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Abstract. Platelet-derived growth factors (PDGFs) are 
growth-regulatory molecules that stimulate chemo- 
taxis, proliferation and metabolism primarily of cells of 
mesenchymal origin. In this study, we found high levels 
of PDGFs and PDGFs receptors (PDGFRs) mRNAs, 
and specific immunostaining for the corresponding pro- 
teins in the rat testis. PDGFs and PDGFRs expression 
was shown to be developmentally regulated and tissue 
specific. Expression of PDGFs and PDGFRs genes was 
observed in whole testis RNA 2 d before birth, in- 
creased through postnatal day 5 and fell to low levels in 
adult. The predominant cell population expressing 
transcripts of the PDGFs and PDGFRs genes during 
prenatal and early postnatal periods were Sertoli cells 
and peritubular myoid cells (PMC) or their precursors, 
respectively, while in adult animals PDGFs and 

PDGFRs were confined in Leydig cells. We also found 
that early postnatal Sertoli cells produce PDGF-like 
substances and that this production is inhibited dose 
dependently by follicle-stimulating hormone (FSH). 
The expression of PDGFRs by PMC and of PDGFs by 
Sertoli cells corresponds in temporal sequence to the 
developmental period of PMC proliferation and migra- 
tion from the interstitium to the peritubulum. More- 
over, we observed that all the PDGF isoforms and the 
medium conditioned by early postnatal Sertoli cells 
show a strong chemotactic activity for PMC which is 
inhibited by anti-PDGF antibodies. These data indi- 
cate that, through the spatiotemporal pattern of PDGF 
ligands and receptors expression, PDGF may play a 
role in testicular development and homeostasis. 

T ESTICULAR development involves a complex combi- 
nation of cell proliferation, hypertrophy, migration, 
differentiation, and apoptosis which proceeds within 

strict temporal and anatomical constraints. These pro- 
cesses imply intercellular communication, rather than rely- 
ing entirely on intracellular programming and hormonal 
control (Skinner, 1991). The testis is composed of both so- 
matic and germinal cell populations which are distributed 
in two main compartments: the interstitial and the tubular 
compartments. The interstitium is composed of Leydig 
cells, connective tissue, endothelial elements, and along 
with the intertubular blood vessels, macrophages and cells 
with fibroblast-like appearance. The seminiferous tubule 
is composed of germ cells, Sertoli cells, and peritubular 
myoid cells (PMC). 1 Sertoli cells are of the epithelial cell 
type; they form the tubule and provide structural and nu- 
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tritional support for the developing germinal cells. Peritu- 
bular cells are a mesenchymal cell type; they surround the 
Sertoli cells and form the exterior wall of the seminiferous 
tubule. 

Pituitary gonadotropins, follicle-stimulating hormone 
(FSH), and luteinizing hormone (LH), are essential for 
optimal germ cells and somatic cells growth and differenti- 
ation, as well as for the initiation and maintenance of sper- 
matogenesis, however, they do not directly contribute in 
the intercellular signaling within the tissue. Therefore, the 
importance of paracrine or autocrine factors, such as 
growth factors may be fundamental in the development of 
the testis (Bellve and Zheng, 1989; Mullaney and Skinner, 
1991; Spiteri-Grech and Nieschlag, 1993; Lamb, 1993). 

One of the substances that have marked effects on cellu- 
lar differentiation and growth is platelet-derived growth 
factor (PDGF). PDGF is a major mitogen for cells of mes- 
enchimal origin that is widely expressed in normal and 
transformed cells (Heldin and Westermark, 1990; Heldin, 
1992). 

PDGF is composed of two polypeptide chains named 
A-chain and B-chain, respectively. These two chains, en- 
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coded by homologous but distinct genes, can combine in 
three disulfide-linked dimers, AA, AB, and BB, with a 
molecular weight of "~30,000 (Antoniades, 1991). The 
PDGF isoforms exert their biological actions via binding 
to cell surface receptors which belong to the protein ty- 
rosine kinase family of receptors (Williams, 1989). Two re- 
ceptor subunits have been identified, the c~ subunit which 
can bind both the PDGF A-chain and PDGF B-chain, and 
the [3 subunit, which can bind only the PDGF B-chain. 
These subunits, upon ligand binding, dimerize to form 
three high affinity-binding sites for the dimeric PDGF 
ligand: an an-receptor, an c~13-receptor, and a [3[3-receptor 
(Heldin et al., 1989). Due to the binding specificities of 
the a and 13 subunit, PDGF-AA can only bind to aa-recep- 
tors, PDGF-AB can bind to c~c~- and a13-receptors, and 
PDGF-BB can bind to all three (Seifert et al., 1989). Apart 
from being a mitogen, PDGF appears to serve other im- 
portant roles as well. PDGF is a potent chemoattractant 
for a number of cell types both in vitro and in vivo and ac- 
tivates the early transcription of otherwise quiescent 
genes, several of which encode potent cytokines and oth- 
ers of which are proto-oncogenes (Deuel, 1987). These di- 
verse responses to PDGF differ among cell types as a com- 
plex function of the isoforms and receptors of PDGF, 
whose expression is further regulated by tissue specificity, 
cellular phenotypic states, and time of developmental ap- 
pearance. 

The possibility that the PDGF system may play an im- 
portant role during mammalian development was sug- 
gested by the observation that PDGF and PDGFR mRNA 
transcripts are coexpressed in preimplantation mouse 
blastocysts and early embryos (Mercola et al., 1988; Rap- 
polee et al., 1988), in a variety of mesenchymal cells in the 
mid-gestation embryo (Mercola et al., 1990; Orr-Urtreger 
and Lonai, 1992a; Schatteman et al., 1992) in the develop- 
ing and adult central nervous system (Sasahara et al., 1991; 
Yeh et al., 1991, 1993) and in the kidney glomerulus (Alp- 
ers et al., 1992). Ideas concerning the functions of PDGF 
in vivo are primarily based on the expression patterns of 
PDGF ligands and receptors and their changes under 
physiological and pathological conditions. 

Recent evidences have shown that PDGF is a member 
of the locally produced growth factors that mediate testic- 
ular cell--cell interactions. In particular, it has been found 
that purified adult rat Leydig cells produce PDGF-Iike 
molecules and bind PDGF through specific receptors 
(Gnessi et al., 1992), and that rat PMC are induced to ex- 
press functionally active PDGFRs in response to cell cul- 
turing (Gnessi et al., 1993). Moreover, it has been reported 
that PDGF-BB exerts a stimulatory effect on adult Leydig 
cells steroidogenesis in vitro (Risbridger, 1993; Loveland 
et al., 1993). 

In the present studies, we have examined the in vivo and 
in vitro occurrence of PDGF and its receptors in the testis. 
The time course of appearance of PDGFs and PDGFRs 
transcripts, their characteristic cellular expression in the 
testicular tissue during development, the ability of early 
postnatal Sertoli cells to secrete a PDGF-like substance 
under FSH control, the autocrine modulatory effect of 
PDGF on adult Leydig cells testosterone production, and 
the migratory effect of PDGFs and of PDGF-like sub- 
stances produced by Sertoli cells on PMC, strongly suggest 

a previously undescribed role of the PDGF system in the 
developmental regulation of the testicular function. 

Materials and Methods 

Tissue and Cell Preparation 

Male Sprague Dawley rats (Charles River Italia, Calco, Italy) were used in 
all experiments. Decapsulated testes from fetuses (2 d before birth), from 
rats of different ages (1, 5, 15, 60, and 300 days old), or brain from adult 
animals, were weighed and kept in liquid nitrogen until RNA preparation 
or fixed in Bouin's fluid until immunohistochemistry. 

Sertoli cells-enriched cultures were prepared from 5, t0, and 15-d-old 
animals by digesting decapsulated testes with trypsin (0.25%, 30 min, 
32°C; Difco Laboratories, Detroit, MI), collagenase (0.1%, 30 min, 32°C; 
Boehringer Mannheim GmbHm, Mannheim, Germany), and hyal- 
uronidase (0.1%, 30 min, 32°C; Sigma Chemical Co., St. Louis, MO), as 
previously described (Jannini et al., 1994). All cultures were maintained in 
basal Eagle's Medium with Hank's salt (HBME) buffered with Hepes (20 
mM, pH 7.4; Sigma) and supplemented with nonessential amino acids (0.1 
mM; Flow Laboratories, ICN Biomedical, Milan, Italy) and antibiotics 
(100 IU/ml penicillin, 100 ixg/ml streptomycin, 0.05 mg/ml gentamicin sul- 
fate; Flow Laboratories). The cells were plated and incubated in 5% CO2, 
95 % air at 32°C. 48 h later, the Sertoli cells were treated with a hypotonic 
solution (20 mM Tris HC1, pH 7.4) for 3 min to remove germ cell contam- 
inant. The purity of cell cultures was assessed, after 2 d of culture, by 
staining with alkaline phosphatase for PMC and by phase-contrast micros- 
copy observation for germ cells contamination. The Sertoli cell-enriched 
preparation from 15-d-old animals was more than 95% pure, with the ma- 
jor contaminant being germ cells. Sertoli ceils from 5- and 10-d-old rats 
showed a lower degree of purity, ranging between 80-90%, with the major 
contaminant being germ cells and PMC. 

Leydig cells were prepared from 15-d-old and 60-d-old rats and puri- 
fied by Percoll gradient centrifugation as described previously (Gnessi el 
al., 1992). The percentage of Leydig ceils in the final preparations, as 
established by staining for 313-hydroxysteroid dehydrogenase activity, 
ranged between 85-90%. The Leydig cells were either freshly purified for 
RNA extraction or incubated in 5% COE, 95% air at 37°C in HBME for 
24 h for immunocytochemistry. PMC were prepared from 5- and 15-d-old 
rats and purified by Percoll gradient centrifugation as described (Gnessi et 
al., 1993). The cells were used either immediately or plated and incubated 
at 37°C in 5% CO2-95% air in HBME. Microscopic examination of the 
cells using alkaline phosphatase staining, revealed a positive reaction in 
more than 94% of the cells indicating their purity as PMC. 

For the organ cultures, decapsulated testis fragments from 3-d-old ani- 
mals were briefly rinsed in medium and placed on small platforms (Cyclo- 
pore, Falcon, Lincoln Park, NJ). The platforms were bathed in 1 ml of me- 
dium, so that a very thin film of medium covered the surface of the tissue. 
HBME, supplemented with nonessential amino acids, sodium pyruvate, 
glutamine, and containing penicillin and streptomycin was used as de- 
scribed (Jannini et al., 1993). Organ cultures were incubated at 32°C in 5% 
COz, 95% air. The testis fragments were fixed directly on the platform in 
Bouin's fluid. 

When required, the Sertoli cells or organ cultures were treated with the 
indicated doses of ovine FSH-20 (National Hormone and Pituitary Pro- 
gram, NIDDK, lot n. AFP-7028D, Bethesda, MD). 

RNA Isolation and Northern Blot Analysis 

Total RNA from testis, brain, and purified cells was prepared by using 
RNAzol B (Cinna/Biotecx Laboratories, Houston, TX). The RNA sam- 
ples were separated on 1% formaldehyde-agarose gel, blotted on Nytran 
(Schleicher & Schuell, Keene, NH) and probed with random primer 32p. 
labeled cDNAs. The following cDNA probes were used: 650 bp SaclI- 
StuI fragment of the human PDGF-A cDNA, sharing 84% homology with 
the rat cDNA sequence, and the 462-bp SaclI-PvulI fragment of the hu- 
man PDGF-B cDNA, sharing 81% homology with rat cDNA sequence, 
excised from plasmids pMMTPDGFA and pMMTPDGFB, respectively, 
kindly provided by Dr. Stuart Aaronson (Laboratory of Cellular and Mo- 
lecular Biology, National Cancer Institute, Bethesda, MD); full-length 
coding region of the rat PDGFR cc-subunit and 13-subunit cDNAs (a gen- 
erous gift from Dr. Michael Peck, F. Hoffman-La Roche, LTD, Basel, 
Switzerland). Hybridization in QuikHib solution (Stratagene, La Jolla, 
CA) and high stringency washing were carried out as suggested by the 
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manufacturer. To verify the loading of R NA samples on Northern blots, 
the filters were hybridized with a [3-actin probe. Autoradiograms were 
scanned, processed and analyzed using the NIH Image 1.51 program, and 
specific signals were normalized to the signal of 13-actin m R N A  per lane. 
Multiple dilution of the samples, and multiple film exposure times gave 
comparable results. 

Immunostaining 
For immunohistochemistry, fixed testes or organ cultures were dehy- 
drated in ethanol and embebbed in paraffin. Immunostaining was carried 
out on 5-~m thick sections of the tissues or organ cultures. For immunocy- 
tochemistry the cells, isolated and cultured as described, were plated in 8-well 
LabTek slides (Nunc Inc., Naperville, IL). At the end of the incubation 
times the cultures were washed in PBS and immediately fixed with ice 
cold ethanol for 5 rain. Immunostaining was performed by the streptavi- 
din-biotin immunoperoxidase method, using a commercial kit (Zymed 
Laboratories Inc., San Francisco, CA). The deparaffinized sections or the 
cell preparations were incubated overnight in a moist chamber at 4°C with 
1:100 dilution of the primary antibodies. 

The following antisera were used: affinity-purified polyclonal rabbit 
anti-PDGF-BB and ant i -PDGF-AA antibodies (Genzyme, Cambridge, 
MA); PDGFR-7 and PDGFR-3, rabbit polyclonal antisera to the PDGF 
receptor a- and 13-subunit, respectively (provided by Dr. Carl-Henrik Hel- 
din, Ludwig Institute for Cancer Research, Uppsala, Sweden). PDGFR-7 
was generated against a synthetic peptide covering amino acids 1066-1084 
of the COOH-terminal region of human PDGF receptor a-subunit and 
does not cross-react with the PDGF receptor 13-subunit. It recognizes both 
human and rat PDGF receptor ct-subunit. PDGFR-3 was raised against a 
synthetic peptide corresponding to amino acids 981-994 of the mouse 
PDGF 13-receptor. It recognizes rat PDGF receptor 13-subunit. PDGFR-7 
and PDGFR-3 were affinity purified on columns with immobilized syn- 
thetic peptides (kindly provided by Dr. Carl-Henrik Heldin) against which 
the antisera were raised (Hermanson et al., 1992; Eccleston et al., 1993). 
All the antibodies react specifically with the respective antigens in immu- 
noprecipitation and Western blotting experiments (Claesson-Welsh et al., 
1989; Han et al., 1993; Eccleston et al., 1993). In control experiments for 
specificity, the antibodies were blocked by incubation overnight at 4°C 
with excess of the corresponding peptides. Slides were developed using 
amino-ethylcarbazole (AEC) as chromogenic substrate which is con- 
verted by the peroxidase into a red to brownish-red precipitate at the sites 
of antigen localization in the tissue. The preparations were counterstained 
with hematoxylin, dehydrated, cleared, and mounted. 

PDGF Radioreceptor Assay 
PDGF-like immunoreactivity in the Sertoli cells supernatants was mea- 
sured by means of a standard simultaneous competition radioreceptor 
assay (RRA) (Gnessi et al., 1992). Purified PMC from 15-d-old animals 
were plated at 2x  105 cells/well in 24-well tray (Becton Dickinson Labware, 
Lincoln Park, NJ) in HBME. After 4 d of culture the ceils were rinsed 
with HBME, 0.1% BSA, and exposed to 100,000 cpm of [125I]PDGF-BB 
(Amersham International plc, Amersham, Buckinghamshire, UK; specific 
activity, 1,000 Ci/mmol) and increasing concentrations of unlabeled 
PDGF-BB (from 0.15 to 50 ng/ml) or test samples for 60 min at 24°C. 
Then the ceils were washed three times with cold binding medium and lysed 
in 1% Triton X-100, 10% glycerol, 20 mM Hepes, pH 7.4. Radioactivity 
was determined in a ~, spectrometer. The PDGF receptor competing activ- 
ity of the conditioned media was converted into PDGF equivalents (ng/ 
ml). To allow comparison among different samples, the PDGF equiva- 
lents were normalized to the protein content of the cells from which the 
supernatants were taken, determined by the protein microassay (Bio-Rad 
Laboratories GmbH, Mtinchen, Germany) using bovine serum albumin as 
standard (Bradford, 1976), after cells lysis via freeze thaw and protein sol- 
ubilization. Since the PMC in culture express both the PDGFR a- and 
[3-subunit (Gnessi et al., 1993), and the c~ subunit recognizes both PDGF 
A- and B-chain with the same affinity (Seifert et al., 1989; Gnessi et al., 
1993), this R R A  detects all classes of PDGF dimers. 

Chemotaxis Assay 
PMC chemotaxis was assayed by a modification of Boyden's chamber 
method using a 48-well micro chemotaxis chamber (Neuro Probe, Inc., 
Bethesda, MD) (Falk et al., 1980). 25 p,1 of HBME 0.1% BSA containing 
PDGF-BB, PDGF-AA, PDGF-AB (Boehringer Mannheim GmbH), or 

conditioned media to be tested, were placed in the lower wells of the mi- 
crochamber plates. Medium alone served as a negative control. A 25 × 80 
ram, 5-1~m pores, polyvinylpirrolidine-free polycarbonate filter (Nucleo- 
pore Co., Pleasanton, CA), separated the lower wells from the upper wells 
containing 40 txl of the cell suspension, which consisted of freshly isolated 
PMC from 5-d-old or 15-d-old animals or PMC from 15-d-old animals 
trypsinized after 4 d of culture, suspended in HBME 0.1% BSA to a final 
concentration of 106 cells/ml. The assay was incubated at 37°C in 5% CO: 
for 4 h. PMC on the upper side of the filter were scraped off. Then, PMC, 
which migrated to the lower side of the filter, were fixed and stained with 
hematoxylin. Chemotactic activity was expressed as the average number 
of cells (-~ SEM) migrated to the lower surface of the filter in five random 
high power (×400) microscopic fields (HPF) in an area representing a 
well. All experiments were performed at least two times in triplicate. In 
experiments to determine the effect of an antibody on PMC migration, the 
antibody was incubated at 37°C for 1 h with the corresponding test sub- 
stance or the conditioned media before the start of the assay. The antisera 
used were anti-PDGF-BB, ant i -PDGF-AA (Genzyme), and a polyclonal 
rabbit anti-PDGF-AB antiserum (R & D Systems, Inc., Minneapolis, MN). 
In separate studies, checkerboard analysis was performed as previously 
described (Zigmond and Hirsch, 1973), to determine if PDGFs stimulated 
directed migration (chemotaxis) or increased random locomotion (chemo- 
kinesis). 

Statistical Analysis 
The significance of the results was determined by using the Student's t test 
on data from 2 to 3 separate experiments. Statistical differences were con- 
sidered significant at P < 0.05. Data are presented as the mean -- SEM. 

Results 

Expression of PDGF Ligands and Receptors mRNAs 
during Testicular Development 
Expression of PDGF A-chain, PDGF B-chain, and PDGFR 
0t- and [3-subunit mRNAs were evaluated by Northern 
blot hybridization. Total RNA was isolated from prenatal 
(day 20 of gestation), newborn (day 1), prepubertal (day 
5), early pubertal (day 15), adult (day 60), and aged (day 
300) rat testis. All forms of PDGF and PDGFR mRNAs 
were detected in prenatal testis, increased from day 1 to 
day 5 postnatal, and then decreased to extremely low lev- 
els in pubertal and adult tissue (Fig. 1 A). The PDGFR 
a-subunit and PDGF A-chain genes were preferentially 
expressed over the PDGFR [3-subunit and PDGF B-chain 
genes. 

Although it was difficult to discriminate between the 
2.3-kb and 2.9-kb transcripts, three PDGF A-chain mRNA 
species of 1.7, 2.3, and 2.9 kb were revealed. PDGF-A 
mRNA was detected in prenatal testis and in 15-d-old tes- 
tis primarily as 1.7 kb and 2.3 kb transcripts. In day 1 and 
day 5 postnatal testis all three PDGF-A mRNA transcripts 
were expressed. Expression of the 3.3-kb transcript for 
PDGF B-chain followed the same pattern of appearance 
of the PDGF A-chain mRNA. Hybridization of cDNAs 
encoding the rat PDGFR ~- and 13-subunit were observed, 
with RNA species of "~6.7 kb and 5.6 kb, respectively. The 
highest levels of PDGFR ct- and 13-subunit mRNAs ex- 
pression were also evident between day 1 and day 5 post- 
natal and progressively decreased with age. The relative 
levels of expression of the PDGF chains and PDGFR sub- 
units were estimated by densitometric scanning followed 
by normalization with respect to the control 13-actin 
mRNA signal (Fig. 1 B). In the case of PDGF A-chain, the 
1.7, 2.3, and 2.9 transcripts were scanned. A comparison of 
the strengths of the bands of mRNA confirmed a progres- 
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compared to 1-d-old and prenatal rat testis, respectively. 
The P D G F  B-chain gene from 5-d-old tissue was 1.17-, 
and 4.35-fold higher compared to newborn and prenatal 
testis. The prepubertal  testis and particularly the adult has 
germ cells as the predominant  cell type. Therefore the de- 
cline of the m R N A s  relative abundance could be due to 
both germ cell accumulation as well as decreased expres- 
sion. However  the subsequent data support a decreased 
expression. 

To determine which of  the various cell types expressed 
P D G F R  subunits, and P D G F  chains mRNAs,  total R N A  
was prepared from Sertoli cells, Leydig cells, and PMC 
isolated from testes at different stages of  development,  in- 
cluding prepubertal, early pubertal, and adult animals 
(Fig. 2). Sertoli cells expressed P D G F - A  and PDGF-B 
m R N A s  only during the prepubertal  period. No P D G F R  
a-  and [3-subunit m R N A s  were detected in early puber- 
tal Sertoli ceils RNA.  PMC showed a distinct pattern of 
PDGFs and PDGFRs  gene expression. Both P D G F R  a- and 
6-subunit m R N A s  were visible in freshly isolated prepu- 
bertal PMC; the expression dropped to almost nondetect- 
able levels when m R N A  was extracted, immediately after 
isolation, from cells obtained from 15-d-old animals. On 
the other hand, the PMC from 15-d-old animals, showed 
an increasing content of both P D G F R  c~- and [3-subunit 
transcripts when cultured for 4 d. No signs of expression of 
the P D G F  A-chain and PDGF-B chain genes were detected 
in any of the experimental groups. 

Adul t  Leydig cells expressed m R N A s  for P D G F  A- and 
B-chain as well as for the P D G F R  a- and [3-subunit. On 
the contrary, early pubertal Leydig cells did not show mea- 
surable amounts of m R N A  for either P D G F  chains or 
P D G F R  subunits. 

Figure 1. Northern analysis of PDGF A-chain, B-chain, and 
PDGFR c~-subunit, and 13-subunit mRNA transcripts in extracts 
from rat testis obtained at prenatal day 2 and 1, 5, 15, 60, and 300 d 
postnatal and adult brain. (A) Each lane contained 20 Ixg of total 
RNA from the indicated samples, isolated and analyzed as de- 
scribed in Materials and Methods. The sizes of the transcripts 
were estimated from the positions of 28-S and 18-S ribosomal 
RNA bands. Data presented are a representative example of 
three experiments which gave comparable results. (B) The histo- 
grams show a quantitative representation of hybridization ob- 
tained by densitometric scanning of the autoradiogram of the 
Northern blot of the testicular RNA extracts shown in A. Results 
are expressed in arbitrary densitometric units after normalization 
to the signal obtained when the blot was rehybridized with the 
13-actin probe (not shown). The prenatal day 2 data have been set 
to one for each of the four transcripts compared. 

sive increase in P D G F R s  and PDGFs  steady state m R N A  
levels up to postnatal day 5, followed by a sharp decline 
with aging. The abundance of P D G F R  a-subunit tran- 
script in 1-d-old rat testis was 3.7-fold higher than in the 
prenatal testis and 1.12-fold higher than in 5-d-old testis. 
Similarly, the P D G F R  13-subunit R N A  in 1-d-old testis 
was 2.8-fold higher than in the prenatal testis, and 1.4-fold 
higher than in 5-d-old testis. The P D G F  A-chain gene 
from 5-d-old tissue was 1.2-fold higher, and 4.7-fold higher 

Figure 2. Northern blot analysis of RNA from various cell types 
to determine the site and the time of PDGF A-chain, B-chain, 
and PDGFR a-subunit, and [3-subunit expression in rat testis. 20 
Ixg of total RNA were loaded into each lane, with the exception 
of lane 7, into which 10 Ixg of total RNA were loaded. Freshly iso- 
lated PMC from 5-d-old animals (lane 1), freshly isolated PMC 
from 15-d-old animals (lane 2), PMC from 15-d-old animals after 
4 d of culture (lane 3), isolated day 15 Sertoli cells (lane 4), iso- 
lated day 5 Sertoli cells (lane 5), purified early pubertal Leydig 
cells (lane 6), and purified adult Leydig cells (lane 7). The sizes of 
transcripts were estimated from the positions of 28-S and 18-S ri- 
bosomal RNA bands. Data presented are a representative exam- 
ple of three experiments which gave comparable results. 
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Developmental Expression of PDGF Ligands 
and Receptors Proteins in the Testis and in Purified 
Gonadal Cells 

To de te rmine  if the test icular  cells t ranslate  the P D G F s  
and P D G F R s  m R N A s ,  and to examine the specific sites of 
dis tr ibut ion of P D G F - A A  and P D G F - B B  and of P D G F R  
et- and 13-subunit, sections of day 20 rat  fetal testis and 
from 5-d-old, 15-d-old, and adult  rat  testis were reacted with 
a n t i - P D G F - A A ,  an t i -PDGF-BB,  a n t i - P D G F R  a-subunit ,  

and a n t i - P D G F R  13-subunit antibodies. In the fetal testis, a 
posit ive immunoreact iv i ty  to P D G F - A A  and P D G F - B B  
was detected within the testicular cords (Fig. 3, A and C), 
while staining for P D G F R  a-  and 13-subunit was evident  in 
cells scat tered in the tissue be tween the testicular cords 
(Fig. 3, E and G). A similar dis tr ibut ion pa t te rn  was ob- 
served in 5-d-old testis, with intense staining for P D G F -  
A A  and P D G F - B B  localized within the tubule in the cyto- 
p lasm of the Sertol i  cells (Fig. 4, A and C) and P D G F R  

Figure 3. Immunohistochem- 
ical localization of PDGF-AA, 
PDGF-BB, and of PDGFR 
a- and 13-subunit in day 2(J fe- 
tal rat testis. The seminiferous 
cords are intensely stained 
using antibody against PDGF 
AA (A); with anti-PDGF-BB 
antibody a positive reaction 
is visible in the same area 
(C). Numerous positively 
stained cells for both 
PDGFR a- (E) and [3-sub- 
unit (G) are identified among 
the cells in the space between 
the seminiferous cords. If 
sections are stained with anti- 
PDGF-AA, anti-PDGF-BB, 
anti-PDGFR-e~, and anti- 
PDGFR-[3 antibodies prein- 
cubated for 12 h at 4°C with 
the corresponding immuniz- 
ing peptides then all staining 
is blocked (B, D, F, and H). 
The sections were studied 
immunohistochemically us- 
ing the streptavidin-biotin 
immunoperoxidase - method 
and the AEC chrorhogen as 
described in Materials and 
Methods. tc, testicular cord; 
imc, intercordal mesenchy- 
mal cells. Bars, 50 Ixm. 
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et- and [3-subunit immunoreactivity confined in the peritu- 
bular cells (Fig. 4, E and G). In the testis from 15-d-old rats 
only minimal positive staining for PDGF-AA and PDGF- 
BB in the Sertoli cells and for PDGFR a- and [3-subunit in 
PMC was observed (data not shown). In the adult testis, 
the Leydig cells were the only cellular component that 
showed positive reaction for both the PDGF homodimers 
(Fig. 5, A and C) and the PDGFR ~x- and [3-subunit (Fig. 5, 
E and G). Panels B, D, F, and H of the Figs. 3, 4, and 5 
show the control staining of the sections from prenatal, 
5-d-old, and adult testis when the anti-PDGF-AA, anti- 
PDGF-BB, ant i-PDGFR oL-subunit, and ant i-PDGFR 
[3-subunit antibodies were used after preincubation with 
excess of the synthetic peptides to which they were raised. 
All the controls remained unstained demonstrating the 
specificity of the immunoreaction. 

To characterize further the immunohistochemical find- 
ings, immunocytochemical studies were conducted on pu- 
rified Leydig cells, Sertoli cells, and PMC at various ages 
(Fig. 6). PMC from 5-d-old rats showed positive immuno- 
staining for PDGFR et- and [3-subunit (Fig. 6, A and B), 
but not for PDGF-AA and PDGF-BB (Fig. 6, C and D). 
Purified PMC from 15-d-old rats after 24 h of culture did 
not stain with any one of the anti-PDGFs and anti-PDGFRs 
antibodies (data not shown). However, a strong immuno- 
staining was observed when the cells were reacted with the 
anti-PDGFR et- and [3-subunit antibodies after 4 d in cul- 
ture (Fig. 6, G and H). The same ceils were negative for 
PDGF-AA and PDGF-BB (Fig. 6, E and F) .  

Positive immunostaining for PDGF-AA and PDGF-BB 
and for the PDGFR subunits was readily detectable in adult 
Leydig cells (Fig. 6, I-L). Early pubertal Leydig cells did 
not stain with any of the PDGFs and PDGFRs antibodies 
employed (data not shown). These findings agree with and 
extend the immunohistochemical observations in the in- 
tact tissue, and are consistent with previous observations 
of PDGF-like material production and PDGFRs expres- 
sion by adult rat Leydig cells in culture (Gnessi et al., 1992). 
Sertoli ceils from 5-d-old animals showed positive immu- 
nostaining for either PDGF-AA or PDGF-BB (Fig. 6, M 
and N), while no reaction was observed with anti-PDGFR 
a- and [3-subunit antibodies (Fig. 6, O and P). Sertoli cells 
from early pubertal rats did not react with any of the anti- 
sera used (data not shown). Incubation of the antibodies 
with excess of the corresponding immunizing peptides 
abolished labeling, demonstrating the specificity of the re- 
action (inserts of Fig. 6). These results are in good agree- 
ment with the evidences of the Northern blots of the RNA 
extracted from the purified gonadal cells (Fig. 2). 

PDGF-Iike Molecules Production by Sertoli Cells 
and Effect o f  the Treatment with FSH 

The striking difference in PDGF B-chain and A-chain tran- 

scripts and proteins expression between prepubcrtal and 
adult Sertoli cells was paralleled by a similar difference in 
the secretion of PDGF-like molecules. Culture medium 
conditioned by the same prepubertal, and early pubertal 
Sertoli cells isolates from which RNA was extracted and 
analyzed by RNA blot hybridization was examined for its 
PDGF-Iike content in the RRA. Medium conditioned by 
prepubertal rat Sertoli cells contained measurable amounts 
of PDGF-Iike activity, while early pubertal Sertoli cells did 
not (Fig. 7 A). The PDGF-like immunoreactivity was 30 
-+ 5 ng/ml in the conditioned medium of 5-d-old Sertoli 
cells, decreased to 5 _ 2 ng/ml in the conditioned medium 
from 10-d-old Sertoli cells, and then disappeared in older 
animals. As shown in the insert of Fig. 7 A, an internal 
standard curve constructed by adding increasing concen- 
trations of PDGF in the presence of test substance be- 
haved equivalently to the standard curve, and serial dilu- 
tions of the medium conditioned by Sertoli cells from 5-d- 
old animals showed parallel displacement to the standard, 
indicating the absence of components that might interfere 
with PDGF binding. 

The secretion of PDGF competitor was decreased in a 
dose-dependent manner by FSH (Fig. 7 B). The levels of 
PDGF-Iike molecules ranged from 27 _+ 5 ng/ml in the ab- 
sence of FSH to 7 _+ 1 ng/ml after 24 h of treatment with 
100 ng/ml of FSH. 

Effect of  FSH Treatment on PDGF and PDGFR 
Immunostaining in Testicular Organ Culture 

To verify the effect of FSH on the PDGF expression by 
Sertoli cells in a more physiological condition, we carried 
out immunohistochemical studies on organ cultures from 
3-d-old rat testis in basal conditions and after 24 h of treat- 
ment with FSH. Analogously to the results obtained with 
the testicular fragments from 5-d-old animals, a positive 
immunostaining for PDGF-AA (Fig. 8 A) and PDGF-BB 
(Fig. 8 B) was observed within the tubules. On the con- 
trary, a positive reaction for the PDGFR or- and ~-subunit 
was localized in the intertubular tissue (Fig. 8, C and F).  
The 24-h treatment with 100 ng/ml FSH abolished the im- 
munoreactivity for both PDGF-AA and PDGF-BB within 
the tubules (Fig. 8, B and E), confirming the~ results ob- 
tained with the RRA of the Sertoli cells conditioned media. 
No changes in the staining for the PDGFR et-', and ~-subunit 
after treatment with FSH was obserx~ed (data not shown). 

Chemotactic Response of  PMC to PDGFs 

PDGF has been shown to be a potent chemotactic agent 
for fibroblasts, smooth muscle cells, and phagocytic ceils 
(Deuel, 1987). It is conceivable that the ability to stimulate 
chemotaxis plays an important role in the fulfilment of the 
in vivo function of PDGF in tissue repair, and in embryo- 

Figure 4. Immunohistochemical localization with anti-PDGF-AA, anti-PDGF-BB, anti-PDGFR et-subunit, and anti-PDGFR B-sub- 
unit antibodies in 5-d-old rat testis. Cells positive for PDGF-AA (A) and PDGF-BB (C) are readily observed within the tubules, 
whereas cells positive for PDGFR tx-subunit (E) and 13-subunit (G) are evident in the cell layer encircling the seminiferous tubules. Neg- 
ative immunostaining is noted when anti-PDGF-AA, anti-PDGF-BB, anti-PDGFR a-subunit, and anti-PDGFR 13-subunit antibodies 
are preabsorbed with the corresponding immunizing peptides (B, D, F, and/-/). Note the absence of positive staining in the blood vessel 
in G. Tissue sections were studied immunohistochemically as described in Materials and Methods. st, seminiferous tubule; i, intertubular 
space; v, blood vessel. Bars, 50 txm. 
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nal development, as well as pathological processes, such as 
formation of atherosclerotic plaques (Ross, 1993). We 
therefore investigated the three isoforms of PDGF with 
regard to their ability to induce directed migration of PMC. 

PDGF-BB, PDGF-AB, and P DGF -AA stimulated mi- 
gration of freshly purified PMC from 5-d-old rats (Fig. 9 
A) and of PMC purified from 15-d-old animals that had 
cultured for 4 d (Fig. 9 B) but not of PMC from 15-d-old 
animals immediately after isolation (data not shown). This 
lack of response of freshly isolated 15-d-old PMC is in line 
with previous studies that have indicated that PMC from 
early pubertal animals express functional receptors for 
PDGF upon tissue culturing (Gnessi et al., 1993). A linear 
dose response of PMC migration toward increasing con- 
centrations of the three PDGF isoforms was observed up 
to 25 ng/ml of the attractants followed by a decline at 
higher concentrations. This pattern of response is typical 
for chemotactic substances. At low concentrations of 
chemoattractant, no cell movement occurs. At higher con- 
centrations, the cell is able to distinguish a difference in 
the concentration gradient of substance, and thus moves in 
a directed fashion. At still higher concentrations, the gra- 
dient is no longer distinguishable and the cell does not 
move toward the chemoattractant. Directionality of mi- 
gration (chemotaxis) was established by analyzing the re- 
sponse of PMC when the same concentrations of the test 
substances were placed both in the upper and lower wells 
of the chemotactic chamber. In this condition, no migra- 
tion above background was present (data not shown). The 
PDGF dimers showed a different chemotactic potency. 
PDGF-BB was the most active, achieving cell migration of 
~8.5-fold over control at 25 ng/ml. The PDGF-BB effect 
was about one third higher compared to PDGF-AB, and 
twice that of PDGF-AA. Since the chemotactic behavior 
of the PMC from 5-d-old animals was equivalent to that of 
the PMC from 15-d-old animals after 4 d of culture, we 
used this latter cell preparation in the subsequent experi- 
ments. 

Polyclonal anti-PDGF-BB, AA, and AB antibodies at 
10 ixg/ml completely inhibited the PMC migration induced 
by the most active concentration gradient of the corre- 
sponding antigens, demonstrating the specificity of the ef- 
fect (Fig. 9 C). 

Migratory Activity o f  Sertoli Cells Conditioned Media 
on P M C  and Effect o f  anti-PDGFs Antibodies and o f  
F S H  Treatment 

Sertoli cells from prepubertal animals express mRNAs for 
the PDGF A-chain and PDGF B-chain and secrete PDGF- 
like material. Concomitantly, PMC express transcripts for 
the PDGFR et- and f3-subunit and the mRNAs are trans- 
lated in the corresponding proteins. 

Since we observed a chemotactic response to all the 
PDGF isoforms by PMC, and the Sertoli cells in culture 

secrete PDGF-like substances, we examined whether PMC 
respond chemotactically to the Sertoli cells conditioned 
medium (Fig. 10). Chemotactic activity was detected in 
conditioned medium from cultured prepubertal Sertoli 
cells, but not in the medium conditioned by Sertoli cells 
from 15-d-old animals (Fig. 10 A). Conditioned medium 
from prepubertal Sertoli cells enhanced PMC migration in 
a concentration-gradient--dependent fashion (Fig. 10 A). 
The PDGF-like concentration, measured by RRA, in the 
undiluted conditioned medium used for these experi- 
ments, was 27 ng/ml. The highest activity was obtained at a 
dose of 100% and was around 72% of that observed with 
25 ng/ml of standard PDGF-BB. This lower activity, if 
compared with a similar amount of standard PDGF-BB, 
could be due to the fact that the PDGF-like content in the 
Sertoli cells supernatant is a sum of the three PDGF iso- 
forms that have differing chemotactic potencies. The pat- 
tern of the chemotactic activity of the medium following 
dilution was similar to that described for the synthetic sub- 
stances (Fig. 10 A). 

Using anti-PDGF antibodies, we evaluated whether the 
efficacious migratory activity of the medium conditioned 
by the prepubertal Sertoli cells was due to PDGF. Anti-  
PDGF-AA, anti-PDGF-BB, and ant i -PDGF-AB anti- 
bodies inhibited the chemotactic effect of the conditioned 
medium by 66, 83, and 78%, respectively, suggesting that 
this potent activity was mainly due to PDGF. In accor- 
dance with the inhibitory effect of FSH on the immunore- 
active PDGF production by the Sertoli cells, no chemotac- 
tic response was observed to the prepubertal Sertoli cells 
supernatant after 24 h of treatment with FSH (Fig. 10 B). 
These data indicate that Sertoli cells from 5-d-old animals 
secrete an efficacious migration factor for PMC, probably 
PDGF in nature, whose production can be modulated by 
FSH, and thus that there may be a paracrine mechanism 
for inducing PMC migration. 

D i s c u s s i o n  

Testicular development is an highly coordinated process 
which requires a precise temporal regulation of growth 
and differentiation of somatic and germ cell elements and 
imply a number of cell-cell interactions accomplished by 
locally produced growth and differentiation factors. 

This report demonstrates that PDGF and PDGFR ex- 
pression are temporally controlled in the testis and that 
the pattern of the PDGF system expression could be re- 
quired for prenatal and postnatal organ development and 
maintenance of homeostasis. Transcripts from the genes 
expressing PDGF A-chain, PDGF B-chain, and PDGFR 
a- and [3-subunit are first detected in RNA extracted from 
testis 2 d before birth, rise to high levels at postnatal day 1, 
remain high through the first 5 postnatal days and decline 
to much lower levels in 15-d-old and 60-d-old animals to 

Figure 5. Immunohistochemical localization of PDGF-AA, PDGF-BB, PI~GFR u-subunit, and PDGFR 13-subunit in 60-d-old rat testis. 
The Leydig cells located in the intertubular space show strong immunorea~ivity for PDGF-AA (A), PDGF-BB (C), PDGFR c~-subunit 
(E), and PDGFR [3-subunit (G), while the seminiferous tubules are negative. Note the absence of positive staining in the blood vessel in 
E. Immunoreaction is absent when the anti-PDGF-AA, anti-PDGF-BB, anti-PDGFR ct-subunit, and anti-PDGFR 13-subunit antibod- 
ies are preabsorbed with the corresponding immunizing peptides before analysis (B, D, F, and H). For methodological details see Mate- 
rials and Methods. st, seminiferous tubule; i, intertubular space; v, blood vessel. Bars, 50 t~m. 
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nearly disappear in older animals, suggesting that the ex- 
pression of the PDGFs and PDGFRs genes is under devel- 
opmental control in this tissue. The age-related difference 
in PDGFR a-subunit gene expression is consistent with 
previous observations by Loveland et al. (1993) which 
reported the highest levels of a transcript encoding the 
PDGFR a-subunit in RNA prepared from testes of 5-d-old 
animals followed by a decline in relative abundance with 
increasing age. These findings have been extended by our 
results, in that the expression of the PDGFR a-subunit is 
also detected prenatally and at postnatal day 1. 

When the localized expression of the PDGFRs subunits 
and their ligands are compared, total RNA prepared from 
purified prepubertal, and early pubertal Sertoli cells and 
PMC as well as from prepubertal and adult Leydig cells re- 
vealed that in adult animals the expression of the PDGF 
A- and B-chain, and of PDGFR a- and 13-subunit mRNAs 
is confined in Leydig cells, whereas before puberty P D G F R  
a- and 13-subunit transcripts are visible in PMC and PDGF 
A- and B-chain transcripts are evident in Sertoli cells. The 
prominent expression of PDGFR a-subunit mRNA in the 
Leydig cells of the adult testis is consistent with the results 
of a previous study (Loveland et al., 1993). In the same 
study, Loveland and colleagues (1993), following North- 
ern blot analysis of PDGFR ct-subunit mRNA in total 
RNA prepared from isolated day 20 Sertoli cells, reported 
a faint signal. We were not able to reproduce this finding, 
however, despite this reported apparent mRNA expres- 
sion, significant expression of functional PDGFRs by Ser- 
toli cells is unlikely based on the lack of binding of 
[125I]PDGF-BB on purified 5-d-old and 15-d-old Sertoli 
cells (Gnessi, L., unpublished results) and on the subse- 
quent immunohistochemical data. 

The immunohistochemistry confirms the Northern blot 
findings and demonstrates that in the prenatal, early post- 
natal, and prepubertal testis the PDGFs and the PDGFRs 
are distributed in the Sertoli cells and peritubular cells, re- 
spectively, while in the adult PDGFs and PDGFRs posi- 
tive immunoreactivity is limited to the Leydig cells. Thus, 
the mRNAs and corresponding proteins for PDGFs and 
PDGFRs are localized in separate but adjacent cell types 
during prenatal and early postnatal testicular development 
and are confined in the Leydig cells in the adult. Accord- 
ingly, recent studies, using in situ hybridization, have de- 
scribed the location of the PDGFR [3-subunit and a-sub- 
unit mRNA in the mesenchyme of the gonads of 12.5- and 
14.5-d mouse embryos, respectively (Shinbrot et al., 1994; 
Orr-Urtreger et al., 1992b). Additional in situ hybridiza- 
tion studies, conducted in older mouse embryos, have re- 
vealed the PDGFR 13-subunit mRNA expression clearly 

localized in the mesenchyme cells of the testis between the 
testicular cords (Shinbrot, E., personal communication). 

The immunolocalization in the intact tissues has been 
further reinforced by the experiments performed on puri- 
fied cells. Primary Sertoli cell cultures from 5-d-old ani- 
mals showed a positive immunostaining for PDGF-AA 
and PDGF-BB but not for PDGFR a- and [3-subunit, while 
in cells from 15-d-old animals no staining for any of the an- 
tisera used was observed. Adult Leydig cells were positive 
for all the PDGF and PDGFR subunits whereas early pu- 
bertal cells were negative. The PMC from 5-d-old animals 
were intensively positive for PDGFR a- and 13-subunit but 
not for PDGF-AA and PDGF-BB. Previous studies have 
indicated that PMC from 15-d-old animals express PDG- 
FRs upon cell culturing (Gnessi et al., 1993). The results 
obtained here confirm this finding revealing a strong im- 
munoreactivity for PDGFR ct- and 13-subunit in PMC from 
15-d-old rats after 96 h of culture but not in freshly iso- 
lated cells. 

To correlate PDGF gene expression, immunohistochem- 
ical localization and protein production, the ability of cul- 
tured Sertoli ceils to secrete PDGF was evaluated. The 
RRA of the secreted proteins indicates that Sertoli cells 
from 5-d-old but not from 15-d-old testicular tissue are 
able to produce PDGF-like substances. Although our as- 
say system cannot distinguish between the various PDGF 
isoforms, the evidences obtained with immunohistochem- 
istry and Northern analysis suggest that prepubertal Ser- 
toli cells can produce all three the PDGF isoforms. 

Interestingly, in vitro FSH treatment was found to sig- 
nificantly decrease the PDGF-like substance secretion by 
Sertoli cells from 5-d-old animals, suggesting that the PDGF 
expression is hormone dependent. This result has been 
further reinforced by the immunohistochemical experi- 
ments on the organ cultures in which, the treatment with 
FSH produced a marked reduction of the intratubular 
staining for PDGF-AA and PDGF-BB. Do these experi- 
mental manipulations parallel what happens in vivo? Pre- 
vious studies suggested that PDGF is expressed primarily by 
mesenchymal cell types (Ross et al., 1986). The Sertoli cell 
is believed to be derived from undifferentiated mesenchy- 
mal cells in the gonadal ridge during fetal gonad develop- 
ment (Pelliniemi et al., 1993). Therefore, the Sertoli cell 
displays mesenchymal characteristics during its early de- 
velopment. The decrease in PDGF expression may be cor- 
related to the mesenchymal to epithelial transformation 
related with Sertoli cell differentiation which is driven by 
FSH. Moreover, the response of the Sertoli cells to FSH is 
entirely dependent on the age of the animal. In the rat, the 
FSH receptor can be measured from 17.5 d of gestation, 

Figure 6. Immunocytochemical localization of PDGF-AA, PDGF-BB, PDGFR ot subunit, and PDGFR 13-subunit in PMC, Leydig cells 
and Sertoli cells. PMC isolated from 5-d-old testis, after 24 h of culture, are negative for PDGF-AA (A) and PDGF-BB (B), whereas the 
cells show a positive staining for PDGFR et- (C) and 13-subunit (D). PMC from 15-d-old animals, after 96 h of culture, are negative for 
PDGF-AA (E), and PDGF-BB (F), while a strong immunoreactivity can be observed for PDGFR ct- (G) and [3-subunit (H). Leydig 
cells from adult animals are positively stained with anti-PDGF-AA (/), anti-PDGF-BB (J), anti-PDGFR a-subunit (K), and anti- 
PDGFR [3-subunit (L) antibodies. Sertoti cells isolate from 5-d-old animals, show positive immunoreactivity for PDGF-AA (M), and 
PDGF-BB (N), whereas the cells are negative for PDGFR a-subunit (O) and PDGFR [3-subunit (P). The cells were cultured and pro- 
cessed for histochemistry as outlined in Materials and Methods. The inserts in the panels of the figure show the negative controls which 
consisted in staining of the cells with the respective antibodies preincubated for 12 h at 4°C with the corresponding immunizing peptides. 
All the controls are negative. Bars, 50 p.m. 
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Figure 7. Production of PDGF receptor-competing activity by 
Sertoli cells isolated from testes at different stages of develop- 
ment and effect of the treatment with FSH. (A) Medium condi- 
tioned by purified Sertoli cells from 5-, 10-, and 15-d-old rat testes, 
collected after 24 h of culture, was assayed for PDGF competitor 
activity in the RRA (ND = not detectable). (B) Assay of PDGF 
competitor activity in medium conditioned by Sertoli cells from 
5-d-old animals after 24 h of treatment with various concentra- 
tions of FSH. Results are expressed as equivalents of PDGF (ng/ 
ml) adjusted for the protein content of the cells in the respective 
cultures. Each bar represents the mean +-- SEM of triplicate ex- 
periments. In A, the PDGF equivalents production by 10-d-old 
ceils was significantly lower compared to 5-d-old cells (P < 0.01). 
In B, FSH treatment significantly decreased the PDGF equiva- 
lents production vs control (P < 0.05 at 1 ng/ml and P < 0.01 at 
concentrations of 10 ng/ml and 100 ng/ml). The insert of A shows 
the standard curve of the PDGF competition assay (Q), serial di- 
lutions of conditioned medium from cultures of Sertoli cells from 
5-d-old animals (11), and interna| standard curve constructed with 
PDGF-BB in the presence of conditioned medium from Sertoli 
cells ([]). For the internal standard curve, PDGF-BB (1.5-50 ng/ 
ml) was added to the medium conditioned by the Sertoli cells af- 
ter 24 h of culture (CM, conditioned medium). For methodologi- 
cal details, see Materials and Methods. B/Bo, bound to free ratio. 
Each point represents the mean of two determinations with the 
SEM less than 5%. 

remains very low through 19.5 d of fetal life, and its con- 
centration begins to rise sharply from days 2-10 after birth 
(Warren et al., 1984). FSH secretion starts around day 21 
of fetal life (Huhtaniemi, 1994), hence the testis should be 
responsive to FSH as soon as it reaches the circulation. 

However,  the fetal testis does not respond to FSH stimula- 
tion with clearly increased c A M P  production (Picon and 
Gangnerau,  1980; Eskola et al., 1993). The situation 
changes after birth, when in the rat there is a dramatic in- 
crease in FSH stimulated cAMP production that begins af- 
ter birth with a maximal stimulation evident at 9-15 d 
(Heindle et al., 1977; van Sickle et al., 1981). Therefore, 
both FSH-induced Sertoli cell differentiation, and the tem- 
poral pattern of Sertoli cell responsiveness to FSH in 
terms of cAMP production may result in a suppression of 
P D G F  secretion and correlates with the developmental  
data shown in Figs. 1 and 2. It is worth noting that a similar 
effect of FSH on the expression of TGF[32 by prepubertal 
Sertoli cells has been reported (Mullaney and Skinner, 
1993). 

Sertoli cells start to synthesize P D G F - A  and PDGF-B at 
least as early as fetal day 20. Synthesis is present at very 
high levels between 2 d before birth and 5 d postnatal and 
the same is apparent for P D G F R  a-  and [3-subunit in the 
cells localized in the interstitial tissue. 

The high levels of expression of the P D G F R s  by the 
peritubular cells corresponds with the timing of recruit- 
ment of this cell type from the undifferentiated intertubu- 
lar stromal-fibroblast population (Bressler and Ross, 1972), 
their higher proliferation index (Palombi et al., 1992), and 
their ability to secrete extracellular matrix components  to 
form in cooperation with the Sertoli cells the basal mem- 
brane of the tubule (Pelliniemi et al., 1984), while the 
P D G F R s  expression decreases concomitantly with the ac- 
quisition of  the tubule to contract spontaneously (Kor- 
mano and Hovatta,  1972; Worley et al., 1984). In other 
words, it seems that the peritubular cells cease to express 
P D G F R s  as soon as they shift from a synthetic to a con- 
tractile phenotype which corresponds with both morpho-  
logical and functional maturation of PMC. In this respect 
it appears likely that the PMC behavior may be homolo- 
gous to what previously described for smooth muscle cells 
in other systems. For  example vascular smooth muscle 
cells, dependent  on age, may exhibit either a contractile or  
a synthetic phenotype (Ross, 1993). In the fetus and in the 
young evolving organism, vascular smooth muscle cells are 
in the synthetic state, in that they are capable of expressing 
genes for a number  of growth regulatory molecules and 
cytokines, can respond to growth factors by expressing ap- 
propriate receptors, and can synthesize extracellular ma- 
trix. In contrast, in the adult, when cells are in contractile 
phenotype, they respond to agents that induce either con- 
striction or  relaxation. Accordingly, it has been reported 
that vascular smooth muscle cells express P D G F  receptors 
as they modulate from a contractile to a synthetic pheno- 
type (Sj61und et al., 1988). The intimate mechanism of reg- 
ulation of P D G F R s  expression on PMC in vivo is not 
known. Testicular peritubular cells contain androgen re- 
ceptors (Verhoeven, 1979) and require androgens for their 
maturation (Bressler and Ross, 1972), thus, it is an inter- 
esting possibility, which remains to be investigated, that 
the P D G F R s  levels of the PMC, as suggested for smooth 
muscle cells from porcine uterus (Terracio et al., 1988), are 
steroid hormone dependent. 

The importance of Sertoli cell-myoid cell communica- 
tions in seminiferous tubule formation has been empha- 
sized (Dym, 1994). Cell migration and proliferation are 
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Figure 8. Immunohistochemical staining for PDGF-AA (A), PDGF-BB (D), and for PDGFR a- (C) and 13-subunit (F) in 3-d-old testic- 
ular organ culture and effect of the FSH treatment on the PDGF-AA (B) and PDGF-BB (E) immunoreactivity. The tubules are in- 
tensely stained using both anti-PDGF-AA (A) and anti-PDGF-BB antibodies (D). The treatment of the organ cultures with 100 ng/ml 
FSH for 24 h, completely abolishes the staining for both PDGF-AA (B) and PDGF-BB (E). A positive immunostaining for PDGFR a-sub- 
unit (C) and PDGFR 13-subunit (F) is evident in the intertubular space. Tissue sections were treated for immunohistochemistry as de- 
scribed in Materials and Methods. The negative controls obtained as described in Fig. 3 and Materials and Methods were negative (not 
shown), st, seminiferous tubule; i, intertubular space. Bars, 50 txm. 

critical events in this process. Both environmental interac- 
tions, mediated primarily through the extracellular matrix, 
and local regulatory interactions, mediated by the numer- 
ous secretory products produced by both cell types, have 
been implicated in the morphogenetic cascade resulting in 
the formation of the seminiferous tubule. Examples of en- 
vironmental and regulatory interactions responsible for 
the migration of the peritubular cells precursors toward 
the tubule have been described. The appearance of lami- 
nin on the surface of the Sertoli cells has been shown to be 
required to permit the peritubular cells to adhere and sub- 
sequently to migrate on Sertoli cell surfaces (Tung and 
Fritz, 1994), and it has been reported that TGF~ may po- 
tentially act as a chemotactic agent for the peritubular cell 
(Skinner and Moses, 1989). Additional experimental data 
suggest that in vivo the Sertoli cells produce a factor that 
attracts the myoid cells. Seminiferous cords formed on a 
Matrigel substrate when returned to the testis attract, 
within 24 h, the mesenchymal cells which appear to sur- 
round the cords in a manner similar to the PMC relation- 
ship to the seminiferous tubules (Dym, 1994). PDGF is a 
potent chemotactic agent for a number of cell types (Deuel 
et al., 1982; Sepp~i et al., 1982; Hosanng et al., 1989; Barnes 
and Hevey, 1990; Siegbahn et al., 1990) and is the stron- 
gest chemoattractant for arterial smooth muscle cells de- 
scribed to date (Grotendorst et al., 1981, 1982; Koyama et 
al., 1992; Bornfeldt et al., 1994). The findings presented 
here indicate that PMC show migratory responses to 
PDGF. The chemotactic activity of PDGF is evident in 
freshly isolated PMC from 5-d-old animals and in PMC 

purified from 15-d-old animals after 4 d in culture, that is 
more than the time required for cells of this age to express 
functional PDGFRs in culture. The chemotactic response 
of PMC to PDGF occurs rapidly, with significant migra- 
tion observed within 4 h. By comparison, PMC division 
does not begin until 48 h after the exposure to PDGF 
(Gnessi et al., 1993). We found that all three the PDGF 
isoforms are chemoattractants for PMC although with dif- 
ferent potencies, with PDGF-BB being the most active fol- 
lowed by PDGF-AB and PDGF-AA. The observed lower 
maximal effect of PDGF-AA,  compared to PDGF-AB 
and PDGF-BB may result from the lower number of bind- 
ing sites for PDGF-AA on these cells (Gnessi et al., 1993). 
Since during the early stages of testicular development the 
Sertoli cells are the primary source of PDGF-like mole- 
cules and PMC express PDGFRs, our findings support the 
view that Sertoli cells may direct the development of their 
neighboring precursors of the mature PMC population via 
PDGF. The mitoattractant property of PDGF suggests 
that Sertoli cell secretion of this growth factor may be ide- 
ally suited to chemotactically attract and mitogenically 
stimulate peritubular cells in proximity of the tubule and 
thus that Sertoli cell expression of PDGF may be impor- 
tant in testicular morphogenesis. Accordingly, we found 
that PMC show a migratory response to conditioned me- 
dium from early postnatal but not early pubertal Sertoli 
cells. PMC migration to the Sertoli cells conditioned me- 
dium was inhibited by anti-PDGFs antibodies, suggesting 
that the chemotactic activity may be due to PDGF. Fur- 
thermore, in line with the ability of FSH to reduce the se- 
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Figure 9. PMC migration to the three PDGF isoforms and inhibi- 
tion by the corresponding antibodies. A shows the chemotactic 
behavior to various concentrations of PDGF-AA, PDGF-AB, 
and PDGF-BB, of PMC from 5-d-old animals immediately after 
isolation. B shows the chemotactic behavior of PMC obtained 
from 15-d-old animals trypsinized after 96 h of culture to differ- 
ent concentrations of the three PDGF isoforms. In C, PMC from 
15-d-old animals were harvested after 96 h of culture and ana- 
lyzed for chemotaxis toward PDGF-BB, PDGF-AB, and PDGF- 
AA at the concentrations indicated or to the same concentrations 
of the PDGF isoforms preincubated for 1 h at 37°C with the cor- 
responding antibodies. Chemotactic activities were assayed in 
triplicate as described in Materials and Methods. Results are ex- 
pressed as the means +-_ SEM for cell numbers observed per HPF. 

cretion of  PDGF-l ike  substances by Sertoli cells in culture, 
the condit ioned medium from the FSH-t rea ted  cells dis- 
plays a significantly weakened chemotactic  effect. These 
results suggest that Sertoli cells may secrete PDGF-l ike  
substances that attract the P D G F  responsive intertubular 
mesenchymal  cells which will form the mature  PMC popu- 
lation. Interestingly, PMC increase the production of ex- 

Figure 10. PMC chemotaxis toward Sertoli ceils conditioned me- 
dium, Sertoli cells conditioned medium treated with anti-PDGFs 
antibodies, and medium conditioned by Sertoli cells after 24 h of 
treatment with 100 ng/ml of FSH. (A) PMC suspension was 
placed in the upper wells and medium alone (negative control), 
medium containing 25 ng/ml PDGF-BB (positive control), condi- 
tioned medium from Sertoli cells isolated from 15-d-old animals 
collected after 24 h of culture, and various concentrations of con- 
ditioned medium from Sertoli cells isolated from 5-d-old animals 
collected after 24 h of culture, were placed in the lower wells of a 
chemotactic chamber. B shows the effect of FSH treatment, and 
of anti-PDGF-AA, -BB, and -AB, antibodies on the chemotactic 
activity of conditioned medium from Sertoli cells isolated from 
5-d-old animals (CM, conditioned medium). The antibodies were 
used at a concentration of 10 tag/ml. Chemotaxis was assayed in 
triplicate as described in Materials and Methods. Values are 
means -+ SEM for cell numbers observed per HPF. In A, PDGF- 
BB vs control P < 0.01; 50% and 100% Sertoli cells conditioned 
medium vs control, P < 0.05 and P < 0.01, respectively. In B, the 
significance of the difference of PMC migration toward PDGF- 
BB vs control is P < 0.01. There is no statistical significance vs con- 
trol in the number of cells migrated when the conditioned me- 
dium from 15-d-old Sertoli cells was tested. A P value < 0.01 for 
all the antibodies treated and the FSH-treated Sertoli cells condi- 
tioned medium vs the positive control is calculated. 

tracellular matrix components in response to P D G F  (Gnessi 
et al., 1993). Again all these events require a strict spa- 
t iotemporal  control of the PDGFs  and P D G F R s  expres- 
sion and action, and emphasize the importance of the epi- 
thelial-mesenchymal interaction in the development  of  the 
testis. Topographically similar interactions characterize 
numerous classical developmental  models (Gilbert, 1991), 
and have been described for both P D G F - A / P D G F R - a  and 
PDGF-B/PDGFR-13 (Orr -Ur t reger  and Lonai, 1992a; 
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Holmgren et al., 1991) during the development of various 
organs. 

Our results suggest that the control of PDGF secretion 
by Sertoli cells may be at least in part due to FSH. Further 
possibilities emerged from studies on the Wilm's tumor 
suppressor gene (WT1), which has been identified as a 
candidate gene involved in urogenital development. WT1 
encodes a zinc finger protein with four zinc fingers which 
acts as a transcriptional regulator (Call et al., 1990; Gessler 
et al., 1990). WT1 gene is expressed in only a very limited 
set of tissues in the developing mammalian fetus, but prin- 
cipally in the kidney and the gonads. The gene is expressed 
in the genital ridge of both males and females before the 
formation of an overt testis or ovary. As the gonads de- 
velop, its expression is restricted to the Sertoli cells of the 
testis and granulosa cells of the ovary (Pelletier et al., 
1991). The WT1 protein has been shown to interact with 
the PDGF-A promoter region acting as a transcriptional 
activator as well as a repressor (Wang et al., 1992; Wang et 
al., 1993). This difference occurs by RNA editing that is de- 
velopmentally regulated in rat testis (Sharma et al., 1994). 
WT1 mRNA levels in the testis increase steadily after 
birth, reaching their highest expression during the first 
week after birth and decreasing slightly as the animal ma- 
tures (Pelletier et al., 1991). The ability of WT1 to modu- 
late the PDGF A-chain gene expression and the regula- 
tion of WT1 expression during development of the gonads 
coupled with our findings on the pattern of testicular ex- 
pression of PDGF A-chain, suggest that WT1 may be in- 
volved in the control of PDGF production in the testis. Fu- 
ture studies to determine the exact role of WT1 in the 
control of the expression of PDGF will help to define the 
role of this gene during testicular development. 

Maintenance of homeostasis and control of local envi- 
ronment are critical factors involved in the prevention of 
disease. It has been reported that aberrant expression of 
PDGF or PDGFR is likely to be involved in the stimula- 
tion of growth of certain tumors (Heldin, 1992). Further- 
more, overactivity of PDGF could also be part of the de- 
velopment of certain nonmalignant disorders involving an 
excess of cell proliferation (Martinet et al., 1987; Antonia- 
des et al., 1990; Ross, 1993; Sano et al., 1993; Qu et al., 
1994). The mitotic clock, while definitive under physiolog- 
ical conditions, is corruptible by alterations in the environ- 
ment. For example, continued exposure of oligodendro- 
cyte type 2 astrocyte precursors to a mixture of PDGF and 
FGF results in extensive proliferation in the absence of 
differentiation (Bogler et al., 1990). Growth factors can in- 
fluence the timing with which differentiation takes place, 
and thus determine the size of a given mature cell popula- 
tion. It is interesting to note that hypercellularity, matrix 
expansion, and tubular sclerosis are often observed in tes- 
ticular biopsies of infertile males (de Kretser et al., 1975; 
Salomon and Hedinger, 1982; P611anen et al., 1985). 

PDGF has been proposed to be one of the growth fac- 
tors that drive proliferation during normal development 
and in various pathological conditions. Different experi- 
mental approaches have been taken to confirm the hy- 
pothesized roles of PDGF in vivo. It has been reported 
that Patch (Ph) mice, which show dominant pigmentation 
defects and recessive embryonic lethality (Grt~neberg and 
Truslove, 1960) with defects in a number of mesenchymal 

lineages and in neural crest derivatives (Morrison-Graham 
et al., 1992; Orr-Urtreger et al., 1992b; Schatteman et al., 
1992), carry a deletion of the PDGF a-receptor (Smith et 
al., 1991; Stephenson et al,, 1991). However, Ph represent 
a large deletion, and thus it is uncertain whether the phe- 
notype is attributable to the absence of the c~ receptor 
alone or of several genes in addition to the a receptor; be- 
sides, since the Ph/Ph embryos die well before birth, they 
do not shed any light on the role of the PDGF/PDGFR 
system in late development and after birth. 

More recently, PDGF-B (Lev6en et al., 1994) and PDGF 
[3-receptor (Soriano, 1994) deficient mice have been gen- 
erated. In both studies the animals show kidney glomeru- 
lar defects, hemorrages, anemia, and thrombocytopenia. 
Some of the more severe defects observed in the PDGF-B 
mutants, such as hypertrabeculation of the heart and dila- 
tion of the arteries, do not appear in the [3-receptor mu- 
tant, probably as a consequence of the partial overlapping 
functions of the PDGFs and PDGFRs forms. 

There is no mention of testicular problems in the PDGF-B 
and PDGF 13-receptor mutant mice, but no attention has 
been paid to the reproductive systems of these animals 
(Betsholtz, C., personal communication). The most con- 
spicuous phenotype of PDGF-B and PDGFR-13 mutants 
was the absence, or significant paucity of mesangial cells of 
the kidney glomerulus. Interestingly, there are a number 
of similarities between mesangial cells and PMC. Both 
originate from the mesenchime and exhibit muscle-like 
properties. Mesangial cells and PMC respond mitogeni- 
cally to PDGF and the responses to the different PDGF 
isoforms vary, with PDGF-BB and PDGF-AB being more 
mitogenic than PDGF-AA (Floege et al., 1991; Gnessi et 
al., 1993). Besides being mitogenic, PDGF also stimulates 
several other functions of mesangial cells and PMC, in- 
cluding directed migration (Barnes and Hevey, 1990), the 
production of extracellular matrix components (Doi et al., 
1992; Gnessi et al., 1993), and contraction (Mene et al., 
1987; Tung and Fritz, 1991). Thus, taking into account the 
evidences presented here, a closer look to the reproduc- 
tive system of the mutant animals coupled with a compari- 
son of the individual knockout phenotypes for PDGF-B, 
PDGF-A, PDGFR-a,  and PDGFR-[3 and combinations 
thereof could help elucidate the roles of PDGF and its re- 
ceptors during gonadal development in vivo. Studies ex- 
amining the testicular organogenesis in PDGF mutant 
mice are currently in progress. 

In conclusion, based on our results and on other recent 
findings and as a framework for future studies, a tentative 
and simplified model of the developmental regulation that 
could be exerted by the PDGF system in the rat testis is 
presented. This model includes the following main steps: 
(a) in the prenatal and early postnatal period the Sertoli 
cells produce PDGF-like molecules. These molecules bind 
to and activate PDGFRs which are expressed during the 
same time period by the neighboring intertubular precur- 
sors of the PMC. (b) In response to the PDGF-like mole- 
cules action the intertubular cells precursors of the mature 
PMC may be chemotactically attracted to the peritubulum 
and induced to divide. (c) Concomitantly to the acquisition 
of the Sertoli cells to respond to the FSH with a clearcut 
cAMP increase, the PDGF secretion by Sertoli cells drops, 
while the PMC as part of their differentiation program 
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modulate from a synthetic to a contractile phenotype los- 
ing the ability to express PDGFRs on their surface. (d) In 
adult life, Leydig cells start to produce PDGF. PDGF 
binds to and activates the PDGFRs on the Leydig cell it- 
self modulating in an autocrine way the testosterone pro- 
duction. 
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