers of the 
osteogenic phenotype. After  6 d, in situ hybridization with 
a r iboprobe for chick type I collagen m R N A  confirmed 
that these cells expressed the message for type I collagen 
(Fig. 2 h). At  the same time very strong alkaline phos- 
phatase (ALP) activity was present inside the lacunae and 
the cells were positive for osteonectin and osteopontin 
(Fig. 4 c, Table I). After  9 d of culture, osteoid matrix was 
present along the inner perimeter of lacunae containing 
diffuse [3H]thymidine label (Fig. 2 i), confirming that the 
cells that had been in the S-phase during days 2-3 had syn- 
thesized the osteoid matrix. This matrix also stained With 
Sirius red (Fig. 4 a and Roach,  1992a) and contained the 
typical bone matrix components,  such as collagen type I 
(Fig. 4 b) and osteopontin (Fig. 4 c). The cells were posi- 
tive for osteocalcin and bone sialoprotein (Fig. 4 d and Ta- 
ble I), markers of the terminal osteogenic phenotype. The 
ultrastructural features of the cells were osteoblast-like: 
basophilic cytoplasm, large amounts of RER,  and an ec- 
centric nuclei (Fig. 3 f). Most of the space around and be- 
tween them were filled by collagen fibers of random orien- 
tation with the diameter and typical striated appearance of 
type I collagen (Fig. 3 g). 

Figure 3. Ultrastructural changes during osteogenic differentiation. (a) A hypertrophic chondrocyte from a cultured femur. It is a meta- 
• bolically active cell characterized by a pale cytoplasm. Fixed with Alcian blue, hence proteoglycans are stained and the peri-lacunar car- 
tilage matrix is clearly visible. (b) A cell doublet surrounded by noncartilage collagen. Chondrocytes appear to have divided by symmet- 
ric division. Noncartilage collagen fibers with the size and banding pattern of type I collagen (inset) surround the two chondrocytes. 
Such fibers are not present around chondrocytes in uncut femurs. (c and d) Asymmetric cell division: different cell types within one la- 
cuna. One cell with darker, more basophilic cytoplasm shares a lacuna with another cell with paler cytoplasm. In Fig. 3 c the paler cell is 
still viable with the morphology of a chondrocyte, whereas in Fig. 3 d the paler cell shows signs of disintegration. Fibers, probably type I 
collagen, are present around and between the two cells. Fixed without Alcian blue, hence the the perimeter of the lacuna is not as dis- 
tinct as in the other micrographs, but the cells are a clear distance away from neighboring cells, as confirmed at lower magnification. (e) 
Two smaller, viable cells surround an apoptotic cell. The two cells have dark cytoplasm and the high ratio of nucleus to cytoplasm that is 
typical for young cells. The cell in the center shows the typical ultrastructural features of an apoptotic cell: condensed chromatin which 
is compacted around the edge of the nucleus and shrunk, fragmented cytoplasm. Fixed with Alcian blue. (f and g) Osteoblast-like cells 
with osteoid matrix. The dark, basophilic cytoplasm, active RER, eccentric nucleus, and the high nucleus/cytoplasm ratio are all features 
typical for osteoblasts. A remnant of cellular debris (open circle) is present between the cells, but most of the lacunar space has been 
filled with needle-like collagen fibers. An enlargement of the fibers (Fig. 3 g) shows that the orientation of the fibers is random, some 
are seen in longitudinal section and others in cross-section. Fixed with Alcian blue. Bars, 1 Ixm. 
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Figure 4. Evidence for the osteogenic phenotype after 6-12 d. (a) Osteoid matrix (red) is present inside chondrocytic lacunae after 6 d. 
Most lacunae are still intact and completely surrounded by cartilage matrix (blue), but two examples are shown where two lacunae have 
merged (triangles). These are not connected to a channel. (b) Type I collagen and (c) osteopontin inside or around chondrocytic lacu- 
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After 12 d of culture, the intra-lacunar osteoid matrix 
contained matrix vesicles (Fig. 4 e) and its ultrastructure 
was similar to that of de novo bone matrix produced by 
"definite" osteoblasts beneath the periosteum (Fig. 4 f). 
Previously, it had been shown with the Von Kossa stain 
that intra-lacunar matrix had mineralized after 12-15 d in 
culture (Roach, 1992a). 

Discussion 

An asymmetric cell division is any division where the 
daughter cells subsequently have different fates (Horvitz 
and Herskowitz, 1992). Theoretically such divisions would 
occur at every branch point during lineage commitment. 

Y e t  there are very few reports of asymmetric cell division 
in somatic cells in vertebrae (Sugimoto and Yasuda, 1983; 
Lamprecht, 1990; Mayani et al., 1993). This might be due 
to the difficulties of detecting the daughter cells of asym- 
metric cell divisions because (1) these are still morphologi- 
cally identical; (2) no lineage markers are available to dis- 
tinguish daughter cells, and (3) the daughter cells are 
interspersed among other cells. In the present experimen- 
tal system these problems are overcome because (1) mor- 
phological differences are apparent in ultramicrographs; 
(2) several markers can distinguish the osteogenic from 
the chondrogenic phenotype, and (3) the starting cells, the 
hypertrophic chondrocytes, are fortuitously "locked" in- 
side their lacunae and separated from neighboring cells by 
cartilaginous matrix. These three features made it possible 
not only to demonstrate asymmetric cell divisions, but also 
to follow the subsequent fates of the daughter cells. 

The systematic analysis of the sequence of osteogenic 
differentiation depended on the ability to localize, by in 
situ techniques, those cells which had different characteris- 
tics within intact lacunae. In particular the possibility that 
other cell types had migrated into the lacunae from the cut 
edge or marrow tunnels needed to be eliminated. Lacunar 
integrity could always be confirmed by serial section anal- 
ysis (or confocal microscopy) which established that chan- 
nels were absent from the particular regions of hyper- 
trophic cartilage under study. 

Stages in the Switch from Chondrogenic to 
Osteogenic Expression 

Metastable State. Two of the responses (type I collagen, 
alkaline phosphatase) observed within the first 48 h might 
be taken as the first indication of osteogenic differentia- 
tion, but we favor an alternative interpretation for the fol- 
lowing reasons: (a) these responses were observed in cells 
that were morphologically still chondrocytes and (b) were 

found in single chondrocytes as frequently as around cell 
doublets. (c) The region containing lacunae with chondro- 
cytes with the above responses extended much further 
than the region whose lacunae contained osteogenic cells 
after 9-12 d. Although this evidence is still circumstantial, 
these immediate responses could reflect a dedifferentia- 
tion, a derepression of gene transcription, or activation of 
an inherent capacity. The single-stranded D N A  breaks de- 
tectable with the holoenzyme of D N A  polymerase I would 
be consistent with such a metastable state during which 
the regulation of gene transcription might be in a state of 
flux. Single-stranded DNA breaks play a role in gene tran- 
scription and/or differentiation (Johnstone and Williams, 
1982; Dawson and Lough, 1988; Farzaneh et al., 1987; 
Coulton et al., 1992). 

While it is not difficult to imagine an upregulation of al- 
kaline phosphatase because hypertrophic chondrocytes 
produce the enzyme at a later stage, the presence of type I 
requires more explanation. Chondrocytes do not normally 
produce type I collagen, although the two type I collagen 
genes (a-1 and a-2) are transcribed in avian chondrocytes, 
but are not normally translated into proteins (Saxe et al., 
1985). In the chicken, the genes for et-2(I) and a - l ( I I )  
overlap, with the cartilage-specific promoter lying within 
intron 2 of the tx-2(I) gene (Bennett and Adams, 1990). It 
is therefore possible that the immediate secretion of type I 
collagen fibers might involve changes in the posttranscrip- 
tional regulation of etl (I) synthesis or a switch in promoter 
utilization for the ct2(I) chain. Type I collagen expression 
was also found to be one of the earliest genes expressed 
during the osteogenic differentiation of hypertrophic 
chondrocytes in cultured mandibular condyles (Strauss et 
al., 1990; Closs et al., 1990). 

Asymmetric Cell Divisions. Having ascertained the in- 
tactness of lacunae, the presence of two cells with different 
characteristics within one lacunae provided compelling ev- 
idence that an asymmetric cell division had occurred. The 
relatively low frequency (1-5%) of such "asymmetric" la- 
cunae in any one section suggested that (a) not all chon- 
drocytes underwent asymmetric division at the same time, 
(b) that the process was of short duration, and (c) that it 
did not happen in every chondrocyte. 

The ultramicrographs show two cells of different mor- 
phologies within one lacuna. Their appearances were con- 
sistent with the notion that one cell was osteogenic (darker 
cytoplasm) while the other cell remained chondrocytic 
(pale cytoplasm). The former cell was viable and actively 
synthesizing proteins, as indicated by the many ribosomes 
and RER, while the later cell appeared to disintegrate. 
While morphology alone was insufficient evidence for dif- 

nae. Parallel sections to Fig. 4 a. These confirm that the osteoid matrix contains type I collagen and osteopontin, the latter in prepara- 
tion for mineralization. In some cells (arrows) osteopontin is still present in the cytoplasm, but mostly it is already present in the extra- 
cellular matrix. (d) Bone sialoprotein after 9 d. Lacunae now contain 2-4 cells which are positive for bone sialoprotein or single cells 
with a condensed nucleus (arrows). In two instances (double arrows) the BSP positive cells share a lacuna with a condensed cell, consis- 
tent with the notion that the condensed cell is the remnant of an apoptotic cell. Now more lacunae have merged, but none of these are 
connected to a channel. Near the cut edge (open star) migratory cells have invaded lacunae. Bars (a-d) 10 Ixm. (e and f) Intra-lacunar os- 
teoid contains matrix vesicles after 12 d. The ultrastructural appearance of intra-lacunar osteoid (Fig. 4 e) was compared with the matrix 
produced by definite osteoblasts beneath the periosteum (Fig. 4 f). Both matrices consist of collagen fibers of random orientation whose 
size and banding pattern are those of type I collagen. Matrix vesicles (arrows) are present in both. Bars, 1 I~m. 
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ferent phenotypes, it added weight to the light microscopic 
studies. These demonstrated that the viable cell immedi- 
ately entered another S-phase, as shown by [3H]thymidine 
incorporation studies, while the nucleus of the other cell 
contained the double-stranded DNA breaks typical for an 
apoptotic cell. This suggested that, following the asymmet- 
ric cell division, one cell remained viable and divided again 
while the other cell was programmed to die by apoptosis. 

Osteogenic Differentiation of the Viable Daughter Cell 

The pulse-chase experiments with [3H]thymidine showed 
that 1-3 rounds of mitoses took place between days 3-9 in 
culture. This was consistent with the notion that the viable 
cell from the asymmetric cell division had completed the 
cell cycle and that further mitotic divisions of the progeny 
had occurred. This time all the daughter cells were com- 
mitted to the osteogenic phenotype: within one lacuna all 
cells expressed type I collagen, alkaline phosphatase, os- 
teonection, osteopontin, bone sialoprotein, and osteocal- 
cin. Although hypertrophic chondrocytes are also positive 
for the above markers (Mark et al., 1988; Pacifici et al., 
1990; Chen et al., 1991; McKee et al., 1992; Lian et al., 
1993), they only appear at a late stage. The temporal se- 
quence of expression of these proteins in our experimental 
system was similar to that observed during osteogenic dif- 
ferentiation from mesenchymal cells in vivo (Robey et al., 
1992) or in vitro (Ibaraki et al., 1992). Nevertheless, the 
best criterium for the osteogenic phenotype is the pres- 
ence of a mineralized bone matrix because chondrocytes 
have never been shown to produce osteoid matrix. This 
criterium was fulfilled in the present system by those cells 
that had, within intact lacunae, secreted matrix that had 
the staining characteristics of bone matrix (including bire- 
fringence with polarized light, Roach, 1992a) consisted of 
type I collagen, contained osteopontin and matrix vesicles 
before mineralization, and was capable of mineralization. 
These findings indicate that in the present experimental 
system the hypertrophic chondrocytes had not only differ- 
entiated towards osteoblast-like cells, but also completed 
the differentiation to cells that were capable of producing 
a mineralized bone matrix. 

Fate of the Apoptotic Cell. Apoptosis was identifiable in 
5-10% of the cells in any one section during the earlier 
stages of culture, in support of the notion that double- 
stranded DNA breaks represent an early event in pro- 
grammed cell death (Kerr et al., 1987; Bowen and Bowen, 
1990; Wyllie, 1992), present for a limited time interval. In 
vivo apoptotic cells disappear within 1-2 h either by autol- 
ysis or phagocytosis of neighboring cells. In the present 
system the apoptotic cells remained isolated within the 
chondrocytic lacunae which probably prevented their 
rapid disappearance. However, we could not detect in- 
creased numbers of DIG-dUTP labeled cells with time in 
culture, whereas shrunk cells with a very condensed nu- 
cleus were always present, either alone or sharing a lacuna 
with osteogenic cells. Even when treated with DNase, no 
labeling could be detected in these cells, suggesting that 
their DNA was so condensed or fragmented that no nick 
translation or end labeling was possible. Eastman and 
Barry (1992) also found that the in situ methods could not 
detect highly fragmented DNA. It is feasible that these 
highly condensed cells were the remnants of those cells 
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Figure 5. Possible sequence of cellular events during the pheno- 
typic switch from chondrocytes to osteoblast-like cells. (See dis- 
cussion for explanation.) 

that contained double-stranded DNA breaks at an earlier 
stage. 

Summary: Hypothesis of the Sequence of 
Cellular Events 

Based on the data presented, we propose the following se- 
quence of events during the phenotypic change from chon- 
drocytes to osteoblast-like cells (Fig. 5). The initial stimu- 
lus is related to the change in the microenvironment 
resulting from cartilage resorption in vivo and simulated 
by the cutting through the hypertrophic region in vitro. 
This induces a metastable state (dedifferentiation? dere- 
pression?) during which the commitment of the cell might 
be redetermined. Depending on other, as yet unknown 
factors, cells will either remain chondrocytes (with or with- 
out symmetric division), become apoptotic or divide by 
asymmetric division. The latter is the crucial event in the 
switch from chondrogenic to osteogenic phenotype. Ini- 
tially, this division results in one viable and one apoptotic 
cell. The viable cell enters the cell cycle and its progeny 
gradually differentiate to osteogenic cells. In the present 
system at least one further symmetric division seems to be 
required for the full redetermination of the phenotype as 
osteogenic. This contrasts instances in other tissues where 
a change in phenotype may occur without cell division 
(Beresford, 1990). 

Apoptosis is known as a mechanism for the elimination 
of redundant cell subsets (Kerr et ai., 1987; Bowen and 
Bowen, 1990; Wyllie, 1992; Parchment, 1993). In conjunc- 
tion with asymmetric cell division apoptosis may provide 
the means of discarding redundant cellular material before 
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the viable cell becomes committed to the osteogenic lin- 
eage. It is of interest that the asymmetric divisions of thy- 
mocytes, described by Sugimoto and Yasuda (1983), also 
gave rise to terminal transferase-positive cells together 
with functional T cells. 

Whether the described osteogenic differentiation is a 
true "transdifferentiation", i.e., a sudden switch from the 
chondrogenic to the osteogenic phenotype, or a continu- 
ous "further" differentiation is still subject to debate. The 
osteogenic differentiation described in long term chondro- 
cyte cultures (Descalzi-Cancedda et al., 1992; Gentili et al., 
1993) and in certain chondrocytes near the bone shaft in 
vivo (Galotto et al., 1994) was interpreted as a gradual and 
continuous differentiation towards the osteogenic pheno- 
type rather than a transdifferentiation. In the present sys- 
tem, the occurrence of asymmetric cell divisions plus the 
requirement of at least one further mitosis to redefine the 
phenotype as osteogenic are, in the authors' view, more 
consistent with a transdifferentiation than a gradual differ- 
entiation. However, further work is needed to support this 
concept, for example to establish whether there is a dis- 
tinct break in phenotypic expression from that of a hyper- 
trophic chondrocyte (expressing e.g., type X collagen) to 
that of an osteoblast-like cell which no longer expresses 
cartilage-specific markers. 

If the concepts presented above are also applicable to 
what happens to hypertrophic chondrocytes as the carti- 
lage is resorbed during endochondral ossification in vivo, 
the two previously opposing views of the fate of the hyper- 
trophic chondrocyte may be reconciled: some chondro- 
cytes die by apoptosis while others survive and become 
bone-forming cells. The phenotypic change from chondro- 
cytes to osteoblast-like cells may also serve as a paradigm 
for other instances (for review see Okada, 1991) of pheno- 
typic switches in differentiated cells as well as provide a 
good example of asymmetric cell division in differentiated 
cells. 
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