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A. The procedure to determine the optimal length L;as

In this paper, we employed the equal probability partition, in which each symbol has the
same occurrence, to symbolize the observable 7 and its decomposed components AY) and
DU). This aims at obtaining good statistics with the finite length of the time series. The
state constructed from CM is originally termed as causal state as its definition relies on the
transition from a finite history of the observable to a future one. In this paper, the so-called
causal state splitting reconstruction algorithm (1) was employed to construct the SSN in
which L = 1 and therefore a transition from one state to another corresponds to a one
step shift in the symbolic sequence. On the other hand, the number of partitions and the
length of the past sub-sequence L,y were chosen so that the topological and topographical
features of the inferred SSN do not change significantly. The topological and topographical
features of the inferred SSN can be quantified by the so-called topological complexity C',p,

and statistical complexity C, in the framework of information theory defined by
Ctop = logy Ns, (1)

and

Z P(S;) log, P(S;), (2)

where Ny and P(S;) denote the number of the states and the resident probability of the
state S;, respectively (2). The statistical complexity of the network is interpreted as the
average amount of information (in bits) in the past, i.e. memory content, to predict the
future. In the present article, the statistical complexity measure C), was used to examine
the convergence of the topographical feature of the SSN as the past sub-sequences length
L, increases from zero.

For example, suppose that one can identify the conformational state in which the protein
resides, namely, either the unfolded (U) or native (N) state, at each sampling time in a
single-molecule experiment of protein folding-unfolding process at the folding temperature.
The time series looks like “... UUNNUNU...”. How can one assign the correct L and

construct the underlying SSN? For the sake of brevity, we assume that the experimental



sampling rate are slow enough so that the switching between U and N in the recorded
time series is Markovian, i.e., P(S;y1/8;Si 18i2...) = P(s;11]s;) where s = U or N and the
subscripts label the time ;.

Let us start with a zero length of past sub-sequences, having P(U|null) = P(U) = 0.5
and P(N|null) = P(N) = 0.5. This leads us to assign only a single state containing
the null sequence as shown in Fig. 6(A) with statistical complexity equal to zero. Next
one proceeds to examine the case of past sub-sequences of length one. Suppose that we
obtain P(U|U) = 0.9, P(N|U) = 0.1 and P(U|N) = 0.1, P(N|N) = 0.9 with the given
sampling rate. Since the transition probabilities to the future are different, the past sub-
sequences U and N are not grouped together into a same state and one ends up with two
states as shown in Fig. 6(B) with statistical complexity larger than zero. This implies
that Ly = 0 is not appropriate to define the states because the topographical feature
of the SSN does not converge. Note that, because the time series s; is Markovian, one
should expect that the structure of the SSN remains the same as Fig. 6(B) for all past
sub-sequences length L, > 2. One can easily check if this is the case, for example, with
L. = 2 as follows: the possible candidates of states made from s;s;_; are UU, NU, UN,
and NN. The transition probabilities P(s;;1|s;s; 1) are P(UJUU) = 0.9, P(N|UU) = 0.1,
P(UINU) = 0.1, P(N|NU) = 0.9, P(UJUN) = 0.9, P(N|UN) = 0.1, P(U|NN) = 0.1, and
P(NINN) = 0.9. It is apparent that one can group UU and NU, and separately UN and
NN, together into a same state as shown in Fig. 6(C). One can easily verify that this
holds for all Ly, > 1. As a consequence, the optimal Ly, in this case can be chosen to
be one since the statistical complexity of the SSN does not change as the length of past
sub-sequence increases from one.

Note here that the structure of the SSN depends on the choice of the sampling time
in the observation. For instance, if the sampling time scale is short enough to result
in non-Markovian dynamics in the folding-unfolding process, the length L.y should be
longer than one in defining the states. On the contrary, one can expect that the two
states U and N should merge as one state (just as Fig. 6(A)) when the sampling time is
extremely longer than the characteristic time scale of the folding-unfolding. It is because
each transition probability P(s;;1|s;) with Ly = 1 just reduces to the resident probability
P(s;jy1) = P(s;z1|null). That is, the next state should be statistically independent from

the previous state the system visited very long time ago.



It has been proved that the SSN with the convergence of statistical complexity is not
only a hidden Markovian model but also a minimal ‘optimally-predictive model’ capable
of statistically reproducing the original time series based on information-theoretic consid-
erations (2). It is minimal because the complexity of network structure quantified by the
statistical complexity C), is minimum only when states are constructed according to the
CM scheme. Moreover, the optimity is based on the fact that the conditional entropy
H (future|past) which measures the uncertainty in predicting the future once we know the
past, is also minimized if and only if the past sub-sequences with same future transition
probabilities are grouped to the same state as described by CM (2).

Fig. 7 exemplifies the statistical complexity as a function of L, for the time series of
A® and DY (j = 1,2, 3) of the delay-time time series 7 of ET single-molecule measure-
ment for Fre/FAD complex. The figure shows that the network structures for the SSN of
D® and D® converge at L, = 1, while an apparent convergence appears at Ly, = 2
for A® (the C, of A® increases again for larger L,y that is not shown in the figure).
This shows that the D® and D® time series are Markovian, while the A® time series is
non-Markovian such that the future values depend on the past sub-sequences with length

longer than one.

B. Dependence of the localization properties of a state on the transition timescales

For deterministic systems, with transition time steps much smaller than the Lyapunov
time (the timescale for nearby trajectories of the system to diverge), closeness in transition
probability should give rise to states with subsequences localized in position since the
trajectories do not have time to separate yet. However, for transition time steps equal or
longer than the Lyapunov time, two trajectories which are close in position may end up in
two very different regions after the transition or two distinct trajectories may merge into
a nearby region after the transition. Therefore, one can then expect that subsequences of
a state with closeness of transition probabilities may have very different positions when
the transition time is long compared with the Lyapunov time.

One can also carry out a similar argument for stochastic systems when comparing
the transition time with the correlation time (the timescale for two trajectories to be

correlated). As shown in the case of Langevin dynamics, states constructed with a short



transition time compared with the correlation time are localized in position (e.g., the
case of m = 1/ in Fig. 7(B) in the main text), while states constructed with a long
transition time are not localized (e.g. the single state in Fig. 7(B) with m = 5/ contains
subsequences with all positions.)

In the case of complex system (e.g. protein), however, instead of a single correlation
time as in the simple Langevin case, a broad range of correlation timescales may exist
in different regions of the highly inhomogeneous state space. When a certain transition
timescale is chosen, there may exist some regions with long correlation time which still
give rise to states with subsequences localized in position, and there are some other regions
with short correlation time where the localization of the subsequences is lost. Therefore, a
study of the localization properties of the states may provide us with an atlas of timescales

on the underlying state space.

C. Haar wavelet and down-sampling problem

The approximation and details of the Haar wavelet have simple statistical interpreta-

tions (3). For the Haar wavelet AU and DV of the time series 7; are given by

. i+27 -1
AEJ) = ( Z Tk>/2]7

k=i
' i+2/ 711 i+27—1 (3)
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Therefore, Agj) and D/ are simply the mean and the average fluctuation over a bin of
2/ time steps, respectively. Note that A” and AY) (or DY and DY) with |i — i'| < 29
are unphysically correlated since some common data points are used in evaluating the
two AU)’s (or DU)’s). In fact, only N/2/ points, e.g. (Agj),AﬂZj, e ,Ag{gn@j), --+), in
the j-level should be taken to avoid artificial correlations. This down-sampling prob-
lem, which may lead to poor statistics in constructing the multiscale SSN for process
with long-term memory effect (i.e., large j), can be improved by treating the set .fd .fd
{(Agj), AE?ZJ-, e ,Ag‘fn@j), or),i=1,--+,27} (and similarly for the details) as an ensemble
of 27 time series (each with N/2/ data points) from which the SSN is built.

The stationarity of the approximation and details can be inspected by evaluating their

autocorrelations. The autocorrelations of the DY) and AU) are presented in Fig. 8. One
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can see that the autocorrelation of DU) decays rapidly on a timescale of 27 time steps with
small oscillations for longer time, while those of AY) remains approximately constant for
2/ steps and shows similarly behavior as those of 7 for timescale longer than 27. These
indicate that DU)’s are approximately stationary with timescale of 27 and A capture all

the nonstationarity of 7 with timescale longer than 27.

D. Relation between the delay-time probability density and the lifetime spectrum

(Eq. 4 in the main text)

The conditional probability density for finding the delay-time 7 given the lifetime !
is,
P(rly™) = (7 ) le T = qe (4)

Let a(y~!) be the spectrum of lifetime, then the normalized probability density of finding

a particular lifetime y~! is given by

Therefore, to calculate the probability density of finding 7 regardless of the lifetime =1,
one integrates out the lifetime from the joint probability, i.e.,
P = [Py = [ar Pl PO
~1
B I e A a(y )
/ () e ] [dyta(y ) (6)
_Jdy ey () e
Jdyra(y™) ’
where Eq. 4 and 5 have been used in the second line.

E. The derivation of Eq. 7 in the main text

First note that the correlation function can be expressed in terms of the joint probability
C(t) = (377 (1)97~(0))
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where 75" and ;! are the lifetime at the current time and at ¢ steps later, respectively.
2761,%?1 means the summation over all possible pairs of ;' and v, '. P(y;',75") denotes
the joint probability of 75" and 7, '. As shown in the inset of Fig. 3(D) in the main text,
each state S; in the SSN has its own decay-time distribution ~ [ dy~'a;(y~!) e/ with
lifetime y~!. For a given SSN with timescale ¢t = 2", the joint probability can be expressed

as

P(vz! ) =D P (v % S0, 81) (8)

1,0

where P (7211,75 LSy, 51) is the joint probability of visiting the state Sy at the current

1

time with lifetime 7, and visiting the state S; at { = 2" time steps later with life-

time 5. . Therefore for t = 2" the first term on the right hand side of Eq. 7 becomes

Z],J 2751,72—”1 72_nlp (’Yz_nla '70_17 S, SI) '70_1-
Note here that, in terms of the chain rule of joint probability, the joint probability can

be decomposed as

P (727”17 7(;17 SJ; SI) =P (727Ll|7(;17 SJ; 51)
x P(v5"1Ss, S1)Pon (S, 7).

(9)

The current lifetime v, - does not depend on the future state S; from causality consider-
ation. Thus, we have P(v,'|Ss,S;) = P(v, '[Sr). If 7,. depends solely on the state S
where the system resides at that time such that P(v,. |y, ', Sy, Sr) ~ P(v5.]Ss), the first
term of Eq. 7 can be then estimated as
> PO )t
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where Py. (S, Sr) is the joint probability of visiting Sy followed by S; after 2" steps, and

it =Y P(tSy), (11)
Von
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The average lifetime F for the given state Sy can be calculated using the corresponding

delay-time probability density P;(7) (see Eq. 4 in the main text) as

—_Jd el
T Ay e ) _/d Pilr) (13)

The second term on the right hand side of Eq. 7 can also be evaluated as follows:

2 2

> 7P ZZTIP S P(S)
_ZZ’Y )P(S7).

By combining Eqgs. 10 and 14, one can obtain Eq. 6 in the main text.

(14)

One can also generalize the above procedure to evaluate the multi-time correla-
tion functions. For example, one can estimate the three-time correlation function
(v H2t)y 1 (t)y1(0)) as Z]JKVK 7' 7 P(Sk, Sy, Si),where P(Sk, Sy, S;) is the joint
probability of visiting the states Sy, Sy, and Sk at the current time, ¢ steps later, and 2¢

steps later.

F. The degree-k dependence on the stability of states in the multiscale SSNs

By means of computer simulations, Rao and Caflish (4) and Gfeller et al. (5) revealed
the conformational space network for simulated folding of beta3s (20-residue antiparallel
[-sheet peptide). The conformational space network (CSN) are composed of nodes and
links between them: the nodes represent a set of snapshots recorded along the trajectory
grouped according to secondary structure and the links are the transitions between them.
It was found that the CSN of beta3s exhibits scale-free characteristics (6,7) (power-law
behavior of the degree distribution), similar to World-Wide Web, protein interaction net-
work, and metabolic network (8). Furthermore, the denatured state ensemble on the CSN
is very heterogeneous—including low-entropy, low-enthalpy traps as well as high-entropy,
high-enthalpy conformations. It was also found that the more the number of links of a
node in the CSN, the more the node tends to be populated.

Fig. 9 presents the normalized degrees of the I-th state S;, k;/kmax, and the stability
elucidated by log P; of the multiscale SSNs at three different timescale of 2%, 26, and 28

steps (where Py is the resident probability of the I-th state). The quantity —log P; can
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be interpreted as the relative free energy of the I-th state if the concept of free energy
landscape is validated at the chosen timescale. One can see the existence of positive
correlation between the degrees and the stability in the network. That is, the state tends
to be more stabilized when there exist more transition paths from the state. However for
the SSNs at 2% and 2° time steps, two distinct slopes exist in the region of log P; > —10.
This suggests that the stable states belonging to this region can be classified into the
two classes, namely, either with many transition paths (larger k;/kmax) or with relatively
fewer transition paths (smaller kr/knax). The number of transition paths might reflect
the entropic stabilization of the state. If so, such stable states associated with more
(fewer) paths of transitions might be interpreted as high-entropy, high-enthalpy states
(low-entropy, low-enthalpy traps) (4). A further investigation to support this conjecture
is required by analyzing time series based on computer simulations of small proteins.
At the timescale of 2% time steps, the correlation between kr/kmax and log Pr becomes
slightly ‘diffuse.” In particular, the degree becomes ‘saturated’ for the stable states with
log Pr 2 —9 and the measure of the (normalized) degree can no longer differentiate the
diversity in transitions for such stable states. The measure of degree is simply based on
the topology of the network. In a forthcoming article, we will present a new measure
based on transition probability in the SSNs, which can further differentiate the diversity

in transitions on the complex network even after the degree is saturated.
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FIG. 6: The SSN for a simple Markovian protein folding-unfolding example with past sub-sequence
length equal to (A) zero, (B) one and (C) two. The past sub-sequences that have the same transition
probabilities are grouped as the same state, represented by circles. The directed links between
states are labeled with the resulting conformation and with its transition probability shown inside

the parenthesis.

FIG. 7: The statistical complexity as a function of L. for the time series of AB) and DU
(7 = 1,2,3) of the delay-time time series 7 of ET single-molecule measurement for Fre/FAD
complex. This analysis clearly shows that D) and D®) are Markovian whereas A®) is non-

Markovian.

FIG. 8: Autocorrelation functions of A®) and DU) (j = 1,2,3) of the delay-time time series 7 of
ET single-molecule measurement for Fre/FAD complex. The results indicate that AU capture all

the nonstationarity of 7 with timescale longer than 27.
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FIG. 9: kr/kmax vs log Py for each multiscale SSNs, SA(4)’D(4)’D(3), £ADDO. DO g £A® DO, DO
for the protein conformational fluctuation of the Fre/FAD complex. Notice the divergence into
two classes of kr/kmax for log Pr 2 —10, and the consistency of such divergence for time steps less

than 28.
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