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ABSTRACT Fluctuations in the discharge of impulses were studied in eccentric
cells of the compound eye of the horseshoe crab, Limulus polyphemus. A theory is
presented which accounts for the variability in the response of the eccentric cell
to light. The main idea of this theory is that the source of randomness in the
impulse rate is “noise” in the generator potential. Another essential aspect of
the theory is that the process which transforms the generator potential “noise”
into the impulse rate fluctuations may be treated as a linear filter. These ideas
lead directly to Fourier analysis of the fluctuations. Experimental verification of
theoretical predictions was obtained by calculation of the variance spectrum of
the impulse rate. The variance spectrum of the impulse rate is shown to be the
filtered variance spectrum of the generator potential.

INTRODUCTION

Some degree of randomness in the maintained response of a neuron to steady
stimulation is characteristic of sensory neurons and neurons of vertebrate and
invertebrate central nervous systems. The study of neuronal fluctuations is
significant because these fluctuations are widespread, and because they may
provide detailed understanding of the function of single neurons (Burns,
1968).

Numerous investigators have studied fluctuations of the maintained re-
sponse of primary sensory neurons—cells which do not receive convergent in-
put from other neurons (frog muscle spindle [Buller et al., 1953]; Limulus
visual cells [Ratliff et al., 1968]; cat auditory nerve [Kiang, 1965]; mammalian
cutaneous mechanoreceptors [Werner and Mountcastle, 1965]; cat muscle
spindle [Stein and Matthews, 1965]; cat chemoreceptors [Biscoe and Taylor,
1962]). The sources of variability in primary sensory cells may not be the
same, in detail, as those causing variability in the firing of neurons in the central
nervous system. However, because the former are more susceptible to experi-
mental control, they are more suitable for quantitative study than the richly
interconnected central neurons.

I have studied the way in which randomness arises in the maintained re-
sponse to light of eccentric cells in the compound eye of the horseshoe crab.
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The axons of the eccentric cells gather to form the optic nerve of the horseshoe
crab. As far as we know, these are the only cells in the compound eye which
respond to light by firing nerve impulses (Waterman and Wiersma, 1954;
Purple, 1964; Behrens and Wulff, 1965). This paper deals with fluctuations
due to processes within single eccentric cells. An accompanying paper is con-
cerned with the effect of interactions between eccentric cells.

Ratliff et al. (1968), recording from Limulus eccentric cells, found that the
variance of the steady-state firing rate in response to electrical stimulation was
much smaller than the variance of the response to stimulation by light, and
that in the latter case the variance depended on light intensity and light adapta-
tion. These results implied that the randomness in the generator potential,
which is probably due to randomness in photon arrival and absorption (Dodge
et al., 1968), was responsible for the impulse rate fluctuations. Because the
impulse-firing mechanism can be treated as a linear filter for modulated stim-
uli (Dodge, 1968; Knight et al., 1970), I have used the theory for the linear
filtering of stochastic processes to show how fluctuations in impulse rate arise
from the generator potential “noise” (Shapley, 1969).

METHODS

The Biological Preparation

This work was done on excised lateral eyes of the horseshoe crab, Limulus polyphemus.
For intracellular recording, the eye was sliced in half with a razor blade. The slice
was parallel to the long axis of the eye and perpendicular to the surface of the eye.
The sliced eye formed the fourth wall of a three-sided Plexiglass chamber; it was sealed
into place with beeswax. The chamber was filled with artificial seawater. For experi-
ments on generator potentials, the impulse-firing mechanism was poisoned by adding
10~% M tetrodotoxin to the seawater.

Experiments were performed with a micropipette as an intracellular electrode.
Micropipettes were filled with 3 molar potassium chloride; they had a resistance of
10-20 megohms measured in seawater. Signals were passed from the micropipette
probe to a unity gain negative capacitance bridge amplifier designed by J. P. Hervey.
This amplifier has been described by Purple (1964).

In other experiments, nerve fiber recording was done using standard techniques.
Bundles of nerve fibers were teased from the Limulus optic nerve with glass needles
and dissected until a single active fiber was present on the recording electrode. A pre-
amplifier (Tektronix 122) provided a gain of 1000.

Action potentials and/or slow potentials were fed to a Tektronix 502A oscilloscope.
The vertical signal output from the oscilloscope was monitored on a loudspeaker.
The output of the oscilloscope was also fed into a CDC 160-A digital computer in a
manner described below.

Analysis was performed on steady-state responses of eccentric cells which were
statistically stationary. This means that statistical parameters of the discharge did not
change during the course of one response, or from one experimental run to another.
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Stimulus and Stimulus Control

Two sets of stimulus conditions were established. First, different time-varying wave-
forms were used to modulate the light intensity illuminating an eccentric cell or the
current that was directly driving the cell. Under the second set of stimulus conditions
steady stimulation was repeated at constant intervals throughout the experiment. A
constant repetition rate was required because statistical measures were obtained by
averaging several responses to identical steady stimuli. The responses would be
statistically the same only if the cell were in the same adaptation state at the onset of
each stimulus presentation.

Stimulus presentation and control were identical to those described by Knight
et al. (1970). The stimulus waveform was generated by adding together constant voit-
ages with time-varying voltages generated by a waveform generator (Hewlett-Packard
3300A). For stimulation by modulated current the summed voltage was led directly
to the bridge stimulus input of the bridge amplifier. For stimulation by modulated
light the summed voltage was first fed to a voltage-to-frequency converter with center
frequency adjusted to 400 hz. In some experiments a steady light and a sinusoidal
current were applied simultaneously to the same cell in order to modulate the activity
of the cell around a level of excitation produced by the natural stimulus. For such ex-
periments a constant voltage was passed through the voltage-to-frequency converter
and the time-varying voltage was led to the bridge amplifier stimulus input and thence
to the microelectrode.

The output of the voltage-to-frequency converter triggered a pulse generator
(Tektronix 161) which in turn triggered a glow modulator driver. The glow modulator
driver, designed by M. Rosetto, provided pulses of constant current, adjustable from
8 to 30 ma, to drive a glow modulator tube (Sylvania R1131C).

The light stimulus was brought to single ommatidia of the compound eye via fiber
optics. This method is described by R. Barlow (1969).

A programmed timer was used to control the timing of experimental runs and pro-
vide electronic gating and clock signals for on-line computer data acquisition. It was
similar to the one described by Milkman and Schoenfeld (1966). The programmed
timer provided an input gate signal to alert the computer, and provided the 5 ke
clock rate the computer used in the data acquisition program. Seven additional pro-
grammable gates were available in the programmed timer to turn stimuli on and off
in a prescribed sequence.

Data Processing

The data acquisition program, written for the CDC 160A computer by H. K. Hart-
line, Norman Milkman, and David Lange, performed three functions which were
particularly important for my experiments. First, the program measured time between
pulse events on three separate data channels. Second, it sampled one voltage channel
by means of an analogue to digital converter and stored the values of the voltage in
memory. These two functions performed on-line took, on the average, a little less than
0.2 msec. Third, at the end of each experimental run the program stored time interval
data and voltage data on magnetic tape for later analysis.
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The resolution of the measurement of time intervals was 0.2 msec, the length
of the clock cycle. This was 1 % accuracy for a firing rate of 50 impulses/sec, one-half
% accuracy for 25 impulses/sec.

ANALYTICAL METHODS

Impulse Rate

The primary data for the experiments on impulse firing are intervals between
impulses. One way to study the characteristics of neuronal discharge is to
convert the list of pulse intervals into a list of instantaneous impulse rate
samples. As shown below, in the case of regularly firing neurons, important
statistical parameters for the impulse rate are the same as for the impulse
intervals. The reason for using the pulse rate, rather than interpulse interval,
as a measure of neural activity is that the rate is a more direct measure of the
level of excitation of the neuron than the interval.

The algorithm for constructing the impulse rate is illustrated in Fig. 1.
For any particular interval between pulses, the reciprocal of the time interval,
the impulse rate, is assigned to all the time between the beginning and end of
the interval. In effect, in constructing the impulse rate, one is transforming a
frequency modulation into an amplitude modulation.

If the instantaneous impulse rate is sampled over equispaced intervals of
time, the result is a list of pulse rate samples which can be mathematically
manipulated in the same way as periodically sampled continuous functions
(one might expect discontinuities in the firing rate at instants when impulses
are fired; discontinuities are eliminated by averaging the instantaneous rate
before and after an impulse discharge, to obtain a value of the impulse rate for
those bins in which an impulse has occurred). If the “sampling” bins are small
enough, a negligible amount of information about the statistics of the pulse
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Figure 1. Instantaneous firing rate and the impulse train. During the interval between
two pulses the impulse rate equals the reciprocal of that interval. The pulse train and
impulse rate are plotted on the same time scale.
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train will be lost. To be fine enough the sampling interval ought to be less
than half the length of the average interspike interval, a limit consistent with
the sampling theorem (see Shannon and Weaver, 1949, p. 53, for a discussion
of the sampling theorem).

For the purposes of this paper, I have introduced a new unit to replace
“impulses per second.” This has been done in order to clarify the conception
of modulation frequency of the impulse rate, which arises in the Fourier
analysis of neuronal firing. The unit is named after E. D. Adrian, who dis-
covered neural pulse frequency coding. 1 adrian equals one impulse/sec. I
have used this unit in some of my figures, principally those illustrating spectral
analysis of the impulse rate.

SPECTRAL ANALYSIS

Spectral analysis is an analytical tool developed to help understanding of the filtering
of signals by linear, time-invariant devices. It has been applied in communication
theory to the problem of filtering of stochastic processes (Parzen, 1962; Blackman and
Tukey, 1958; Jenkins and Watts, 1968). I used spectral analysis to characterize the
fluctuations in the impulse rate and generator potential.

Sinusoidal signals are unchanged in shape, but may be changed in amplitude and
shifted in phase, when they are passed through a time-invariant linear filter (Parzen,
1962). Given any time-invariant linear filter, one can characterize it by specifying the
response to a unit amplitude sinusoidal signal at each frequency. The function which
relates the amplitude and phase of the output to the modulation frequency is called
the frequency response.

Also, it is possible to express any continuous, deterministic function of time as a
weighted sum of sinusoidal functions of time. The function which relates the relative
weighting of each Fourier component to frequency is the Fourier transform of the
original function. The operation of a filter on an input function can be expressed as
the separate multiplication of each of the Fourier components belonging to the input
function by the appropriate value of the frequency response.

For random processes a similar theory can be developed (cf. Bartlett, 1955; Parzen,
1962). A stochastic process is an ensemble of time functions which have some average
properties in common but which cannot be determined exactly as a function of time.
In an experimental context, this ensemble is composed of the group of noisy records
which are measurements of the stochastic process.

One average property of a stochastic process is its autocovariance. The autoco-
variance is defined as the average product of the deviation of a random variable from
its mean, multiplied by the value of the deviation later in time. For the stochastic proc-

ess n(¢) with mean value #, the autocovariance is defined as (n(t) — #)(n(t + 7) — 7).
The autocovariance is a continuous, deterministic function of time; it depends on
the time lag, 7, the lag between the two random variables in the product. The auto-
covariance is a measure of how rapidly the stochastic process fluctuates around its
average value. The value of the autocovariance at zero time lag is the variance of the

stochastic process; i.e., (r(t) — 7)%
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The autocovariance of a stochastic process can be Fourier analyzed since it is a
deterministic function of time. The Fourier transform of the autocovariance is what I
call the variance spectrum. This name is appropriate because the value of the vari-
ance spectrum at a particular frequency represents the contribution of that frequency
to the total variance of the stochastic process. Spectral analysis of stochastic processes
was applied first to electrical signals for which variance means power, and so what I
call the variance spectrum is more commonly referred to as the power spectrum
(Rice, 1944).

The variance (power) spectrum of a stochastic process can also be calculated from
direct Fourier analysis of the individual time functions which are members of the en-
semble of functions which constitute the stochastic process. The squared amplitudes
of the Fourier components must be averaged from many members of the ensemble to
obtain the variance spectrum. It is a theorem that the variance spectrum computed in
this manner is equal to the variance spectrum calculated from Fourier analysis of the
autocovariance (Bartlett, 1955, pp. 159-166).

The function which relates the variance (power) spectrum of a stochastic process
put into a linear filter to the spectrum of the output stochastic process is usually called
the power transfer function of the filter (using my terminology it ought to be called the
variance transfer function). It is the squared absolute value of the frequency response
of the filter. The variance spectrum of the output equals the variance spectrum of the
input multiplied by the power transfer function.

Spectral Estimation Spectral analysis is often performed on continuous functions
of time which have been sampled at equally spaced points in time (Cooley, Lewis,
and Welch, 1967). This procedure generates a list of numbers which are the values of
the continuous function at the sample times. One can compute the variance spectrum
of this list of numbers in the following way. First, one performs a Fourier analysis of
the list; this is done by digital computer with subroutines incorporating the fast Fourier
transform algorithm (Cooley et al., 1967). The Fourier transform is a list of complex
numbers, each number associated with a particular frequency. One calculates the
amplitude, or absolute value, of each of these numbers and squares it. The resulting
list, of squared amplitudes at a number of evenly spaced points in the frequency domain,
is the variance (power) spectrum, of the original list representing the time function.

If the original list is from evenly spaced time samples of a stochastic process, the
sample spectrum from one record is not adequate to allow accurate estimation of the
spectrum of the stochastic process. One must average several independent spectral
estimates from a group of realizations of the stochastic process (cf. Jenkins and Watts,
1968, for details). What this means in a neurophysiological application is that one
averages spectral estimates from several experimental runs which have identical
stimulus conditions. In order to obtain smooth spectral estimates for stochastic processes
I used Welch’s method of averaging overlapping sample spectra (Welch, 1967).

The bandwidth of the variance spectrum is set by the frequency of sampling of the
continuous signal. The bandwidth is one-half the sampling frequency. In my experi-
ments the sampling frequency was 50 hz, so the bandwidth of the spectrum was 25 hz.
The lowest frequency in the spectrum and the frequency resolution are the reciprocal
of the record length. The record length was 5.12 sec so that the lowest frequency and
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frequency resolution were about 0.2 hz. Smoothing reduces the resolution without
changing the lowest measurable frequency. The averaged sample spectra were further
smoothed to give a frequency resolution of 1 hz. This was accomplished by moving
average smoothing of the spectral estimates.

AUTOCORRELATION

The autocorrelation is defined as the autocovariance divided by the variance. Thus
the autocorrelation is unity at zero time lag and varies with time lag, typically becom-
ing zero as the time lag becomes large. The autocorrelation can be derived from the
variance spectrum and is an equivalent measure of the average temporal pattern of a
stochastic process.

The autocorrelation of the impulse rate has a very definite relationship to the serial
correlation coefficients of the impulse intervals. The autocorrelation of the impulse

rate, n(), is (n(t) — (@ + 1) — A (@) — 7).

The impulse rate, n, and pulse interval, s, are related by the equation n = sl In

fairly regularly firing nerve cells, where deviations from the mean are not large, for
deviations from the mean in pulse rate An = n(t) — # and for deviations in pulse
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Ficure 2. Autocorrelation of the impulse rate and serial correlation coefficients of pulse
intervals. The autocorrelation is plotted as a continuous curve and as asterisks. The serial
correlation coefficients are plotted as open circles at times equal to integral multiples of
the mean interpulse interval. At the lower left is shown the variance spectrum of the
impulse rate, from which the autocorrelation of the impulse rate was calculated by
Fourier transformation.
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intervals As, we can write An/f = —As/3. In particular, for the coefficient of varia-
tion, ox/% = 0,/5 Using the same argument you can show thatr,, = ASAS,,./AS; =
An(t)An(t + 7)/An(f)* when 7 = m5, where 5 is the mean pulse interval, r,, is the mth
serial correlation coefficient, and m = 1, 2, 3 .- - . In words, the autocorrelation of
the impulse rate equals the interval serial correlation coefficients at time lags which
equal an appropriate integral multiple of the mean interval. For example, the auto-
correlation of the firing rate at time lag 7 = 25 equals the second interval serial cor-
relation coefficient.

This is shown for some electronically generated data in Fig. 2.

This means that we can calculate the serial correlation coefficients of the intervals
from the variance spectrum of the impulse rate.

RESULTS
Frequency Response of the Current-to-Firing Rate Process

The essential problem of this paper is the relation between noise in the mem-
brane potential and variability of the impulse rate. The important mechanism
to understand, in connection with this problem, is the process which produces
the impulse rate from depolarization. Knight et al. (1970) have shown that
this process acts like a linear transducer for small modulated signals; in other
words, it can be characterized by its frequency response, S(f). S(f) is defined
as the relative modulation (peak to peak divided by the average) of the im-
pulse rate divided by the relative modulation of the driving current at the
frequency f.

If the fluctuations in the impulse rate are due solely to filtered generator
potential fluctuations, and there is no significant extra source of variability
in impulse firing, we would predict,

en(f) = lS(f) {2‘¢G(f) (1)

where @q(f) is the variance spectrum of the generator potential and ¢n(f)
is the variance spectrum of the impulse rate. Equation (1) is a consequence of
the theory for linear filtering of noise (see Analytical Methods).

Equation (1) is correct if ¢» and ¢¢ are in the same units. g is expressed in
the units of millivolts?/hertz (mv?/hz). ¢y is expressed in the units adrian?/hz;
an adrian has been previously defined as 1 impulse/sec. A scale factor with
units (adrian/mv)? must be used to convert ¢y from the units of a voltage
spectrum to the units of an impulse rate spectrum. This factor was mea-
sured as the slope of the steady-state voltage vs. firing rate curve; it lay in
the range 1-25 (adrian/mv)? (cf. Fuortes, 1959).

Observations on Filtering of Generator Potential “Noise”

In order to verify this prediction one had to measure, in each eccentric cell,
the variance spectrum of the generator potential, ¢4(f), the frequency response
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of the current-to-firing rate process, S(f), and the variance spectrum of the
impulse rate, px(f).

Theshape of a typical S(f) is shown in Fig. 3 (techniques for measurement
of S(f) are described in detail in Knight et al., 1970). The logarithms of ampli-
tude and phase are the ordinates and the logarithm of frequency is the abscissa
in this graph. The first lobe of the phase shift is a phase lead; at frequencies
above 1.5 hz the phase shift changes into a phase lag. The smooth curve
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Ficure 3. Frequency response of the current-to-firing rate mechanism. The amplitude
(gain) and phase of the response to a whole range of modulated current stimuli are plotted
against frequency of modulation. The points are empirical; the smooth curve is a fit to
the points using Knight’s (1969) theoretical expression for S(f). The mean impulse rate
for this cell was 20 impulses/sec.

drawn through the experimental points is the analytic expression for S(f) de-
rived by Knight (1969) and Knight et al. (1970).! The features of the pre-
dicted and measured frequency response are a low frequency cutoff, peak in
amplitude (gain) at 5 hz, and a high frequency cutoff with a null at the fre-
quency equal to the average impulse rate.

Spectra for both the generator potential, ¢¢, and for the impulse rate,
¢~ , were both measured in the same cell. Data from such an experiment are
shown in Fig. 4. At the upper left is a graph of ¢ , the variance spectrum of the
generator potential. Note that in this cell at this light intensity the generator

1 This analytic expression was fit to the data by the choice of two parameters, the self-inhibitory time
constant and self-inhibitory coefficient. The time constant was almost always 0.5 sec while the coef-
ficient, which measured the magnitude of self-inhibition, had values from 2 to 5.
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potential spectrum shows little peaking. Below is the predicted impulse rate
variance spectrum, ¢y . The predicted spectrum is obtained by multiplying
each value of the variance spectrum of the generator potential by its appropri-
ate weighting factor—the squared amplitude of §(f) measured in the same
cell. The features mtroduced by filtering are apparent in the figure. The vari-
ance spectrum, ¢y , is peaked, with a low frequency and high frequency cutoff
on either side of the peak.
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! 1.0
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Figure 4. Prediction and measurement of the variance spectrum of the impulse rate.
Shown in the left column are ¢¢ and ¢x , the measured generator potential and impulse
rate variance spectra. Between them is ¢y , the predicted spectrum, obtained by multi-
plying ¢¢ by | S(f) [2. The autocorrelations, predicted and measured, are shown at the
right. The average rate was 23 impulses/sec.

The measured variance spectrum of the impulse rate, ¢y, is shown at the
bottom left of Fig. 4. It appears to have almost exactly the same shape and
magnitude as the predicted spectrum, on.

We can estimate the degree of agreement of these two spectra, ¢x and on
by comparing the differences between them with the amount of error inherent
in the calculation of spectral estimates from data. As shown in texts on spectral
analysis, if a stochastic process has a Gaussian distribution function, each
spectral component is a random variable with a chi-squared distribution. The
number of degrees of freedom for this chi-squared distribution is set by the
total amount of data and the degree of frequency resolution in the spectrum
(see Jenkins and Watts, 1968; Welch, 1967). When this distribution of the
spectral components is used, one can calculate a standard error for the vari-
ance spectrum. In this experiment 15 estimates were averaged and were
smoothed to reduce the standard error by half. This results in an approximate
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standard error of 109, of the magnitude of the spectral component (the stand-
ard error is a constant fraction of the size of the spectral component—thelarger
the component, the larger the absolute magnitude of the standard error).
The predicted and measured variance spectra, go; and ¢y , agree within 2 sE,
over most of the frequency range.

The agreement of the measured variance spectrum of the impulse rate with
the predicted spectrum confirms the working hypothesis with which we began.
The temporal pattern of variability in the impulse rate originates in the
generator potential “noise” and is filtered and therefore shaped by the
impulse-firing mechanism.

PREDICTED AND MEASURED AUTOCORRELATION The autocorrelation of
the impulse rate for measured data agrees well with the predicted autocor-
relation which is calculated from ¢y . The two autocorrelation functions,
measured and predicted, are shown on the right side of Fig. 4. As shown in
the section on Analytical Methods, the autocorrelation of the impulse rate
can be calculated from the variance spectrum. It measures in the time domain
what the spectrum measures in the frequency domain—the temporal texture
of a random process. Since the variance spectra, ¢y and ¢y , agree within the
inherent error of spectral estimation, it is no accident that the predicted and
measured autocorrelation functions also correspond very closely to one another.

It is clear from Fig. 4 that the current-to-firing rate mechanism strongly
affects the shape of the variance spectrum. The impulse rate spectrum is far
more peaked than the variance spectrum of the generator potential. The filter-
ing of the generator potential also changes the relative amount of variability
in the impulse rate; i.e., the size of the coefficient of variation.

The shape of the frequency response, S(f), causes the coefficient of variation
of the impulse rate to be greater than the coefficient of variation of the genera-
tor potential. Since middle range frequencies are amplified relative to constant
or very low frequency stimuli, S(f) is larger than 1 over most of the frequency
range where the variance spectrum of the generator potential has large values
(cf. Fig. 4). This results in enhancement of the fluctuations relative to the
mean—in other words, a higher coefficient of variation for the impulse rate
than for the generator potential.

Steady-State Fluctuations and the Frequency Response

Dodge et al. (1968) found that for steady-state fluctuations of the generator
potential

edf) = a|G(f) I? (2)

where G(f) is the frequency response for the transduction, light to generator
potential. Also, Knight et al. (1970) showed that N(f) = S(f) G(f), where
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N(f) is the frequency response of the transduction from light to impulse rate.
With the use of these findings and equation 1, we can derive

en(f) = BIN() P (3)

The proportionality between variance spectrum and squared frequency
response should be carried over to the impulse rate from the generator po-
tential. The results of an experiment which tests this prediction are shown
in Fig. 5.
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Figure 5. Comparison of variance spectrum with the light-to-impulse rate frequency
response N(f). This experiment was done with optical stimulation of a single eccentric
cell with a small spot of light, steady to measure ¢x and modulated to measure N(f). In
the upper graph the jagged curve is ¢x and the smooth curve is | N |2 | N(f) |2 is plotted
on a vertical scale such that the area under the curve will equal the area under the
variance spectrum (the variance). Autocorrelations are shown below.

Probability Densities

Probability density functions for the impulse rate under conditions of steady
stimulation by light are well fit by Gaussian functions. This finding is im-
portant because the distribution of membrane potential deviations is also
Gaussian under the same stimulus conditions.

Fig. 6 shows an impulse rate histogram (estimate of probability density
function) and a generator potential histogram for the response to a light
whose intensity was 1000 times brighter than the threshold intensity for
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maintained impulse firing. Both these histograms approximate Gaussian
functions; their skewness is close to zero, their kurtosis (fourth moment/
variance squared) is close to three. The interval distribution is positively
skewed when the impulse rate has a Gaussian distribution, as one would
expect (Shapley, 1970).

Probability
Generator potential histogram
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mean =100 mv
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Ficure 6. Generator potential and impulse rate histograms for the response to steady
light. Both responses were recorded from cells stimulated by light intensity 100 to 1000
times brighter than the threshold for maintained discharge. Bin width for the genera-
tor potential is 0.1 mv, for the impulse rate 0.1 impulse/sec.

A marked effect occurred in the statistics of a cell stimulated by electric
current, which was allowed to dark adapt for over 10 min. The statistics of
the impulse rate histogram changed very greatly during dark adaptation, an
effect which very convincingly reinforces the view that fluctuations in mem-
brane potential cause the observed variability in impulse firing.

When the cell was light-adapted the membrane potential fluctuations in
the dark were very small and symmetrical about the resting potential; under
the same conditions the impulse rate histogram was symmetric and approxi-
mately Gaussian in shape. The source of the small variability in the firing of
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a light-adapted, current-driven eccentric cell has not been investigated. I
mention the statistical characteristics of the small variability under these ex-
perimental conditions to contrast them with the marked changes which occur
during dark adaptation.

During dark adaptation, the striking effect which occurs is an increase in
the variance of the impulse rate (previously observed by Ratliff et al., 1968),
and a marked increase in the skewness of the impulse rate distribution. Under
the same conditions of dark adaptation, it is well-known that the membrane
potential distribution changes its character, because of the low rate of appear-
ance of large, discrete slow potentials (Yeandle, 1957; Adolph, 1964). These
discrete events were occurring at the rate of 2/sec in the eccentric cell whose
impulse rate distribution is graphed in Fig. 7. The distribution of the mem-
brane potential in an eccentric cell under the same conditions of dark adapta-
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Figure 7. Membrane potential and impulse rate histograms for a dark-adapted cell
driven by steady current. This figure demonstrates the skewness of the membrane poten-
tial and impulse rate in a thoroughly dark-adapted cell. The skewness results from the slow
rate of discrete slow potentials which tend to depolarize the cell.
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tion is shown in the upper graph of Fig. 7. The skewness of the membrane
potential is very obvious. The values of the parameter of skewness, the ratio
third moment squared divided by variance cubed, for the histograms of
membrane potential and impulse rate, are both about 2.5. This is very signifi-
cantly different from the value of zero expected for a symmetrical distribu-
tion. Both the membrane potential distribution and the impulse rate distribu-
tion are positively skewed; the impulse interval distribution is markedly
negatively skewed under these conditions.

This large increase in skewness during dark adaptation in the probability
density functions of both the membrane potential and impulse rate rein-
forces even more the idea that random fluctuations in membrane potential
underlie the major portion of variability in the impulse rate.

DISCUSSION

The preceding results confirm the hypothesis that membrane potential
“noise’ causes the variability of the impulse rate. The amount of variability
in the response to light, and its temporal pattern, result from the filtering of
the generator potential by the current-to-firing rate mechanism.

The current-to-firing rate process is composed of two separate mecha-
nisms—an integration mechanism and self-inhibition (Knight et al., 1970).
These two mechanisms account for the shape of S(f), the frequency response
for the current-to-firing rate transduction, and therefore they help to shape
the variance spectrum of the impulse rate.

The transformation of depolarization into impulse rate is accurately
described by an integrate-and-fire model (Knight et al,, 1970). In this
model, membrane potential (or current through the membrane) is integrated
until the integral reaches a threshold and then an impulse is fired and the
integral is reset to zero.

There is also a stage of negative feedback or self-inhibition in the Limulus
eccentric cell (Stevens, 1964; Knight et al., 1970). Purple (1964) showed
that each nerve impulse in an eccentric cell triggers a long-lasting hyper-
polarization, accompanied by an increase in the conductance of the mem-
brane. The time course of the hyperpolarization is a decaying exponential
with a time constant of about half a second.

Self-inhibition is the source of the low frequency cutoff in S(f), and conse-
quently in ¢x(f). In other words, self-inhibition causes the negative correla-
tion in the autocorrelation of the impulse rate (see Figs. 4 and 5). Similar
persistent negative correlations have been noticed by other investigators work-
ing on different neurons; e.g., the work of Geisler and Goldberg (1966) on cells
in the superior olivary complex of the cat. As I have already implied, a nega-
tive feedback like self-inhibition also has the effect of increasing the coef-
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ficient of variation of the impulse rate by inhibiting the pc component of the
underlying generator potential more than it inhibits the fluctuations.

While self-inhibition and temporal integration affect the shape of ¢x~(f),
the main determinant of the magnitude and bandwidth of ¢x(f) is the gen-
erator potential “noise,” as characterized by gq(f) (see Fig. 4).

The generator potential, a depolarization induced by light, appears to
be quantized, as if each effectively absorbed photon triggered a unit slow po-
tential fluctuation. The occurrence of the discrete potentials is a random
process, presumably reflecting the randomness in the arrival and absorption
of photons. The generator potential is therefore the summation of randomly
occurring, similarly shaped discrete events. Consequently, at all light intensi-
ties, the generator potential has an inherent noisy component (Dodge et al.,
1968).

These discrete slow potentials adapt with light intensity, becoming smaller
and briefer at higher light intensities (Yeandle, 1957; Adolph, 1964; Dodge
et al., 1968). Dodge et al. (1968) showed that the characteristics of the gen-
erator potential at all light intensities, its frequency response and variance
spectrum, @q(f), could be accounted for by the summation of the discrete
potentials. The effect of intensity on ¢x(f) is roughly commensurate with its
effect on @4(f). Thus, diminution of quantal responses at higher light intensi-
ties results in a lower coefficient of variation of the impulse rate. An analogous
effect should be observed in other neurons; i.e., reduction in the coefficient
of variation of the impulse rate whenever there is adaptation in the size of
excitatory synaptic potentials. Synaptic “adaptation” might be caused by
fatigue, or by presynaptic inhibition. The effect of adaptation on variability
of impulse discharge has already been shown by Stein (1967) for a general
neuron model and inferred by H. B. Barlow and Levick (1969) from a mathe-
matical model for mammalian retinal ganglion cells.

Finally, my direct measurements of the underlying processes which cause
neuronal variability support some of the theoretical speculations of others.
In particular, they reinforce the conjectures of Wallge (1968) and Matthews
and Stein (1969), that the pattern of the interval serial correlation coeffi-
cients should be related to underlying periodicities in the membrane poten-
tial.
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