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Abstract. Expression levels of E-MAP-115, a microtu- 
bule-associated protein that stabilizes microtubules, in- 
crease with epithelial cell polarization and differentia- 
tion (Masson and Kreis, 1993). Although polarizing 
cells contain significant amounts of this protein, they 
can stilt divide and thus all stabilized microtubules must 
disassemble at the onset of mitosis to allow formation 
of the dynamic mitotic spindle. We show here that 
binding of E-MAP-115 to microtubules is regulated by 
phosphorylation during the cell cycle. Immunolabeling 
of HeLa  cells for E-MAP-115 indicates that the protein 
is absent from microtubules during early prophase and 
progressively reassociates with microtubules after late 
prophase. A fraction of E-MAP-115 from HeLa  cells 
released from a block at the G1/S boundary runs with 
higher apparent  molecular weight on SDS-PAGE,  with 
a peak correlating with the maximal number  of cells in 
early stages of mitosis. E-MAP-115 from nocodazole- 

arrested mitotic cells, which can be obtained in larger 
amounts, displays identical modifications and was used 
for further biochemical characterization. The level of 
incorporation of 32p into mitotic E-MAP-115 is about 
15-fold higher than into the interphase protein. Specific 
threonine phosphorylation occurs in mitosis, and the 
amount  of phosphate associated with serine also in- 
creases. Hyperphosphorylated E-MAP-115 from mi- 
totic cells cannot bind stably to microtubules in vitro. 
These results suggest that phosphorylation of E-MAP- 
115 is a prerequisite for increasing the dynamic proper- 
ties of the interphase microtubules which leads to the 
assembly of the mitotic spindle at the onset of mitosis. 
Microtubule-associated proteins are thus most likely 
key targets for kinases which control changes in micro- 
tubule dynamic properties at the G2- to M-phase tran- 
sition. 

T 
HE organization of microtubules varies according to 
their different functions during the cell cycle. Inter- 
phase microtubules are involved in the positioning 

of organelles and in the movement of vesicles, whereas 
during mitosis the spindle microtubules ensure the accu- 
rate segregation of the chromosomes between the two 
daughter cells. Transition from the interphase to the mi- 
totic organization requires the rapid rearrangement of the 
microtubule network (Karsenti, 1993) and is accompanied 
by changes in the dynamic properties of microtubules 
(Salmon et al., 1984; Saxton et al., 1984; Belmont et al., 
1990). 

Factors controlling these events have recently been 
identified. Katanin, an ATPase from sea urchin eggs (Mc- 
Nally and Vale, 1993), and a protein from Xenopus laevis 
eggs (Shiina et al., 1992b) can sever microtubules in vitro 
and may have a similar activity at the G2- to M-phase tran- 
sition in vivo. cdc2 (Verde et al., 1990) and MAP kinase 
(Gotoh et al., 1991a, b) have been shown to induce changes 
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in microtubule dynamics in vitro in Xenopus egg extracts. 
Since microtubule-associated proteins (MAPs) 1 control 
microtubule dynamics, it has been proposed that they are 
the targets of these kinases. A 220-kD MAP from Xeno- 
pus has been demonstrated to detach from microtubules 
throughout M-phase when it is phosphorylated on cdc2 
and MAP kinase sites (Shiina et al., 1992a). Recently, 
XMAP230, a protein from Xenopus eggs which is hyper- 
phosphorylated during mitosis, was observed to dissociate 
from microtubules at the onset of prophase and to rebind 
to spindle microtubules during metaphase and anaphase 
(Andersen et at., 1994). Similar studies in mammalian ceils 
have been difficult because most MAPs characterized so 
far are from neuronal origin, that is from nondividing cells. 
In vitro phosphorylation by cdc2 kinase of MAP4, the best 
studied nonneuronal MAP, suppresses its microtubule as- 
sembly-promoting activity (Aizawa et al., 1991). However, 
MAP4 has been observed to be associated with microtu- 
bules during mitosis and to copurify with spindles, al- 
though its phosphorylation state varies (Vandr6 et al., 

1. Abbreviat ion used in this paper: MAP, microtubule-associated protein. 
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1991; Tombes et al., 1991). In agreement with these re- 
sults, Ookata et al. (1995) have recently shown that phos- 
phorylation of MAP4 by cdc2 kinase does not prevent its 
binding to microtubules but diminishes its microtubule- 
stabilizing activity in vitro. Thus, modification of different 
MAPs by similar mitotic kinases may have specific effects 
on their interactions with microtubules and on their func- 
tions. 

We have identified and characterized at the molecular 
level E-MAP-115, a novel MAP predominantly expressed 
in cells of epithelial origin (Masson and Kreis, 1993). In 
the human epithelial cell line Caco-2, increasing immuno- 
labeling for E-MAP-115 correlates with progressing cell 
polarization. Furthermore, transient transfection of fibro- 
blasts with E-MAP-115 stabilizes microtubules against no- 
codazole. Thus, most likely, E-MAP-115 is involved in the 
stabilization and reorganization of microtubules in polar- 
izing epithelial cells. Because we have observed that virtu- 
ally no E-MAP-115 is associated with microtubules in 
early prophase cells, we have further characterized that 
protein during mitosis. We show here that E-MAP-115 is 
hyperphosphorylated during mitosis, and that this modifi- 
cation correlates with its decreased affinity for microtu- 
bules. 

Materials and Methods 

Cell Culture and Synchronization 
Attached HeLa cells were grown in MEM supplemented with 1% L-glu- 
tamine, 1% nonessential amino acids and 10% FCS. Cell synchronization 
was performed in two steps combining nocodazole arrest in M phase 
(Zieve et al., 1980) with a block at the G1/S boundary due to DNA synthe- 
sis inhibition by aphidicolin (Huberman, 1981). Sub-confluent HeLa cells 
were arrested in mitosis by culturing them for 10 h in the presence of 0.05 
IxM nocodazole. After washing of the culture dishes to remove cell debris, 
mitotic cells were shaken off and collected, plated on 6 cm dishes (400,000 
cells/dish) and cultured for 22 h in medium containing 5 txg/ml aphidicolin 
to synchronize them at the G1/S boundary. BrdU incorporation was used 
to verify inhibition of DNA synthesis (not shown). Culture dishes were 
then washed with PBS to remove nonattached cells (only ~70% nocoda- 
zole-blocked cells divide and attach under these conditions) and remain- 
ing cells were allowed to progress through the cell cycle by culturing them 
in medium without inhibitor. Cells were analyzed by immunoblotting for 
E-MAP-115 with mAb D9C1 (Masson and Kreis, 1993), and by immuno- 
fluorescence staining for E-MAP-115 and tubulin in parallel with Hoechst 
staining for DNA at various time points after release. We noticed that 
cells had different division rates when cultured on glass coverslips or on 
plastic. Therefore, immunolabeling was performed on cells fixed on cul- 
ture dishes. For both analyses medium was removed carefully to minimize 
loosing of weakly attached, rounded mitotic cells, and cells were either di- 
rectly fixed for 4 min in methanol at -20°C and processed for immunoflu- 
orescence staining or solubilized in boiling sample buffer for SDS-PAGE 
and immunoblotting. 

Synchronization in mitosis was performed according to Zieve et aL 
(1980) with slight modifications. 30% confluent attached HeLa cells were 
first cultured for 22 h in medium containing 5 ~g/ml aphidicolin. 10 h after 
removal of the drug cells were accumulated in mitosis by incubation with 
0.1 ixM nocodazole for 2 h. Mitotic cells were harvested by mechanical re- 
lease from their substrate, washed once, and resuspended in carbonate- 
and drug-free medium at 500,000 cells/ml. Cells were then allowed to 
progress through mitosis at 37°C with gentle agitation to maintain them in 
suspension. 1-ml aliquots were transferred into poly-L-lysine-treated 6 cm 
dishes at 37°C to induce cell attachment 5 min before defined time points, 
at which cells were stained for DNA with Hoechst after methanol fixation 
on the dishes. Immunoblotting was performed on cell lysates from parallel 
dishes with mAb D9C1 following protein separation on 6% SDS-PAGE. 
Mitotic and interphase E-MAP-115 were quantified by scanning of the ira- 

munoblots with a ScanJet Plus (Hewlett Packard) using the Deskscan and 
Almage programs on Macintosh. 

Preparation of Mitotic and Interphase HeLa Cytosol 
Subconfluent cells were blocked in mitosis by culturing them for 16 h in 
presence of 0.2 ~M nocodazole. Cell culture dishes were washed once 
with PBS to remove cell debris and mitotic cells were then collected in ice- 
cold PBS by tapping the dishes. Cells were spun for 5 min at 500 g and 
washed once in 100 mM KPipes, 1 mM EGTA, 1 mM MgSO4, pH 6.8 
(PEM) at 4°C. Cells were swollen by resuspending them in hypotonic 
buffer (tenfold diluted PEM) and centrifuged at 2000 g for 5 rain at 4°C. 
The pellet was transferred to a homogenizer. 2 mM DTT and the follow- 
ing protease, kinase, and phosphatase inhibitors were added: 05 mM 
PMSF, 20 txg/ml chymostatin, 10 /xg/ml pepstatin, 2 ixg/ml aprotinin, 10 
ixg/ml leupeptin, 100 tzM orthovanadate, and 50 mM NaF. Cells were bro- 
ken by 10 strokes in hypotonic PEM followed by 20 strokes after adjusting 
the buffer to isotonic salt concentration by addition of tenfold concen- 
trated PEM. The lysate was spun at 150,000 g for 1 h at 4°C. Cytosol from 
nonsynchronized cells was prepared following the same protocol with at- 
tached cells collected from the dishes with a cell scraper. 

Metabolic Labeling of HeLa Cells and 
Immunoprecipitation of E-MAP-115 
HeLa cells were grown in 10 cm dishes for 12 h with or without 0.2 I~M no- 
codazole. For labeling, cells were incubated for 5 h at 37°C in 4 ml of phos- 
phate-free MEM buffered at pH 7.25 with 50 mM Hepes and supple- 
mented with 5% nondialyzed FCS with or without 0.2 txM nocodazole and 
with 200 p~Ci/ml [32p] orthophosphate (PBS11; Amersham Corp., Arling- 
ton Heights, IL). Cell dishes were washed once with ice-cold PBS. Mitotic 
cells were collected by repeated flushing of PBS on the dishes, spun and 
resuspended in 1 ml of 20 mM Tris, pH 7.4, 100 mM NaC1, 0.4% SDS, 1 mM 
PMSF, 100 IxM orthovanadate, and 50 mM NaF. Nontreated adherent 
cells were solubilized in this buffer after two washes in PBS on the dish. 
Triton X-100 was added at a final concentration of 2% to dilute out the 
SDS and DNA was sheared by passage through a 21G hypodermic needle. 
The lysates were spun at 15,000 g for 15 min and the clarified supernatants 
were pre-adsorbed by incubation for 1 h with 40 ~1 of a 50% slurry of pro- 
tein A-Sepharose at 4°C. After removal of the sepharose by centrifuga- 
tion, the lysates were incubated for 4 h with anti-E-MAP-115 mAb D9C1 
(Masson and Kreis, 1993), and then with 5 gl of sheep anti-mouse IgG an- 
tibody (Dianova GmbH, Hamburg, Germany) and 40 ixl of protein A-Seph- 
arose for ~12 h at 4°C with gentle mixing. The beads were washed five 
times with 20 mM Tris, pH 7.4, 100 mM NaC1, 0.1% SDS, 0.5% Triton 
X-100, 1 mM PMSF, 100 txM orthovanadate, and 50 mM NaF and then 
rinsed twice with 50 mM Tris, pH 7.4, 100 p~M orthovanadate and 50 mM 
NaF. Bound protein was solubilized in 50 Ixl gel sample buffer and sepa- 
rated by 6% SDS-PAGE and visualized by autoradiography. Immunopre- 
cipitated protein was quantified on immunoblots and autoradiograms as 
described above. 

Treatment of E-MAP-115 with Alkaline Phosphatase 
HeLa cells were grown in 10 cm dishes for 12 h with or without 0.2 IxM no- 
codazole and mitotic cells were collected in ice-cold PBS by tapping the 
dishes. E-MAP-115 was immunoprecipitated from interphase and mitotic 
cells solubilized in 20 mM Tris, pH 7.4, 100 mM NaC1, 0.4% SDS, 1 mM 
PMSF, 100 tzM orthovanadate, and 50 mM NaF as described above but 
orthovanadate and NaF were omitted from the last washing buffer. The 
beads were then resuspended in 50 mM Tris-HCl, pH 8.0, 0.1 mM EDTA, 
and 5 mM MgCI2 containing protease inhibitors and 0.1 U/ml alkaline 
phosphatase from bovine intestine and incubated for 1 h at 37°C. As a 
control, samples were incubated in parallel with 40 mM [~-glycerophos- 
phate to inhibit alkaline phosphatase. Bound protein was then solubilized 
in 50 txl gel sample buffer and analyzed by SDS-PAGE (6% gel) followed 
by immunoblotting with rabbit polyclonal antibodies against a peptide de- 
duced from E-MAP-115 cDNA sequence (Masson and Kreis, 1993). 

Tryptic Phosphopeptide Mapping 
Tryptic phosphopeptide mapping was performed according to Ottaviano 
and Gerace (1985) with slight modifications. Following SDS-PAGE of 
32p-labeled immunoprecipitated E-MAP-115, the gel was agitated in five 
successive changes of distilled water and dried under vacuum without pro- 
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tein fixation. Labeled E-MAP-115 was detected by autoradiography and 
the corresponding bands were excised from the gel. The gel slices were 
swollen 3 x 10 min in 50 mM ammonium acetate (untitrated), 1 mM D T r  
and placed in 0.5 ml of the same buffer for trypsin digestion. 25 p,1 of 1 mg/ 
ml TPCK-trypsin in the same buffer was added and E-MAP-115 digested 
during 6 h at 37°C on a shaker. A further 10 p.l of the trypsin solution was 
added and the digestion continued for 12 h. Released peptides were re- 
moved and the gel slices were washed by two additions of 0.4 ml H20 and 
shaking for 25 min. The three snpernatants were pooled and spun for 60 
min at 150,000 g at 4°C. The resulting supernatant was lyophilized in a 
speed-vac. The dried peptides were resuspended in 20 p,l electrophoresis 
buffer (7.8% acetic acid, 2.2% formic acid, and 90% H20). The samples, 
with addition of trace amounts of phenol red, were spotted on cellulose- 
coated thin layer plates (G1440; Schleicher & Schuell, Keene, NH) and 
electrophoresed for 2 h at 700 volts at 4°C in the electrophoresis buffer. 
The peptides were separated in the second dimension by chromatography 
in 37.5% n-butanol, 25% pyridine, 7.5% acetic acid and 30% H20 for 5 h 
at room temperature. Following chromatography, labeled peptides were 
visualized by autoradiography. 

Phosphoaraino Acid Analysis 
Radiolabeled E-MAP-115 separated on SDS-PAGE was treated as 
above. After lyophilization, the peptides were resuspended in 1 ml 6 M 
HC1 and hydrolyzed for 90 min in an oven at 110°C. After drying, the sam- 
ples were solubilized in 10 }xl of the first dimension electrophoresis buffer, 
mixed with 5 p.g of standard phosphoamino acids and analyzed by two- 
dimensional electrophoresis on cellulose-coated thin layer plates. The first 
dimension was run at pH 1.9 in 7.8% acetic acid, 2.5% formic acid, and 
89.7% HzO at 750 volts for 3 h 15 min and the second at pH 3.5 in 5% ace- 
tic acid, 0.5% pyridine, and 94.5% H20 at 500 volts for 2 h 30 min at 4°C. 
32p-labeled amino acids were first detected by autoradiography and stan- 
dard phosphoamino acids were then detected by ninhydrin staining. 

I m m u n o f l u o r e s c e n c e  

Cells grown on coverslips or on culture dishes were fixed for 4 min in 
methanol at -20°C after preextraction in 80 mM KPipes, 5 mM EGTA, 1 
mM MgCI2, 0.5% Triton X-100, pH 6.8 as described (Kreis, 1987). Alter- 
natively ceils were fixed in 3% paraformaldehyde in PBS for 20 min, 
quenched by 30 mM NH4CI for 5 min, and permeabilized with 0.1% Tri- 
ton X-100 in PBS for 4 min. Fixed cells were labeled with mAb D9C1 or 
rabbit polyclonal antibodies against a peptide deduced from E-MAP-115 
eDNA sequence (Masson and Kreis, 1993) and with affinity-purified rab- 
bit polyclonal antibodies (anti-T13) or a mAb (1A2) specific for tyrosi- 
nated tubulin (Kreis, 1987) followed by rhodamine- and fluorescein- 
labeled secondary antibodies. Epifluorescence microscopy was performed 
using a Zeiss 63x/1.4 Planapo oil immersion objective on a Zeiss Axio- 
phot microscope. Images were recorded and processed as described 
(Pierre et al., 1994) and printed on Agfapan 25 film using a slidewriter 
IS200 (Focus Graphics, Foster City, CA). 

Microtubule-binding Assays 
100 txl of cytosol at a protein concentration of ~8  mg/ml was incubated 
with 20 p~M taxol to induce tubulin polymerization, or 20 p~M nocodazole 
as a control, at 37°C for 30 min. The samples were loaded on a 580 p~120% 
sucrose cushion in PEM. After 30 min centrifugation at 30,000 g in a TST 
55.5 rotor (Kontron Instruments, Redwood City, CA), the supernatants 
on top of the sucrose cushions were collected and analyzed together with 
the pellets for the presence of E-MAP-115 by immunoblotting. 

Gel Electrophoresis and Iramunoblottings 
SDS-PAGE was performed according to the procedure of Laemmli 
(1970) using a Mini-Protean II Dual Slab Cell system (Bio Rad Labs., 
Mtinchen, Germany) for Figs. 4 B and 8, and using a Mini-Slab gel system 
(Idea Scientific Co., Minneapolis, MN) for Figs. 3, 4 A, and 5. IEF was 
performed using a Mini-Protean II 2-D Cell system (Bio Rad Labs.). For 
immunoblotting, transfer of proteins to nitrocellulose, and detection of 
proteins was performed as described (Rickard and Kreis, 1990). Immuno- 
blots in Figs. 3, 4 A and B, 5 C, and 8 were developed using ECL (Amer- 
sham Corp.). 

Results 

Binding of E-MAP-115 to Microtubules Varies during 
the Cell Cycle 

E-MAP-115 is associated with subsets or subdomains of 
perinuclear microtubules in HeLa cells (see Masson and 
Kreis, 1993; and Fig. 2 B). In epithelial Caco-2 cells, how- 
ever, E-MAP-115 is associated with longer segments of 
microtubules and more distinct labeling along the microtu- 
bules to the cell periphery can be observed (see Fig. 6, A 
and B in Masson and Kreis, 1993). However, a significant 
heterogeneity in intensity of immunolabeling for E-MAP- 
115 on microtubules within the same population of cells 
can be observed (Fig. 2 E) suggesting a cell cycle-depen- 
dent regulation of its distribution. Thus, the precise distri- 
bution of E-MAP-115 was investigated during mitosis. In 
early prophase, when the microtubule network is still in- 
tact (Fig. 1 A) but the chromatin condensing (Fig. 1 B), 
staining for E-MAP-115 on microtubules is dramatically 
decreased, with occasional diffuse labeling over the sepa- 
rated microtubule-organzing centers (MTOCs) (Fig. 1 C). 
Most likely E-MAP-115 has dissociated from the microtu- 
bules and been extracted with other cytosolic proteins dur- 
ing the fixation procedure. At later time points, when cells 
have rounded up (Fig. 1 D), E-MAP-115 staining increases 
near each spindle pole and some spindle microtubules ap- 
pear labeled (Fig. 1 F). From this stage of mitosis onwards, 
E-MAP-115 progressively reassociates with spindle micro- 
tubules (Fig. 1 /). Microtubule-associated E-MAP-115 is 
most intense on the reforming interphase microtubule net- 
work in telophase (Fig. 1 I, lower cell) and cleaved cells 
with still visible midbodies (not shown). The same results 
are obtained independently of the method of cell fixation 
or the antibodies used. In cells fixed in paraformaldehyde 
instead of methanol and labeled with a mAb (not shown) 
or with polyclonal antibodies (Fig. 2, C-E), signals for 
E-MAP-115 are bright on a subset of perinuclear microtu- 
bules in interphase but relatively weak and diffuse in early 
prophase cells (Fig. 2 E, asterisk). These results suggest 
that E-MAP-115 dissociates from microtubules at the be- 
ginning of mitosis and progressively reassociates with mi- 
crotubules as cell division progresses. 

Modification of E-MAP-115 in Mitosis 

Two explanations can be considered for the dramatic de- 
crease in microtubule-bound E-MAP-115 in early mitosis. 
E-MAP-115 may dissociate from microtubules due to spe- 
cific posttranslational modification and subsequently be 
extracted by the fixation procedures used, or alternatively, 
E-MAP-115 may be degraded at the onset of mitosis. Cell 
cycle-dependent degradation has in fact been observed, 
for example for the microtubule motor protein CENP-E 
(Yen et al., 1992) and for cyclins (Murray et al., 1989). 
However, we consider this second explanation unlikely, 
since E-MAP-115 reappears rapidly in metaphase cells. To 
distinguish between these two possibilities we followed 
E-MAP-115 during the cell cycle by immunoblotting of 
HeLa cells released from an aphidicolin block at the G1/S 
boundary (Fig. 3). DNA staining and immunofluorescence 
labeling for tubulin were performed in parallel to deter- 
mine their stage in the cell cycle (Table I). Mitotic cells ap- 
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pear 11 h after release and are most abundant (~19%) at 
12-14 h. During this period, a discrete band, with higher 
apparent molecular weight than interphase E-MAP-115, 
can be observed. This band is equally well detected by the 
mAb and polyclonal antibodies (not shown). Due to the 
large difference in amount of protein in the two bands and 
their minor separation on the gel, it has not been possible 
to quantify the precise ratio between these two forms of 
E-MAP-115. Clearly, however, the upper band contains 
less than 20% of the total protein, and thus cannot be 
present in all the mitotic cells, but rather only during a lim- 
ited period during mitosis. Our results in fact indicate a 
correlation between the occurrence of this upper band and 
the maximal number of cells in prophase and metaphase 
(12 and 13 h). 

To correlate more precisely a putative posttranslational 
modification of E-MAP-115 with the different stages of 
mitosis, we followed the protein by immunoblotting of ex- 
tracts of HeLa cells released from a nocodazole block (Fig. 

Figure 2. The localization of 
E-MAP-115 is independent 
of the method of fixation. 
HeLa cells were fixed in 
methanol after detergent 
preextraction (A and B) or in 
paraformaldehyde (C-E) 
and labeled with anti-T13 
against tubulin (A) and mAb 
D9C1 against E-MAP-115 
(B) or with anti-tubulin mAb 
1A2 (C) and polyclonal anti- 
bodies raised against a 
peptide deduced from the 
E-MAP-115 cDNA sequence 
(E) followed by fluorescein 
and rhodamine-labeled sec- 
ondary antibodies. DNA 
was stained with Hoechst 
(D). E-MAP-tl5 localiza- 
tion is independent of the 
method of cell fixation (B 
and E), but microtubules are 
better fixed in methanol than 
in paraformaldehyde. A rep- 
resentative image of inter- 
phase HeLa cells shows la- 
beling of E-MAP-115 on 
perinuclear sub-sets or sub- 
domains of microtubules (B). 
As in cells fixed with metha- 
nol and stained with mAb 
D9C1 (see Fig. 1), staining 
for E-MAP-115 on microtu- 
bules is decreased in early 
prophase cells (E, asterisk). 
Bar, 50 izM. 

4 A); in parallel the cells were classified into the different 
stages of mitosis by DNA-staining and phase contrast mi- 
croscopy (Table II). Cells blocked in mitosis by nocoda- 
zole appear to be in a prophase-like stage and peak in 
metaphase 40-60 min after release from the block. By 90- 
120 min many cells (15-25%) have still not recovered from 
the nocodazole treatment and appear to degenerate. These 
are probably included in the 47% cells apparently still in a 
prophase-like stage 60 rain after removal of nocodazole. 
All E-MAP-115 runs with slower electrophoretic mobility 
at the beginning of the release; during the subsequent two 
hours of chase, the apparent molecular weight of E-MAP- 
115 progressively shifts back to its lower interphase value. 
Quantification of the mitotic and interphase forms of 
E-MAP-115 confirms posttranslational modification of the 
protein during prophase and metaphase. 

We compared E-MAP-115 from cells synchronized in 
mitosis by microtubule-active drugs or after release from a 
block at the G1/S boundary by two-dimensional gel elec- 

Figure 1. Localization of E-MAP-115 in mitotic HeLa cells. HeLa cells were fixed in methanol after detergent preextraction and double 
immunofluorescence labeling was performed with anti-T13 against tubulin (A, D, and G) and mAb D9C1 against E-MAP-115 (C, F, and 
/), and followed by fluorescein and rhodamine-labeled secondary antibodies. DNA staining with Hoechst (B, E, and H) allowed the 
identification of the different stages of mitosis. Cells at the onset of prophase (A-C), later in prophase (D-F), in metaphase (G-l, upper 
cell) and telophase (G-l, lower cell) are shown. Note the decreased staining for E-MAP-115 on microtubules in early prophase (C). Bar, 
50 ~xM. 
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Figure 3. Posttranslational modification of E-MAP-115 during 
the cell cycle. HeLa cells were arrested at G1/S by aphidicolin as 
described in Materials and Methods. Cell extracts were prepared 
either directly (0 h) or after further culture of the cells in medium 
without the inhibitor as indicated (9-16 h) and proteins separated 
on 5% SDS-PAGE followed by immunoblotting. E-MAP-115 
was detected with mAb D9C1. Note the appearance of a distinct 
band with higher apparent molecular weight (arrows) correlating 
with the increase in number of mitotic cells (see Table I for com- 
parison). 

trophoresis (Fig. 4 B). E-MAP-115 has a calculated pI of 
10.4 (Masson and Kreis, 1993) which renders its analysis 
by isoelectrofocusing difficult (O'Farrell, 1975). Indeed, 
the interphase form of the protein, corresponding to the 
lower band in SDS-PAGE, from cells released from the 
aphidicolin block (major smear in Fig. 4 B, M), from a to- 
tal extract of nocodazole-treated cells (major smear in Fig. 
4 B, N-t) and from nocodazole treated cells which have not 
entered mitosis (Fig. 4 B, N-a) as well as contaminating 
protein in mitotic cells obtained by synchronization with 
microtubule-active drugs (Fig. 4 B, N-d and T-d), cannot 
be resolved by isoelectrofocusing. It partially enters the 
gel, most of it either not migrating or moving backwards 
off the gel. Moreover, interphase E-MAP-115 may be 
poorly soluble in the gel which could explain the differ- 
ences between samples (e.g., between Fig. 4 B, N-t and N-a). 
The mitotic protein corresponding to the upper band, how- 
ever, enters the gel and migrates with a more acidic pI. 
E-MAP-115 from cells enriched in mitosis after release 
from a block at G1/S (Fig. 4 B, M, faint upper smear) dis- 
plays the same electrophoretic mobility as proteins from 
mitotic cells obtained by synchronization with nocodazole 

Table I. Quantitation of Mitotic HeLa Cells following Release 
from a Block at the G1/S Boundary 

Time after 
release Prophase Metaphase Anaphase Telophase Interphase 

h 

0 0 0 0 0 100 

5 0 0 0 0 100 
9 0 0 0 0 100 

10 0 0.2 0 0.2 99.6 
11 2.1 1.8 0.6 1.8 93.7 
12 5.8 4.6 0.3 8.4 80.9 
13 4.7 4.5 0.3 9.3 81.2 

14 2.2 5.3 0 10.2 82.3 
15 1.9 2.4 0.5 5.7 89.5 
16 0.5 0.9 0 3.8 94.8 

The block at the G1/S boundary induced by aphidicolin was re/eased by transferring 
HeLa cells into normal medium. Mitotic cells were scored by immunofluorescence la- 
beling for tubulin and Hoechst staining for DNA at different time points after the re- 
lease. Immunoblotting was performed at the same time points in parallel cultures (see 
Fig. 3). ~ 700 ceils were counted for each time point and classified into the different 
stages of mitosis and interphase (written as percent of total cells)~ Cells were consid- 
ered as prophase cells as soon as the chromatin had condensed and the MTOCs sepa- 
rated. Divided ceils which were still linked by the midbody but with an interphase in- 
tracellular organization (e.g., nuclear organization, arrangement of microtubules) were 
counted as interphase cells. 

(Fig. 4 B, N-d) or taxol (Fig. 4 B, T-d) thus excluding an ef- 
fect of microtubule-active drugs on the protein unrelated 
to mitosis. With each of the three different procedures for 
obtaining mitotic protein, it migrates identically as a smear 
at lower pI than interphase protein, suggesting that it is 
heterogeneously charged. Reduced mobility on SDS- 
PAGE has been observed for several phosphorylated pro- 
teins (e.g., Lindwall and Cole, 1984; Yamashiro et al., 
1990; Rickard and Kreis, 1991) and phosphorylation de- 
creases the pI of proteins. These results thus suggest that 
E-MAP-115 is phosphorylated in mitosis, and that this 
posttranslational modification may alter its interaction 
with microtubules. 

E-MAP-115 is Hyperphosphorylated in Mitosis 

Further biochemical analysis of phosphorylation of E-MAP- 
115 required higher amounts of mitotic cells. We decided 
to use nocodazole treatment to block cells in M phase, since 
E-MAP-115 from "mitotic" cells synchronized with micro- 
tubule-active drugs appears identical to modified E-MAP- 
115 from a population with cells enriched in mitosis after 
release from the aphidicolin block; we refer to the nocoda- 
zole-arrested cells as "mitotic" and to the non-synchronized 
cells as "interphase" cells. 

E-MAP-115 was immunoprecipitated from metaboli- 
cally 32P-labeled mitotic and interphase cells. Amounts of 
protein and level of phosphorylation were quantified by 
immunoblotting (Fig. 5 A) and autoradiography (Fig. 5 B), 
respectively. Interphase E-MAP-115 is phosphorylated. 
Incorporation of phosphate into E-MAP-115, however, is 
more than 15-fold increased in mitotic cells. This increased 
mitotic phosphorylation of novel sites on E-MAP-115 
probably induces a conformational change of the protein, 
leading to decreased electrophoretic mobility. Indeed, the 
apparent molecular weight of mitotic E-MAP-115 shifts 
back to its lower interphase value upon treatment with al- 
kaline phosphatase (Fig. 5 C). Phospho-amino acid analy- 
sis revealed only phosphoserine in the interphase protein 
(Fig. 6 A). In addition to increased serine phosphorylation, 
a strong phosphorylation of threonine was observed in the 
mitotic protein, suggesting phosphorylation by a specific 
mitotic kinase (Fig. 6 B). 

To examine further possible differences in phosphoryla- 
tion sites in interphase and mitosis, E-MAP-115 phosphor- 
ylated both in nonsynchronized and synchronized cells 
was analyzed by tryptic phosphopeptide mapping (Fig. 7). 
Several peptides barely detectable in interphase cells are 
strongly labeled in mitosis (Fig. 7 C, arrows); other pep- 
tides appear less phosphorylated because identical amounts 
of total radioactivity were loaded for both samples. The 
actual amounts of phosphate associated with these latter 
peptides remained approximately the same. The most 
prominent mitotic phosphopeptide of E-MAP-115 shows 
significantly higher hydrophobicity than the others (Fig. 7 
C, arrowhead). This peptide is hardly labeled in interphase 
E-MAP-115 (residual phosphate is most likely due to con- 
tamination with peptide from mitotic cells present in a nor- 
mal population of cells). Interestingly, there is only one 
main region of the protein, the "PAPA-box", predicted to 
have hydrophobic properties (Masson and Kreis, 1993). 
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Table II. Quantitation of Mitotic Cells and of Modified E-MAP-115 following Release from a Nocodazole Block 

Time after Interphase Prophase Metaphase Anaphase Telophase Degenerated Mitotic Interphase 
release cells cells cells cells cells cells E-MAP- 155 E-MAP- 115 

min 

5 0 99 1 0 0 0 100 0 
20 0 95 5 0 0 0 100 0 
40 0 69 25 3 3 0 96 4 
60 0 47 23 8 22 0 69 31 
90 6 6 12 3 47 26 29 71 

120 12 0 7 l 63 17 6 94 

Cells synchronized in mitosis by nocodazole were collected by mechanical release from their substrate and allowed to proceed through mitosis in suspension in drug-free medium. 
Cells were plated on poly-L-lysine-treated dishes 5 min before the different time points, at which mitotic stages were quantified by observation of cells stained for DNA (written 
as percent of total ceils). Immunoblotting was performed in parallel cultures (see Fig. 5 A) and mitotic and interphase E-MAP-115 were quantified by scanning of the immunoblots 
(written as percent of total E-MAP-115 for each time point). 

Analysis of the predicted amino acid sequence of E-MAP- 
115 for potential  phosphorylation sites indicates numerous  
S/TP residues in the nonhelical  domains of the protein, 
and a S/TPXR (aa 209-212, SPDR) sequence at the end of 

the microtubule-binding region (Masson and Kreis, 1993). 
Interestingly, a predicted tryptic peptide including the hy- 
drophobic PAPA-box  contains two TP motifs (aa 416-7 
and 450-1). Such sequences are potential  substrates for 
cdc2 kinase (Nigg, 1991). Thus, we investigated the effect 
of chicken cdc2-cyclin-B (kindly provided by E. Nigg, IS- 
REC, Lausanne,  Switzerland) on E-MAP-115. Preliminary 
results suggest, however, that E-MAP-115 is not a sub- 
strate of this kinase: the characteristic shift in apparent mo- 
lecular weight of the protein is not induced by incubation 
with the mitotic kinase (not shown), only weak phosphola- 
beling of E-MAP-115 is detected and tryptic phosphopep- 
tide map analysis does not reveal any significant labeling 
of the peptides predominant ly  phosphorylated in mitotic 
cells (not shown). Clearly, further work will be necessary to 
identify the kinase involved in phosphorylating E-MAP-115. 

E-MAP-115 f rom Mitotic Cells Does N o t  Bind to 
Microtubules In Vitro 

To analyze the phosphorylat ion-dependent  interaction of 
E-MAP-115 with microtubules, tubulin was polymerized 
by addition of taxol to cytosol from mitotic HeLa cells. Mi- 
crotubules were then sedimented through a sucrose cushion 
and supernatant  and pellet were analyzed by immunoblot-  
ting. Control cytosol from interphase cells was analyzed in 

Figure 4. Comparison of E-MAP-115 from mitotic cells obtained 
by different synchronization procedures. (A) Analysis of E-MAP- 
115 in nocodazole-arrested cells at different time-points after re- 
moval of the drug. Mitotic HeLa cells were produced as described 
in Materials and Methods and E-MAP-115 separated on 6% SDS- 
PAGE and analyzed by immunoblotting with mAb D9C1. Note 
the modification of E-MAP-115 electrophoretic mobility coincid-. 
ing with prophase and metaphase (see Table II for comparison). 
(B) 2-D gel analysis of E-MAP-115 from cultures enriched in mi- 
totic cells by different synchronization procedures. HeLa cells 
were either arrested at the G1/S boundary with aphidicolin (see 
Materials and Methods) and analyzed 13 h after removal of the 
inhibitor (M), were synchronized in mitosis by 0.2 p.M nocoda- 
zole (N-t, N-d, and N-a), or by 6 I~M taxol (T-d). E-MAP-115 was 
immunoprecipitated from either a total cell lysate (M, N-t), from 
lysates of mitotic rounded-up cells (N-d and T-d) or from the ad- 
herent cells remaining after shaking Off of the mitotic cells (N-a). 
Immunoprecipitates were analyzed on 2-D gels (the second di- 
mension was 7% SDS-PAGE) followed by immunoblotting with 
mAb D9C1. 

Figure 5. E-MAP-115 is hy- 
perphosphorylated in mito- 
sis. (A and B) HeLa cells 
were metabolically labeled 
with [32p]orthophosphate for 
4 h after growth for 12 h with 
(mit.) or without (int.) 0.2 
I~M nocodazole. E-MAP- 
115 was immunoprecipitated 
from cell lysates, separated 
by SDS-PAGE and detected 
by immunoblotting with mAb 
D9C1 (A) after autoradiog- 
raphy of the filter (B). (C) 
The effect of alkaline phos- 
phatase treatment (AP+) on 
immunoprecipitated inter- 
phase (int) and mitotic (mit) 
E-MAP-115 was followed by 

immunoblotting with anti-E-MAP-115 polyclonal antibodies. 
13-glycerophosphate was used as a control to inhibit alkaline 
phosphatase activity (AP-).  
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E-MAP-115 from mitotic cells still weakly interacts with 
microtubules. In fact, some E-MAP-115 is found on the 
spindle microtubules of cells released from a block in mi- 
tosis by nocodazole, when virtually all protein detected by 
immunoblotting appears to be still modified (not shown). 
We conclude that hyperphosphorylation during pro- 
phase and metaphase decreases microtubule-binding of 
E-MAP-115. 

Figure 6. Phosphoamino acid analysis of E-MAP-115 from inter- 
phase and mitotic cells. Metabolically labeled E-MAP-115 from 
interphase (A) and mitotic (B) HeLa cells was digested with 
trypsin after SDS-PAGE separation. The peptides were subse- 
quently hydrolyzed and the phosphoamino acids separated by 
electrophoresis in two dimensions (at pH 1.9 and then 3.5) on cel- 
lulose thin layer plates. Positions of standard phosphoserine (S), 
phosphothreonine (T) and phosphotyrosine (I 0 are indicated. 

parallel. Detection of tubulin in these samples indicated 
that comparable amounts of polymer had formed in taxol- 
treated mitotic and interphase cytosol (not shown). As 
shown in Fig. 8, virtually all E-MAP-115 from nonsynchro- 
nized interphase cells co-sediments with microtubules. In 
contrast, however, most E-MAP-115 from mitotic cells re- 
mains in the supernatant, suggesting that the hyperphos- 
phorylated protein cannot stably interact with microtu- 
bules. Although identical concentrations of total protein 
were used, more E-MAP-115 is detected in the assays per- 
formed with mitotic cytosol. This is probably due to the in- 
creased solubility of mitotic E-MAP-115, where less of the 
protein is lost during the preparation of cytosol. Trace 
amounts of E-MAP-115 remained in the microtubule pel- 
lets of mitotic cytosol. This protein displays the same de- 
creased electrophoretic mobility as hyperphosphorylated 
E-MAP-115 in the supernatant. We cannot exclude that 

Discussion 

E-MAP-115 was identified as a microtubule-associated 
protein which stabilizes interphase microtubules in polar- 
izing epithelial cells (Masson and Kreis, 1993). We report 
here that E-MAP-115 dissociates from microtubules at the 
beginning of mitosis and progressively reassociates with 
microtubules from late prophase onwards. Synchroniza- 
tion of cells allowed the biochemical analysis of E-MAP- 
115 during mitosis. We observed hyperphosphorylation of 
E-MAP-115 coinciding with the maximal number of cells 
in prophase and metaphase. This hyperphosphorylation 
correlates with a decreased binding of E-MAP-115 to mi- 
crotubules in vitro, and is consistent with the prediction 
that stabilizing proteins must be transiently released from 
microtubules to allow their dynamic reorganization at the 
onset of mitosis. 

Since hyperphosphorylation of E-MAP-115 is transient, 
we arrested cells in early mitosis with nocodazole. Based 
on morphological observations, nocodazole has been re- 
ported to block cells either at the onset of mitosis (Zieve 
et al., 1980) or in metaphase (Jordan et al., 1992). Thus, it 
is not exactly known to which stage of mitosis this block 
corresponds and whether nocodazole-arrested cells can be 
fully compared to normal mitotic cells. Furthermore, the 
activity of factors controlling E-MAP-115 modification 
may depend on intact microtubules. The active form of 

Figure 7. Tryptic phosphopeptide maps of E-MAP-115 from interphase and mitotic cells. Metabolically labeled E-MAP-115 from inter- 
phase (A) and mitotic (B) HeLa cells was digested with trypsin after SDS-PAGE separation. The 3zP-labeled peptides were analyzed in 
two dimensions by electrophoresis followed by chromatography. A map of a mixture of peptides from mitotic and interphase cells was 
performed for comparison (C). Arrows indicate peptides with increased phosphorylation in mitotic E-MAP-115. The predominant 
phosphopeptide from mitotic cells is indicated by an arrowhead. The direction of electrophoresis (e) and chromatography (c), as well as 
the origin of electrophoresis (o) are indicated. 
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Figure 8. Microtubule-binding activity of interphase and mitotic 
E-MAP-115. Interphase and mitotic HeLa cytosol was prepared 
as described in Materials and Methods and incubated with 20 txM 
nocodazole (noc; as a control to prevent tubulin polymerization) 
or 20 I~M taxol (tax; to induce tubulin polymerization) for 30 min 
at 37°C. Cytosols were then centrifuged and supernatants (S) and 
pellets (P) were analyzed by SDS-PAGE and immunoblotting 
with mAb D9C1 to detect E-MAP-115. 

cdc2 kinase, for example, appears to be concentrated at 
the mitotic spindle (Tombes et al., 1991; Kubiak et al., 
1993) probably via the interaction of cyclin B with MAP4 
(Ookata et al., 1995), and regulation of its activity depends 
on microtubules (Andreassen and Margolis, 1994). Thus, 
we compared modified E-MAP-115 from a population of 
cells enriched in mitosis after release from the aphidicolin 
block at the G1/S boundary with E-MAP-115 from cells 
arrested early in mitosis by the microtubule-active drugs 
nocodazole and taxol. E-MAP-115 appeared identically 
modified in these different cells, excluding possible effects 
of the drugs and modification of microtubule dynamics on 
the phosphorylation of E-MAP-115. Synchronization of cells 
with aphidicolin or nocodazole both suggest that E-MAP- 
115 is hyperphosphorylated in prophase and in metaphase 
cells; however, we cannot exclude an effect of nocodazole 
treatment on the normal time course of E-MAP-115 phos- 
phorylation/dephosphorylation during mitosis. 

E-MAP-115 expression levels increase with epithelial 
cell polarization (Masson and Kreis, 1993), thus, we as- 
sume it is predominantly involved in microtubule stabiliza- 
tion in interphase. Release of E-MAP-115 from microtu- 
bules at the onset of mitosis may destabilize microtubules 
and may also render them accessible to severing factors 
(Shiina et al., 1992b; McNally and Vale, 1993), thus lead- 
ing to the assembly of the dynamic mitotic spindle. Since 
the bulk of E-MAP-115 is hyperphosphorylated until about 
metaphase and only little associated with spindle microtu- 
bules until late in prophase, and furthermore, because only 
low levels of E-MAP-115 can be detected in fibroblasts, we 
conclude that E-MAP-115 does not play an important role 
in spindle formation. Yet, we cannot exclude that a frac- 
tion of E-MAP-115 may stabilize a subset of spindle mi- 
crotubules. Indeed, not all spindle microtubules are dy- 
namic, and significant labeling of the metaphase spindle 
with E-MAP-115 can be seen. Stabilization of a subset of 
spindle microtubules probably occurs to a large degree by 
capping of their plus ends at the kinetochore (Mitchison et 
al., 1986). Other MAPs may also regulate microtubule dy- 
namics. A role for MAP4 in modulating spindle fiber as- 
sembly has been proposed since microinjection of an anti- 
MAP4 mAb into cells before anaphase induces spindle 
dissolution (Izant et al., 1983). Another candidate is the 

stable tubule only polypeptide (STOP) which has been lo- 
calized on stable microtubules in mitotic spindles (Mar- 
golis et al., 1990) and a microtubule regulating function 
during mitosis has also been proposed for XMAP230 
(Andersen et at., 1994). Alternatively, E-MAP-115 may 
interact with microtubules in late prophase and metaphase 
without stabilizing them. Indeed, different forms of 
E-MAP-115 may exist between early mitosis and inter- 
phase, in agreement with mitotic E-MAP-115 heterogene- 
ity and the fact that trace amounts of the hyperphosphory- 
lated mitotic protein co-sediment with microtubules in 
vitro. These forms would be defined by subtle changes in 
phosphorylation which would determine different affini- 
ties for microtubules. In this respect, it is interesting that 
microinjected MAP2 and MAP4 do bind to microtubules 
in mitotic cells. Their rates of exchange between microtu- 
bules and cytosol, however, increase (Olmsted et al., 
1989), and, although MAP4 binds to microtubules, it does 
not stabilize them during mitosis (Ookata et al., 1995). 

The kinase activity associated with the cdc2-cyclin-B 
complex plays a crucial role at the G2 to M phase transi- 
tion. Since some cytoskeletal proteins are direct substrates 
of this kinase (lamin; Peter et al., 1990; vimentin; Chou et 
al., 1990), we investigated its possible activity on E-MAP- 
115. Our data suggest, however, that another kinase phos- 
phorylates E-MAP-115 and is involved in modulating its 
function. Yet, we cannot unambiguously exclude the pos- 
sibility that E-MAP-115 is not phosphorylated by cdc2- 
cyclin-B, because other factors (e.g., interactive proteins) 
may be missing in our in vitro system, or because the pro- 
tein used as the substrate (affinity-purified or bacterially 
expressed E-MAP-115), although it binds to microtubules, 
is not properly folded. In addition it is also possible that 
the microtubule-binding activity of E-MAP-115 is regu- 
lated by cdc2-cyclin-B via a MAP kinase. Furthermore, al- 
though cdc2-cyclin-B kinase was initially believed to be 
the universal regulator of the cell cycle, a growing number 
of cdc2-related kinases and of different cyclins are being 
discovered (Nigg, 1993). Specific kinases may phosphory- 
late different MAPs and have different effects on these 
proteins. Alternatively, MAPs may be substrates of a 
unique kinase at the onset of mitosis and their phosphory- 
lation state may then be controlled by (specific) phos- 
phatases. The rates of removal of phosphate may vary be- 
tween different MAPs depending on their properties and 
functions. In this respect, MAP4 (Olmsted et al., 1989; 
Vandr6 et al., 1991) and XMAP230 (Andersen et al., 1994) 
might be dephosphorylated rapidly, since they colocalize 
with spindle microtubules. In contrast to these proteins, 
the 220-kD MAP from Xenopus appears to remain cytoso- 
lic until late in mitosis (Shiina et al., 1992a). MAPs which 
are regulated in their function during the cell cycle will 
provide important tools for characterizing novel kinases 
and phosphatases and for the characterization of the re- 
cently discovered cdc2-related enzymes. 

Interaction of MAPs with microtubules appears to be 
generally regulated via phosphorylation (see for example 
Pallas and Solomon, 1982; Lindwall and Cole, 1984; Diaz- 
Nido et al., 1988; Brugg and Matus, 1991; Rickard and 

Kreis, 1991). We have shown that E-MAP-115 interacts 
with microtubules via its basic NH2 terminus (Masson and 
Kreis, 1993); phosphorylation of sites in this part of the 
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protein would reduce the net positive charge of this do- 
main and weaken its binding to the acidic surface of the tu- 
bulin polymer. Alternatively, phosphorylation in another 
region of the molecule might induce an alteration of the 
conformation of the protein. Such a conformational change 
could lead to the neutralization of the highly charged basic 
NH2-terminal part of E-MAP-115 by interaction with its 
acidic COOH terminus. These two regions are connected 
via the PAPA-box, a proline-rich region, which could play 
the role of a hinge. In fact, this protine-rich region contains 
the most hydrophobic polypeptide of the protein, and one 
of the peptides predominantly phosphorylated in mitosis is 
significantly much more hydrophobic than all other phos- 
phopeptides. The precise characterization of the sites of 
E-MAP-115 which are phosphorylated during mitosis will 
thus be essential for the further analysis of the regulation 
of its microtubule-binding activity and may also allow 
identification of the specific kinase involved. In addition it 
will contribute to a better understanding of the domain or- 
ganization of the protein; in particular, it will provide in- 
formation on whether the role of the COOH-terminal half 
of the protein is to modulate the microtubule-binding ac- 
tivity of its NH2-terminal part or if it has other indepen- 
dent functions. 
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