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Abstract. Endothelial cell (EC) migration is a critical 
and initiating event in the formation of new blood ves- 
sels and in the repair of injured vessels. Compelling 
evidence suggests that oxidized low density lipoprotein 
(LDL) is present in atherosclerotic lesions, but its role 
in lesion formation has not been defined. We have ex- 
amined the role of oxidized LDL in regulating the 
wound-healing response of vascular EC in vitro. 
Confluent cultures of bovine aortic EC were 
"wounded" with a razor, and migration was measured 
after 18 to 24 h as the number of cells moving into 
the wounded area and the mean distance of cells from 
the wound edge. Oxidized LDL markedly reduced 
migration in a concentration- and oxidation-dependent 
manner. Native LDL or oxidized LDL with a thiobar- 
bituric acid (TBA) reactivity <5 nmol malondialde- 
hyde equivalents/mg cholesterol was not inhibitory; 
however, oxidized LDL with a TBA reactivity of 8-12 

inhibited migration by 75-100%. Inhibition was half- 
maximal at 250-300/zg cholesterol/ml and nearly 
complete at 350--400 #g/ml. The antimigratory activ- 
ity was not due to cell death since it was completely 
reversed 16 h after removal of the lipoprotein. The in- 
hibitor molecule was shown to be a lipid; organic sol- 
vent extracts of oxidized LDL inhibited migration to 
nearly the same extent as the intact particle. When 
LDL was variably oxidized by dialysis against FeSO4 
or CuSO,, or by UV irradiation, the inhibitory activ- 
ity correlated with TBA reactivity and total lipid 
peroxides, but not with electrophoretic mobility or 
fluorescence (360 ex/430 em). This indicates that a 
lipid hydroperoxide may be the active species. These 
results suggest the possibility that oxidized LDL may 
limit the healing response of the endothelium after 
injury. 

NDOTHELIAL cell (EC) t migration and proliferation 
are critical processes in the formation of blood 
vessels and in the repair of injured vessels. In the 

earliest report that distinguished between the roles of migra- 
tion and proliferation in vivo, Schoefl (52) observed that EC 
migration was the initiating, and potentially rate-limiting 
event in the regeneration of capillaries after tissue injury. 
Ausprunk and Folkman (2) likewise observed that migrating 
EC initiated the extension of capillary "buds" towards angio- 
genic factors. Both laboratories concluded that migrating 
cells at the tip of a new capillary started the process and that 
subsequent EC proliferation filled in the gaps left behind by 
vacated cells. The same EC processes are involved in the re- 
pair of major blood vessels after the physical trauma induced 
by balloon angioplasty, vascular reconstruction or replace- 
ment, and organ implantation. Haudenschild and Schwartz 
(23) showed that removal of the endothelium from a rat tho- 
racic aorta with a balloon catheter was followed by a gradual 
regeneration of the endothelial lining. In this system, too, the 
repair process was initiated by EC migration and followed 
by proliferation. Reidy and Schwartz (46) subsequently ob- 

1. Abbreviations used in thispaper: EC, endothelial cell; LDL, low density 
lipoprotein; MDA, malondialdehyde; TBARS, thiobarbituric acid-reacting 
substances. 

served that a very narrow wound to the endothelium of the 
rat aorta, ~1 to 2 cells in width, could be completely healed 
within 8 h without any evidence of cell replication. 

The apparent role of EC migration in vessel neogenesis 
and repair in vivo motivated studies on the regulation of this 
process in vitro. Sholley et ai. (55) reported that mechani- 
cally wounded human umbilical vein EC initiated an in vitro 
wound-healing process closely resembling that observed in 
vivo. Migration was seen within 12 h of the injury and 
significant wound repair within 24 h, well before any cell 
proliferation which began after 36 h. In addition, exposure 
of cultured EC to 1,500 rad of x-rays completely abolished 
cell proliferation but did not alter the rate of repair by 
migration. 

A search for the signaling factors was initiated by Zetter 
(64) who showed that tumor-derived factors stimulated the 
migration of bovine capillary EC. Since then a number of 
agents have been reported to stimulate migration of EC de- 
rived from capillaries or large vessels, or both. Among these 
stimulatory factors are heparin (4), tumor-promoting phor- 
bol esters (39), vascular permeability factor (12), and acidic 
(57) and basic (11, 50) FGE Recent evidence suggests that 
basic FGF may be a critical autocrine or paracrine regulator 
of EC migration since cultured EC themselves synthesize 
and release it (primarily into the underlying matrix), and 
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since migration is substantially blocked by anti-basic FGF 
antibody (59). FGF may be an important physiological regu- 
lator of EC migration (and proliferation); both acidic and ba- 
sic forms stimulate endothelial regeneration of vessels in- 
jured by balloon catheter in vitro (6, 33). Among the 
inhibitors of EC migration that have been identified, TGF-B1 
and fibronectin are particularly potent, and evidence sug- 
gests that they may influence repair in vivo (35, 51). 

The role of lipids and lipoproteins in cell migration has not 
been extensively investigated. Btirk et al. (9) showed that se- 
rum from pigs on an atherogenic diet stimulated migration 
of 3T3 cells to a lesser extent than control porcine serum. 
Kanayasu et al. (29) showed that eicosapentaenoic acid, but 
not arachidonic acid or docosahexaenoic acid, potentiated 
the migration of EC in response to serum and basic FGE 
Recent observations from several laboratories suggest that 
oxidized lipids and lipoproteins modulate a variety of EC 
functions including reduction of pinocytic activity (7) and 
production of PDGF (21). Oxidized low density lipopro- 
tein (LDL) also enhances monocyte adhesion to EC (5) and 
stimulates production of prostacyclin (58), colony-stimulating 
factors (44), and tissue factor (16, 61). Furthermore, oxi- 
dized LDL alters chemotactic and migratory responses in 
other vascular cells. It is chemotactic for smooth muscle 
cells (3) and monocytes (13), but inhibits migration of tissue 
macrophages (43). Finally, recent immunohistochemical 
data from several laboratories suggest that oxidized LDL is 
present in atherosclerotic lesions (for review see reference 
62), and may in fact be present in plasma (1). These studies 
motivated us to examine the role of oxidized LDL on the 
migratory response of aortic EC. 

Materials and Methods 

Cell Culture and Media 
EC were isolated from adult bovine aortas essentially as described (15). 
They were subeultured by trypsinization and grown from a 1:3 split ratio 
to confluence in 175 cm 2 flasks in DME and Ham's FI2 medium (GIBCO 
BRL, Gaithersburg, MD) containing 5% FCS (Hyelonc Labs., Logan, 
UT). The identity of the cells was confirmed by their nonoverlapping, cob- 
blestone morphology, and by anti-factor VM antigen immunofluorescence. 
EC were used betwean passages 11 and 20. All EC incubations were at 37"C 
in a humidified atmosphere of air containing 5% CO2. For migration 
studies, the cells were grown to confluence in 1 ml of serum-containing 
medium in 12-well tissue culture dusters (Costar Corp., Cambridge, MA). 
The cells were made quiescent by changing the medium to 1 ml of serum- 
free DME (Sigma Chem. Co., St. Louis, MO) containing 1 mg/ml gelatin 
(Difco Laboratories, Detroit, MI) for at least 24 h before use. Basic FGF 
(human recombinant) was from Upstate Biotechnology Inc. (lake Placid, 
NY). Cellular protein synthesis was measured by incorporation of [3H]leu- 
cine (New England Nuclear, Wilmington, DE) into TCA-precipitable mate- 
rial as described (20). 

Measurement of EC Migration 
EC migration was measured by the razor wound method essentially as de- 
scribed by Bilrk (8), with modifications according to Sato and Rifldn (50). 
Confluent, quiescent EC cultures were wounded with a razor pressed gently 
through the cell sheet into the plastic well to mark the origin, and then 
drawn through the monolayer to remove cells on one side. The medium was 
aspirated and replaced with serum-free medium containing I mg/ml of gela- 
tin plus iipoproteins or other test materials in a total volume of 0.5 mi. Cell 
migration was permitted for up to 24 h and then terminated by fixing and 
staining with Wright-Giemsa stain (modified, Sigma Chem. Co.). Migra- 
tion was quantitated by a computer-assisted procedure done by a person 
blinded with respect to the identity of the experimental treatments. The cul- 

tures were imaged by a charge-coupled device digital camera (Sierra 
Scientific, Sunnyvale, CA) with a 4• objective lens on an inverted stage 
phase-contrast microscope (model CK-2; Olympus Corp. Precision Instr. 
Die., Lake Success, NY). A 256 gray-level, 640 • 480 pixel image was 
transferred to a Macintosh computer via a frame grabber board (Data 
Translation, Inc., Marlboro, MA). Image and data analysis were done using 
the ~Inmge" software package provided by Dr. Wayne Rasband, National In- 
stitutes of Health. Cell nuclei were identified by a "particle analysis" al- 
gorithm using preset limits of size and density, and the perpendicular dis- 
tance from the center of each nucleus to the origin line was determined and 
designated as the migration distance. The number of cells that crossed the 
origin line and the average migration distance were calculated. In each well, 
two randomly chosen fields, each consisting of a 1,500-#m length of wound 
were analyzed and the results summed. The data from duplicate wells were 
expressed as the mean + standard error. All experiments were done two 
or more times, and representative results are shown. 

Preparation of Lipoproteins 
Lipoproteins were prepared from freshly drawn, eitrated normolipemic hu- 
man plasma to which EDTA was added before ultracentrifugation. LDL 
(density = 1.019-1.063) was isolated by sequential ultracentrifugation as de- 
scribed previously (25). The purity was assessed by gel eiectrophoresis, and 
all preparations were assayed for protein (34), total cholesterol (Boehringer 
Marmheim Corp., Indianapolis, IN), endotoxin (Pierce Chemical Co., 
Rockford, IL), and thiobarbiturie acid (TBA) reactivity (53). 

Unless otherwise indicated, LDL was oxidized by ferrous ion-catalyzed 
oxidation (21). In brief, EDTA was removed from aliquots of lipoprotein 
(containing 10-15 mg of cholesterol) by dialysis against 0.9% NaCl, pH 7.4, 
at 4~ for 12-18 h. The lipoprotein was then dialyzed for 6-8 h at 37~ 
against the same solution containing freshly prepared 5 #M FeSO4, with 
dialysate changes every 2 h. The oxidation was stopped by the addition of 
EDTA to a final concentration of 100 #M, and the lipoprotein sterilized by 
passing through a 0.22-tan filter (Millipore Corp., Bedford, MA). In some 
preparations a modified procedure was used. Contaminating lipoprotein- 
bound metals were removed by extended dialysis at 4"C against saline solu- 
tion containing 100 t~M EDTA. Both methods gave similar results with re- 
spect to their effects on EC migration. LDL was also oxidizad by dialysis 
against CuSO4, and by exposure to ultraviolet irradiation for 3 h in a UV 
Stratalinker 1800 (Strategene Inc., La Jolla, CA) at an instrument setting 
of 150 (#J x 100). Total cholesterol and TBA reactivity were determined 
for all preparations. Selected lipoprotein preparations were further charac- 
terized by electrophoretic mobility on an agarose gel (Coming Inc., Corn- 
ing, NY), by lipid peroxide content (17), and by fluorescence spectroscopy 
with excitation and emission set to 360 nm and 430 nm, respectively (30). 
Lipid extracts from native and oxidized LDL were prepared by dialysis 
against saline to remove EIYI'A, lyophilizntion, acetone extraction, and 
reconstitution in a small volume of acetone/ethanol (1:1, voltvol). The final 
concentration of acetone/ethanol in the culture medium in all experiments 
was <0.5 % by volume, and lipid-free controls containing this amount of sol- 
vent were tested and did not alter EC migration. The amount of lipoprotein 
lipid was expressed per amount of cholesterol in the original sample. All 
solvents were from Fisher Scientific (Fair Lawn, NJ) and other reagents 
were from Sigma Chem. Co. 

Results 

A time course of migration of bovine aortic EC was per- 
formed to choose experimental conditions such that the 
number of migrating cells and the average distance of migra- 
tion was easily measured and reproducible. The results in 
Fig. 1 show that cell migration was clearly visible by 8 h and 
increased up to at least 48 h. The number of migrating cells 
and average migration distance are shown in Fig. 2. Both 
variables were nearly linear for up to 48 h. Cells undergoing 
cell division were only rarely observed in any wells up to 
24 h. In subsequent experiments an incubation time between 
18 and 24 h was chosen to maximize statistical power while 
minimizing cell proliferation as a confounding variable. 

The effect of native and oxidized LDL on EC migration 
was studied. LDL was oxidized by dialysis against FeSO, 
to a final oxidation level, measured as TBA-reacting sub- 
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Figure L Time course of mi- 
gration of bovine aortic EC af- 
ter wounding - micrographs. 
Confluent cultures of bovine 
aortic EC were "wounded" 
and the cells were fixed and 
stained after 0 (A), 8 (B), 16 
(C), 24 (D), and 48 h (E). 
The images were captured by 
a CCD camera and digitally 
enhanced to improve contrast. 
Bar, 100 #m. 

stances, of 10.9 nmol malondialdehyde (MDA) equivalents/ 
mg cholesterol. The phase-contrast photomicrographs of 
Fig. 3 show that oxidized LDL, but not native LDL, mar- 
kedly inhibited EC migration in a concentration-dependent 
manner. Quantitation of these results as the number of mi- 
grating cells yields a half-maximal inhibitory concentration 
of '~ 300/~g/ml, and near complete inhibition at 400/zg cho- 
lesterol/ml (Fig. 4 A). When migration was expressed as 
mean distance, a virtually identical half-maximal inhibitory 
concentration was found, and the migration in the presence 
of the highest amount of oxidized LDL was 27 % of the lipo- 
protein-free control (not shown). These concentration re- 
sponse data are representative of many repetitions of this 
experiment using oxidized LDL between 6 and 12 nmol 
MDA equivalents/mg cholesterol. Similar observations were 
made with oxidized LDL prepared from LDL from multiple 
donors. In addition, the migration of multiple isolates of 
bovine aortic EC was inhibited by oxidized LDL. The inhibi- 
tory activity of the lipoprotein required oxidative modifica- 
tion since native LDL was not inhibitory at any concentra- 
tion, and, in fact, LDL stimulated migration by nearly 40% 
compared with lipoprotein-free controls (Fig. 4 A). 

The antimigratory activity of oxidized LDL did not appear 
to be due to cell death, since cells that were completely static 
appeared normal by phase-contrast microscopy (although at 
500 #g cholesterol/ml some toxicity was observed visually). 
To quantitate the viability of the cells under these experimen- 
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Figure 2. Time course of migration of bovine aortic EC after 
wounding-quantitation. The number of cells that have traversed 
two 1,500-/~m lengths of the original wound edge (n) and the aver- 
age net migration distance (o) are shown (mean and standard error 
of duplicate wells). 

tal conditions, protein synthesis was measured by incorpora- 
tion of [3H]leucine into cellular protein (Fig. 4 B). The de- 
crease in protein synthesis was ,~10% at a concentration of 
oxidized LDL that half-maximally inhibited migration, and 
"~30 % at a concentration that completely stopped migration. 
This decrease may be due to death of some cells, but it may 
also reflect a general decrease in the metabolic activity of the 
cells. 

The inhibition of migration by lipoproteins was further 
characterized with respect to the extent of oxidation. LDL 
was variably oxidized by incubation with FeSO4 for different 
lengths of time up to 8 h. Both the native and mildly oxidized 
LDL stimulated EC migration compared with lipoprotein- 
free controls (Fig. 5). This result, while not dramatic, was 
seen in all repetitions of this experiment. However, at higher 
oxidation levels, a marked inhibitory effect was observed, 
with half-maximal inhibition at ,'~5-6 nmol MDA/mg cho- 
lesterol (at 500 #g cholesterol/mi), and near-total inhibition 
observed at 7-8 nmol MDA/mg cholesterol. 

Since oxidized LDL is toxic to many types of cultured 
cells including EC (24), experiments were done to rule out 
several toxicity-related scenarios that could explain our ob- 
servations. It should be mentioned that, at least in fibro- 
blasts, the toxic effect is primarily limited to proliferating 
cells during S-phase of the cell cycle (31). If this result can 
be extended to EC, this mechanism is unlikely to apply to 
our observations of unstimulated cells in serum-free me- 
dium. We nonetheless considered the possibility that the oxi- 
dized LDL-treated cells were lethally injured, but that the in- 
jury was not apparent morphologically. To test this, the 
reversibility of the treatment with oxidized LDL was exam- 
ined. Confluent EC cultures were wounded and then in- 
cubated for 24 h with oxidized LDL at a concentration that 
inhibited migration by ~80% (Fig. 6 A). After replacement 
of the medium with lipoprotein-free medium, a near-normal 
level of cell migration was observed during the subsequent 
2-d recovery period. In other experiments, similar reversibil- 
ity was observed after incubation of EC with oxidized LDL 
for up to 96 h (not shown). To more accurately determine 
the recovery time, another experiment was done using 
shorter incubation periods to provide information on the ini- 
tial rate of migration. EC were preincubated with oxidized 
LDL for 12 h (a time that was sufficient to almost completely 
inhibit migration), and then the medium was replaced with 
lipoprotein-free medium. After several wash-out periods up 
to 24 h, the culture was wounded and cell migration mea- 
sured during an 8-h interval. Immediately after removal of 
the oxidized LDL (indicated as 0 h), the number of migrating 
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Figure 3. Effect of native and oxidized LDL on EC migration-photomicrographs. Native LDL (TBARS = 1.2 nmol MDA equivalents/mg 
cholesterol) was oxidized by dialysis against 5 #M FeSO4 at 37~ for 8 h (TBARS = 10.9 umol MDA equivalents/rag cholesterol). EC 
migration was stopped after incubation with lipoproteins for 20 h, and the ceils were fixed and stained with modified Wright-Giemsa stain. 
(A) Lipoprotein-free control; (B) oxidized LDL, 100 #g cholesterol/ml; (C) oxidized LDL, 250 #g cholesterol/ml; (D) oxidized LDL, 
300 ttg cholesterol/ml; (E) oxidized LDL, 350 #g cbolesterol/ml; and (F) native LDL, 400/~g cholesterol/mi. Bar, 100 tLm. 
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Figure 4. Effect of native and oxidized LDL on EC migration- 
quantitation. (A) EC were incubated with native (o) and oxidized 
LDL (e) as described in Fig. 3. The number of migrating cells in 
duplicate wells (mean + SEM) was quantitated by computer- 
assisted particle analysis. Similar trends were seen for the effect of 
lipoproteins on the mean migration distance. (B) [3H]Leucine (1 
i~Ci/ml) was added to parallel wells, in duplicate, during the last 
2 h of the 20-h incubation, and cellular protein synthesis measured 
as TCA-precipitable protein (mean and standard error are shown). 

cells increased from almost none to ,o25 % of the untreated 
control (Fig. 6 B). The cell migration rate increased to half 
of the control rate after 8 h and completely returned to the 
control rate after 16 h. These data confirm those of Fig. 
6 A that show that the antimigratory activity of oxidized LDL 
is completely reversible. 

In an alternative scenario, oxidized LDL could be lethal 
only to migrating cells, and not to the confluent cells remain- 
ing behind the cut edge. In this case, cells that migrated away 
from the cell sheet would be killed by the oxidized LDL, and 
since dead cells lift away from the dish, they would not ap- 
pear as migrating cells in our assay. This possibility was 
tested by time-lapse videomicrography of EC (at 10-rain in- 
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Figure 5. Effect of oxidation level on EC migration. LDL was oxi- 
dized by dialysis against 5 t~M Fe, SO4 at 37~ for various times up 
to 8 h. EC migration was measured after incubation without lipo- 
protein (o), with lipoprotein added at 300/~g cholesterol/rid (o), 
or with lipoprotein at 500/~g cholesterol/m1 (e) for 24 h. Mean and 
standard error are shown. 
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Figure 6. Recovery of EC migration after removal of oxidized LDL. 
(A) Confluent cultures of EC were incubated for 1 d in the presence 
or absence of oxidized LDL (400/~g cholesterol/ml, TBARS = 7.3 
nmol MDA/mg cholesterol), the medium was replaced with 
lipoprotein-free medium, and cell migration was allowed to con- 
tinue during the second and third day. After each day, duplicate EC 
cultures were fixed and stained, and cell migration was determined. 
The number of migrating cells in cultures of untreated EC (open 
bars), EC treated with oxidized LDL (black bar), and EC treated 
with oxidized LDL followed by lipoprotein-free medium (striped 
bars) are shown as the mean and standard error. (B) Confluent EC 
were treated for 12 h in the presence of oxidized LDL (300/~g cho- 
lesterollml, TBARS = 13.0 nmol MDA/mg cholesterol). The 
medium was replaced with lipoprotein-free medium for up to 24 h, 
the cultures were wounded, and migration was measured after an 
8-h period. One control pair of wells was not pretreated with oxi- 
dized LDL (open bar), in a second pair the oxidized LDL was 
replaced with fresh oxidized LDL after the wound was made (black 
bar). In the remaining wells, the oxidized LDL was replaced with 
medium, and the cells were allowed to recover for 0, 8, 16, and 24 h 
before wounding (striped bars). The number of migrating cells are 
indicated as the mean and standard error. 

tervals) in the presence of oxidized LDL. At a concentration 
of oxidized LDL that totally blocked migration, all cells that 
were in the view field at the beginning of the experiment were 
accounted for after 24 h, establishing that cell death was not 
responsible for the inhibition of migration (data not shown). 
After replacement of  the medium with lipoprotein-free me- 
dium, EC migration resumed after ",,8 h, further confirming 
both the lack of toxicity and the time course of Fig. 6 B. 

Basic FGF is a potent stimulator of EC migration and 
studies with neutralizing antibodies have shown that endoge- 
nous basic FGF is required for migration (59). We have pre- 
viously shown that oxidized LDL reduces the production and 
release from bovine aortic EC of a distinct factor with mito- 
genic and angiogenic properties, i.e., PDGF (21). As an ini- 

Table L Effect of Exogenous Basic FGF on the 
Antimigratory Activity of Oxidized LDL 

Mean migration distance Control 

/zM % 
Control (no addition) 58 + 2 - 

+ basic FGF 106 -t- 2 183 
+ oxidized LDL 36 + 2 62 
+ basic FGF, oxidized LDL 32 + 3 55 

Confluent bovine aortic EC were wounded and incubated with oxidized LDL 
(TBARS = 10.9 nmol MDA/mg cholesterol, 400/tg cholesterol/ml), basic 
FGF (10 nglml), or both, At~r 24 h, the cells were fixed and stained, and cell 
migration in duplicate wells was measured (mean + standard error). 

t i a l  approach to the mechanism of its antimigratory activity, 
we explored the possibility that the inhibition by oxidized 
LDL was due to decreased release of basic FGF. In this case, 
exogenously supplied growth factor would be expected to re- 
store normal migration rates to EC treated with oxidized 
LDL. Table I shows that the inhibitory activity of the lipo- 
protein was not affected by basic FGF at a concentration that 
maximally stimulates migration, thus indicating an alterna- 
tive mechanism of action. 

To determine the chemical nature of the inhibitor mole- 
cule, the effect of lipid extracts of the lipoprotein prepara- 
tions on EC migration was examined. Lipids from native and 
oxidized LDL were prepared by lyophilization, extraction by 
acetone, and reconstitution with acetone/ethanol. The oxi- 
dized lipid extract significantly inhibited migration; how- 
ever, the potency of the extract was approximately half that 
of the intact particles (Fig. 7). The extract from native LDL 
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Figure 7. The activity of lipid extracts of native and oxidized LDL. 
LDL was oxidized by incubation with 5 #M FeSO4 for 8 h 
(TBARS = 7.8 nmol MDA/mg cholesterol). The lipids from native 
and oxidized LDL were extracted by lyophilization, followed by 
acetone extraction, and reeonstitution with acetone/ethanol (1:1, 
vol/vol, TBARS = 5.1 nmol MDA/mg cholesterol). The extracts 
were added to media and briefly sonieated before addition to cells. 
Cell migration (mean + standard error) was measured after 20 h 
in the presence of the LDL (n) and its lipid extract (m), and oxi- 
dized LDL (o) and its lipid extract (o). 
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Table II. Degree of Oxidation of lZ~L Modified by 
Different Methods 

Peroxides TBARS Relative Relative 
LDL (nmol LPO/mg (nmol MDA/mg fluorescence electrophoretic 
trea~aent cholesterol) cholesterol) (arbitrary units) mobility 

None 21 0.2 21 1.0 
Fe 2+ 374 6.3 85 1.5 
Fe 2+ ND 7.6 ND ND 
FC + 638 11,0 86 1.5 
CU 2+ 725 10.0 133 1.8 
UV 76 1.7 150 1.5 

LDL was oxidized by dialysis against 5 #M FeSO4 or CuSO, for 6-8 h, or by 
UV irradiation (see Materials and Methods for details on the oxidation proce- 
dures and the determinations of oxidation), ND, not determined; LPO, lipid 
peroxides. 

had only weak stimulatory activity compared with the intact 
lipoprotein. 

To explore the generality of these observations, LDL was 
oxidized by three different procedures-dialysis against 
FeSO4, dialysis against CuSO4, and ultraviolet irradiation. 
The oxidation level of all lipoproteins was measured as TBA- 
reacting substances as well as by lipid peroxides, fluores- 
cence, and relative electrophoretic mobility (Table II). LDL 
that was extensively oxidized by incubation with Fe 2§ or 
Cu 2§ exhibited similar profiles in terms of all four oxidation 
parameters. Compared with the metal-oxidized lipoproteins, 
the UV-treated LDL was oxidized to a similar degree with 
respect to fluorescence and relative electrophoretic mobility, 
but much less oxidized in terms of lipid peroxides and TBA- 
reacting substances. The effect of these oxidized lipoproteins 
on EC migration is shown in Fig. 8. LDL oxidized by ultra- 
violet irradiation clearly did not inhibit EC migration, but 
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Figure 8. Ant imigra to ry  activity o f  L D L  oxidized by different 
procedures. LDL was oxidized by incubation with 5 #M FeSO4 
or CuSO4, or by UV irradiation for 4 h. EC migration was mea- 
sured after treating the wounded cultures with lipoproteins for 
24 h. Native LDL, TBARS = 0.2 nmol MDA/mg cholesterol (O); 
UV-oxidized LDL, TBARS = 1.7 nmol MDA/mg cholesterol (n); 
Fe-oxidized LDL, TBARS = 6.3 nmol MDA/mg cholesterol (o); 
Fe-oxidized LDL, TBARS =. 7.6 nmot MDA/mg cholesterol (A); 
Fe-oxidized LDL, TBARS = 11.0 nmol MDA/mg cholesterol (m); 
and Cu-oxidized LDL, TBARS = 10.0 nmol MDA/mg cholesterol 
(~). Mean and standard error are shown. 

rather it stimulated migration to at least the same extent as 
native LDL. Focusing on the results at 300 #g cholesterol/ 
ml, a concentration that gave significant but submaximal in- 
hibition, these results show that the inhibitory activity of all 
lipoproteins could be directly related to the oxidation level 
measured as TBA-reacting substances or lipid peroxides. 

Discussion 

We have used an in vitro "wound" model to investigate the 
effects of oxidized lipoproteins on the migration of bovine 
aortic EC. Our results show that oxidized LDL is a potent 
antimigration agent that reduces both the total number of 
migrating cells as well as the mean migration distance of 
these cells. The dose response of EC to oxidized LDL is 
biphasic, with a gradual increase in migration rate at concen- 
trations up to 100 #g cholesterol/ml, followed by a steep de- 
cline to a nearly undetectable level of migration. The level 
of oxidation and the amount of lipoprotein required for half- 
maximal inhibitory activity are substantially higher than 
those reported for other effects on cultured EC, e.g., inhibi- 
tion of PDGF production (21), inactivation of endothelial- 
derived relaxing factor (10), and induction of monocyte 
chemotactic protein (13), among others. This suggests that 
the effects of oxidized LDL on migration may be mediated 
by a different pathway than the others. Alternatively, the 
stimulation of migration at low concentrations of oxidized 
LDL may oppose the inhibitory activity at higher concentra- 
tions thereby raising the apparent half-maximal antimigra- 
tory activity. 

The mechanism by which oxidized LDL exerts antimigra- 
tory activity is not known. However, the possibility that the 
inhibition is secondary to mortal cell injury was considered, 
since oxidized LDL has been shown to be toxic, particularly 
under proliferative conditions, to endothelial and other cul- 
tured cells (25, 31). Several lines of experimental evidence 
suggest that the inhibition of migration in this case is inde- 
pendent of the toxic effects. First, the antimigratory effects 
are reversible. Pretreatment of confluent EC ~,dth inhibitory 
concentrations of oxidized LDL reduced EC migration after 
its removal and subsequent wounding (Fig. 6). However, the 
inhibition was completely reversed in cultures wounded 
16-24 h after removal of the oxidized LDL. Second, cells 
exposed to oxidized LDL did not die, as monitored by time 
lapse videomicrography, which showed that treated cells did 
not lift off the dish but rather moved more slowly than control 
cells. Exposure of cells to subtoxic concentrations of oxi- 
dized LDL results in the production of several injurious 
agents, such as the toxic oxysterols and oxidized fatty 
acid-derived aldehydes, including 4-hydroxynonenal (27, 
54), and it cannot be ruled out that these agents may be 
responsible for the effects we observed. 

Since oxidized LDL is known to alter the production and 
secretion of multiple growth factors and cytoldnes (21, 36, 
41), we tested the idea that its antimigratory activity was due 
to decreased availability of basic FGF, a potent endogenous 
activator of EC migration (37). Exogenous addition of a 
maximally effective concentration of basic FGF, in the pres- 
ence of oxidized LDL, did not restore EC migration to 
lipoprotein-free rates, indicating that alternate promigratory 
factors or distinct mechanisms pertain. The number of fac- 
tors known to stimulate cell motility is large (for review see 
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reference 18). Several of these factors stimulate EC move- 
ment, including vascular endothelial growth factor (26) and 
scatter factor (48). However, an autocrine role for these fac- 
tors in EC has not been established. Other mechanisms that 
should be considered include interference by the oxidized li- 
poproteins with intracellular signaling pathways, with the as- 
sembly of actin microfilaments and other structures required 
for motility, or with the secretion or activity ofproteases that 
degrade extracellular matrix molecules and are required for 
cell movement. In support of the latter mechanism, Ohuchida 
et al. (42) have reported that oxidized lipids increase fibro- 
blast production of two matrix metaUoproteases, tissue col- 
lagenase and stromelysin, while decreasing the production 
of gelatinase. 

A significant portion of the antimigratory activity was 
found in the lipid fraction of oxidized LDL. The lower 
potency of the extract, compared to the whole lipoprotein, 
may be due to loss of the inhibitory lipid species during ex- 
traction (as suggested by the decreased oxidation level), or 
to lower uptake of the lipid emulsion particles compared to 
the receptor-mediated uptake of the intact lipoprotein. Al- 
ternatively, a portion of the inhibitory activity may reside in 
oxidized apo B-100 fragments. Oxidized LDL contains 
numerous lipid oxidation products formed during the oxida- 
tive propagation reactions. The fact that the antimigratory 
activity is retained in the total lipid extract indicates that one 
or more of the new lipids is responsible; however, we have 
not yet determined their identities. Oxidized fatty acid prod- 
ucts, such as 4-hydroxynonenal, can enhance the fluores- 
cence of LDL at 360 excitation/430 emission (30) and can 
increase the net negative charge of the lipoprotein (56). The 
fact that among several oxidized LDL preparations, the an- 
timigratory activity did not correlate as well with either of 
these two parameters as it did with total lipid peroxides (Ta- 
ble II) suggests that such long chain aldehydes may not be 
the mediators. 

Oxidized lipoproteins appear to exist in arterial lesions in 
experimental animals and in humans (for review see reference 
62). Several laboratories have demonstrated that antibodies 
recognizing lipid oxidation products (e.g., malondialdehyde, 
4-hydroxy-nonenal) linked to proteins, and antibodies that 
bind unknown epitopes on oxidized LDL that are absent on 
native LDL, recognize epitopes present in arterial lesions 
(22). Furthermore, LDL-like extracts of arterial lesions have 
properties more similar to oxidized LDL than to native 
plasma LDL (14, 63). Perhaps most importantly, the anti- 
bodies noted above recognize these arterial "LDL" prepara- 
tions (63). Hence, the presence of oxidized LDL in the 
subendothelial space invites the speculation that the antimi- 
gratory effects we observe may also slow endothelial repair 
in vivo. However, it has yet to be shown that the spectrum 
of lipids in LDL oxidized in vitro is also present in oxidized 
forms of LDL existing in vivo. Furthermore, the arterial wall 
concentrations of oxidized LDL and its constituent lipid oxi- 
dation products have not yet been determined. 

The antimigratory activity of oxidized LDL may play a 
role in vivo by limiting or adversely affecting endothelial re- 
pair in developing atherosclerotic lesions, in the recovering 
arterial wall after balloon angioplasty, or in a reendothe- 
lializing arterial graft. Early studies on regeneration of en- 
dothelium have shown that deendothelialization of the rat 
aorta with a balloon catheter is followed by a reproducible 

series of events beginning with rapid platelet aggregation, 
followed by reendothelialization, and culminating in marked 
intimal thickening due to smooth muscle cell migration and 
proliferation within 4 wk (49). A strong correlation between 
the duration of endothelial denudation and the degree of 
intimal thickening has been reported; Haudenschild and 
Schwartz (23) showed that injured regions that were covered 
by regenerated endothelium within 7 d after injury were 
completely spared from intimal thickening. Thus, while the 
mechanism(s) by which confluent endothelium reduces or 
prevents intimal thickening has not been resolved, it appears 
that the inhibition of endothelialization may accelerate lesion 
formation. 

In view of the protection afforded by an intact en- 
dothelium, it may be unfortunate that endothelial healing af- 
ter injury is limited in duration and extent in most animal 
species (47). The minimal ingrowth of EC from vessel 
anastomoses onto synthetic vascular grafts suggests that a 
similar limitation exists in humans. The cause of the incom- 
plete repair remains a critical and unresolved issue, and sev- 
eral mechanisms have been explored. Reidy (45) has shown 
that the SMC pseudointima that forms adjacent to the re- 
generating endothelium is not responsible for the cessation 
of growth. Inhibition of regeneration by fibronectin and other 
specific components of the extracellular matrix has also been 
considered (19). In testing this hypothesis, Lindner et al. 
(32) have shown that the presence of fibronectin on denuded 
vessel surfaces did not correlate with its regenerative capac- 
ity. However, other matrix components have not been as 
rigorously examined. Growth factors are likely to have a role 
in endothelial regeneration since several, most notably basic 
FGF and TGF-/3, influence EC migration and proliferation 
in vitro. Recent reports suggest that injection of either acidic 
or basic FGF stimulates EC repair after denuding injury (6, 
33). These data clearly demonstrate the importance of FGF 
in vascular repair but do not explain why regenerating cells 
reach a point where exogenous growth factors are required 
for further repair. 

We could speculate from our observations that suben- 
dothelial oxidized lipids and lipoproteins may play a negative 
role in endothelial regeneration by inhibiting EC migration 
and perhaps proliferation. There are no data that directly im- 
plicate lipids, oxidized or otherwise, in the incomplete 
regeneration of endothelium after angioplasty. However, 
several laboratories have shown that the uptake and accumu- 
lation of lipid after balloon catheter injury (in normo- and 
hypercholesterolemic animal models) is greatest beneath the 
newly regenerated endothelium, and not in the adjacent, 
still-denuded intima (38, 60). One interpretation of these ob- 
servations is that subendothelial lipoproteins may be oxida- 
tively modified by cell-mediated processes (40, 56) and 
trapped due to the high affinity of oxidized LDL for collagen 
and other matrix molecules (28), and that these oxidized li- 
poproteins subsequently reduce reendothelialization. Fur- 
ther studies in organ culture and in animal models will be 
necessary to understand the processes involved in arterial 
oxidation of LDL, and to define the role that these lipopro- 
reins play in EC regeneration. 
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