
1318 GENETICS: WORKMAN AND ALLA RI) PROC. N. A. S.

noted above. To eliminate this possibility, it will be necessary to map both the
original mutant stock and mutant clones derived from it via lambda transduction.
Summary. A preliminary map of the galactose region of E. coli K-12, obtained

by the study of crossing over in heterogenotes showing position effect is presented.
The order, kinase cistron-operator region-transferase cistron is indicated. The
relationship of the epimerase cistron to the above region is not known, since it has
as yet not been possible to study epimerase mutants.
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POPULATION STUDIES IN PREDOMINANTLY SELF-POLLINATED
SPECIES, III. A MATRIX MODEL FOR MIXED SELFING AND

RANDOM OUTCROSSING*

BY P. L. WORKMAN AND R. W. ALLARD
UNIVERSITY OF CALIFORNIA, DAVIS

Communicated by G. Ledyard Stebbins, June 22, 1962

The prevalence of self-pollination, and the importance of many of the species,
both natural and agricultural, which have adopted self-pollination as their mode of
reproduction indicate that this mating system is one of the most successful among
the diverse types which occur in flowering plants. The success of predominant
self-fertilization as a mating system has commonly been attributed to the genetic
uniformity which it presumably encourages in populations. Under selfing, the
population consists entirely or largely of homozygotes, and the effect of selection
is postulated to favor the best adapted genotypes at the expense of the less adapted,
leading to populations which consist of one or a few highly fit genotypes. The
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favored individuals will produce offspring genetically like themselves, and such
populations therefore are presumed to show high agreement with the optimum
phenotype.
However, there is evidence indicating that heterozygotes are not uncommon in

predominantly selfing populations' and that such populations are not as uniform
genetically as commonly supposed.2' 3 There is also evidence that optimum
population structure may be attained when the population consists of many, not
few, genotypes.4 Additional investigations of the genetic structure of predomi-
nantly selfing species are therefore required in order to understand the evolutionary
dynamics of the numerous species which have adopted this mating system.

Genetic analyses of predominantly self-fertilizing populations would be aided
if a theoretical model were available for computing the genotypic frequencies
expected in any generation, given initial genotypic frequencies and the amount of
selfing versus outcrossing. The models that are available either have employed
algebraic recursions relating genotypic frequencies in successive generations 6 or
have approached the problem indirectly in terms of the inbreeding coefficient.7
These methods have the disadvantage that they either do not provide formulas for
direct computation of genotypic frequencies during passage to the limit, or
equilibrium state, or are not readily extended to multilocus situations. We shall
therefore develop a model, using the method of generation matrices,8 which permits
direct calculation of the genotypic array for any generation, given the initial
genotypic frequencies and the proportion of selfing and random outcrossing. The
model developed is generally applicable to the case of a single diallelic locus and
can be extended, under certain restrictions, to diallelic-multilocus cases. In addi-
tion, as will be shown, the model can be extended to certain other mixed mating
systems.

Preliminary Considerations.-To introduce concepts and notations that will
be needed later we shall consider first the simplest cases, those of infinitely large
diploid populations in which mating is either by complete self-fertilization, or
alternatively, by complete random outcrossing. For a single locus with two
alleles, the recurrences relating the frequencies of genotypes A1Aj, A1A2, and
A2A2 in generations (n) and (n + 1), assuming full selfing and no selection, are

A Al: f1 (n +1) = fi (n) + 1/4f2(n),
A:As: f2(n+j) = 1/2f
A2A2: f3(n+l) = f3(n) + 1/4f2(n),

or, in matrix form,

IfI(n+j)\ /1 1/4 0\ (ffl)
f2(n+j) = 0 1/2 0° (1)

(n+ )/ do 1/4 1/ ()

where f, (n) is the frequency of the ith genotype in the nth generation. Rewriting
(1) in matrix notation we obtain

F(8l= R (2)

The general n-step relationship can be derived from (2) giving

F -(n)= Rn . F(0). (3)
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The matrix Rn is found by the method of generation matrices7 and the n-step
transition formulas relating genotypic frequencies in the nth generation to those
in the initial generation (ft(o)) can, for the case of full selfing, be shown to be

f, (n) = fl~o" + 1/2[1 - ('/2) ]f2n ),

f2(n) = (1/2)lf2 (0), (4)
f3() = f3(0) + '/2 [1 - (1/2)n]f2(o)

In deriving the expectations under complete random mating, we denote by
D(8) the column vector giving the genotypic array resulting from one generation
of random mating following the nth generation. By the Hardy-Weinberg rule,
we know that D(l) = D(m) for all generations, 1, m, so that D(8) = D for all n
generations. In particular, if the initial population is denoted by F(°) and the
frequencies of alleles Al and A2 are given by p and q, respectively, then

([f,(O) + 1/2f2(0)]2 2

D = 2(f,(0) + '/2f2(0))(f3(0) + 1/2f2(0))) = (2pq (5)
\If3 (0 + 1/2,f2(0) ]2 ] \22

The Model of Mixed Selfing and Random Outcrossing.-Consider a diploid popula-
tion, infinitely large, in which there is a constant probability, t, of random out-
crossing, and a constant probability, s, of selfing (s + t = 1). We shall temporarily
restrict consideration to one locus with two alleles, Al and A2.

Starting with a population in which the distribution of the genotypic frequencies
is specified by F(°) and assuming no selection, the recurrence relationships under
the mixed system of partial random outcrossing and partial selfing are

fj(n+1) = t [fi(n) + 1/2f2(n)]2 + [ffl(n) + 1/4f2(n)]

f2() = 2tf (n) + (n+ l/2f2(8l)]+s[1/2f2(n)]j> (6)
f3(n+1) = tV3 (n) + 1142/J2(n)]2 +4 [f3(n) + 1/J2(n)

or in matrix form,

Ifi(n+)\ [fi (n) + 1/2f2(n)]2 \ (1 1/4 0\/fi(fn)\
f2( *1) |- t 2[fl()])+ 1 + /2f2() + S 0 1/2 0 f2(n) (7)
t3(n+j)/ \ [f3(n) + 1/2f2(nf) ]2 X/ O 1/4 1 (n)

From the discussion of the case of full selfing and by definition of D (n) we see that
(7) can be written in matrix notation as

F(+-)= tD + sRF(n) (8)
where D is a matrix with constant terms which can be obtained from the initial
distribution of genotypes given by F(°). From (8), it is seen that

FM = tD + sRF(0),
F(2) = tD + sRF(1),

= tD + stRD + s2R2F(0), and so on.

Repeated substitutions lead to the general result, which can be proved by induction,
that

F(n) = tD + {t[I - sR1[sR - (sR)n]}D + (sR)nF(°), (9)
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where I is the appropriate identity matrix. This equation can be written more
simply as

F(n) = tD + BD + sJRnF(°), (10)
where B is the matrix enclosed by I} in (9). The general n-step formulas for
predicting the genotypic frequencies expected in any generation can be obtained
by substitution in (9) of the matrices R and Rn given by (2) and (3). The formulas
are

f,() =- (1 - )p2 + 2pq [ 2s- /2(8) - ( )1

+ s8.f,() + /2(,n) [1 - )n

f2(n) = 2pq [2 ][1 - (2) + (2)] fA(0) (11)

f (n) - (1 _ nf)q2 + 2pq [8 - 1/2(8n) - )
[4 - 2s (2) (2 - s)

+ Sn.f3(0) + /2(8)[1 - )n]f
The limiting distribution for any set of assumptions about FM0) can be obtained

from (11) by considering the limits of the fi(n) as n -a c. These limiting values are

f, = p2 + 2pq[s/(4 -2s)],)
f2 = 2pq[2t/(2 - s)], (12)
f3 = q2 + 2pq[s/(4 - 2s)].)

Since in many experiments the initial population is composed solely of hetero-
zygotes, i.e., f2(0) = 1, we are especially interested in this case. The proportions
in the nth generation can be obtained from (11) as

fi,f3 = [1/(4 - 2s)] [1 - ()] with limiting value 1/(4 - 2s),

f2 = [t/(2 - s)] + [1/(2 - s)] (2) with limiting value t/(2 - s). (13)

One of the main issues in predominantly self-pollinated populations is the amount
of heterozygosity that can be maintained indefinitely, given various assumptions
about the initial composition of the population and the amount of outcrossing.
Table 1 gives limiting frequencies of heterozygotes expected under various assump-

TABLE 1
EXPECTED PROPORTIONS OF HETEROZYGOTES IN THE LIMIT (n -O co) UNDER VARIOUS ASSuMPTIONS

ABOUT t AND P (INITIAL FREQUENCY) OF A1

t 0.05 0.10 0.20 0.30 0.40 0.50
0.1 0.0173 0.0327 0.0582 0.0764 0.0783 0.0909
0.2 0.0317 0.0600 0.1067 0.1400 0.1600 0.1667
0.3 0.0439 0.0831 0.1477 0.1939 0.2216 0.2308
0.4 0.0543 0.1029 0.1829 0.2610 0.2743 0.2857
0.5 0.0633 0.1200 0.2133 0.2800 0.3200 0.3333
0.6 0.0713 0.1350 0.2400 0.3150 0.3600 0.3750
0.7 0.0783 0.1482 0.2636 0.3459 0.3953 0.4118
0.8 0.0844 0.1600 0.2844 0.3733 0.4266 0.4444
0.9 0.0900 0.1705 0.3022 0.3969 0.4548 0.4737
1.0 0.0950 0.1800 0.3200 0.4200 0.4800 0.5000
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tions about t and p (initial frequency of A'). By the symmetry of the model, the
tabular value of p is that of q when p > 0.5.
An Alternative Derivation.-The genetic model can also be represented as a

simple branching process in which the population is treated as if it were broken
into lines arising either by selfing, with probability s, or by random outcrossing,
with probability t. This process, which corresponds to a coin-tossing game, is
shown graphically in Figure 1, in which the original population is represented by
F(0), S denotes a line derived by selfing, and T denotes a line derived by random
outcrossing. Figure 1 is thus a "family tree" giving all possible outcomes in any

Generation
F(o) o

t S

T S 1
t/ S t/ S

T S T S 2

FIG. 1.

generation, with the probability of each outcome being the product of the re-
spective probabilities along the branches leading to that outcome. The genotypic
arrays of the 2" outcomes in the nth generation are determined as follows. Any
line ending in T has a genotypic array given by D, where D is as defined in (5).
In any branch in which there is a T, the line at that point is brought back to the
Hardy-Weinberg equilibrium with its genotypic array given by D. Hence, with
one exception, we need only consider k generations of selfing from the equilibrium
state for any line ending in S in the nth generation, where k represents the number
of S's following the last T. This can be shown by (3) to be equal to RkD, where R
is the appropriate generation matrix. The exceptional line is the one consisting
solely of S's, which by (3) has a genotypic array given by RnF(°). We now have
a means of specifying for each outcome in the nth generation both its genotypic
composition and its probability of occurrence. Summing over all outcomes in
the nth generation, we obtain a specification of the total population in that genera-
tion. As an example, in Figure 1, FP) = t2D + stRD + stD + s2R2F(0) = tD +
stRD + s2R2F(0). Results for F(3) F(4)) ... lead to formula (9), which was derived
solely from the matrix recursion (8).

It is evident from Figure 1 and the above discussion that the model of a branching
process can be applied to all systems of mating involving the combination of
random outcrossing with any mating system which can be treated by the generation
matrix method (e.g., random outcrossing and sib-mating). Substitution into
formula (9) of the appropriate generation matrices, say Q and Qn for R and Rn,
where Q is the generation matrix for some other system of mating, yields the
appropriate n-step transition formulas.

Extension of the Model to More than One Loc'us.-Matrix formula (9) developed
for the one-locus case can also be applied to cases involving two or more unlinked
loci, provided that certain restrictions are placed on FM. The proof for the one
locus case required only that D(') = D(m) for all 1, m. That this is the case can
be seen from an examination of (8), which states that the genotypic array in any
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generation is the sum of the selfing component and the outcrossing component of
the previous generation. If the genotypic array of the outcrossing component
is constant for all generations, i.e., if DO) = D(n) for all 1, m, then (8) and hence
the general matrix solution (9) will be independent of the number of loci involved
and hence valid for multilocus cases.
Suppose there are two loci with alleles A1 and A2 at one locus and alleles B1 and

B2 at the other. Let the proportions of gametes A1BI, A2B2, A1B2, and A2B1 be
denoted by G1, G2, G3, and G4, respectively. Then, if G1G2 = G3G4 for some genera-
tion, 1, it can be shown that DO) - (n) = D for all n > 1. Thus, if we restrict
F(0) to a population in which G1G2 = G3G4, the model will be valid for all subsequent
generations. In the following derivations, it is assumed that F(°) is so restricted.
The recurrence equations for the two locus model are

A1A1B1Bj f(n+1) = t(G1)2 + 8[fU(n) + i/4f3(n) + 1/4f7(n) + 1/J6f (n)],
AjAjB2B2 f2(n+l) = t(G3)2 + 8[f2(n) + 1/4 3(n) + 1/4f (n) + 1/ 6fg ()],
AjAjBjB2 f3(n +l) = 2t(GlG3) + 8[1/2f3(n) + l/8Jf(n)]
A2A2B1Bj f4(n+l) = t(G4)2 + 8[f4(n) + 1/4f6(n) + 1/4f7(fn) + 1/16fg(n)]
A2A2B2B2 f5(fn+l) = t(G2)2 + s[f6(n) + 1/4f6(n) + l/4f9(f) + l/j49(fl)], (14)
A2A2B1B2 f6(nf+l) = 2t(G2G4) + s[1/2f6(n) + l/8f9(f)])
AjA2B1Bj f7(fn+l) = 2t(GIG4) + S[1/2f7(n) + l/8f9(fn)],
A1A2B2B2 f = 2t(G2G3) + sL/2f8(n) + l/8f9(n)],
AIA2BjB2 fg(n+l) = 2t(GjG2 + G3G4) + 8[l/4f9(f)],

where the gametic frequencies are given by

G1= (A1B1) = fi(n) + 1/23(n) + 1/27(n) + 1/4fl)
G2 = (A2B2) = f5(f) + '/2f6(ff + 1/j8(n) + 1/4f9(n),
G3 = (AjB2) = f2(n) + 1/2f3(fl) + 1/J8(n) + 1/4f9(n)
G4 = (A2B1) = f4(n) + 1/2$6(n) + 1/2f7(n) + 1/4f9(n)

Both the R matrix and the D matrix for the two-locus case are taken from the
above recursions and Rn is computed using generation matrix methods. As in the
one-locus case, standard matrix methods were used to derive the general n-step
formulas, which follow:

fi(n) - t(G1)2 + U(G1)2 + 2V(G1G3 + GG4) + 2W(G1G2 + G3G4)
+ sn f1(O) + Mf3(0) + Mf7(0) + Nfg(0)],

f2() - t(G3)2 + U(G3)2 + 2V(G1G3 + G2G3) + 2W(GiG2 + G3G4)
+ s^f2(0) + Mf3(0) + A1f8(0) + Nfg(0)]

f3(n) = t(2GG3) + 2X(GjG3) + 2Y(GjG2 + G3G4) + n [(l/2)nf3(O) + Lf9(0)],
f4(n = t(G4)2 + U(G4)2 + 2V(G2G4 + GAG4) + 2W(G1G2 + G3G4)

+ sn[f4() + Mf6(0) + Mf7(0) + Nfg (0) ]
f (n) = t(G2)2 + U(G2)2 + 2V(G2G4 + G2G3) + 2W(G1G2 + G3G4)

+ sn f5(O) + Mf6(0) + Mf8(0) + Nfg(0)],
f6 (n) = t(2G2G4) + X(2G2G4) + 2Y(GIG2 + G3G4) + sn[(1/2)nf6(0) + Lf9(0)],
f7 (n) = t(2GiG4) + X(2GG4) + 2Y(G1G2 + G3G4) + sn[(1/2)nf7(°) + Lf9(0)],
f8(n) = t(2G2G3) + X(2G2G3) + 2Y(GG2 + G3G4) + sn[('/2)nf8(o) + Lf9(0)],
f9(n) = 2t(GG2 + G3G4) + 2Z(G1G2 + G3G4) + (8/4)nfg(O),
where
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L = 1/2 [(1/2)n - 1/4)X],
M = 1/2[1 (1/2)X],
N = 1/4 - (1/2)n+1 + (1/4)n+l,
U = S - Sn,

s - (2 - S)8(n n) ( -S

s(2±+s) s)
n

+ ( n)( z-) + ( nf~1_S)
4(4 -)s(2 -S) 4 (4) (4 - s (2) (2 - s)

X 2- [2) - 2

Y
~~~St ( n) 2t ) n t

(4- s)(2 - s) + 4 )(s)2-]

In many experiments, the initial population is made up solely of double hetero-
zygotes. Hence, the case f9(O) = 1 and G6 = 1/4 for i = 1, ... 4 holds special
interest. Due to the symmetry of the resulting system, the equations are reduced
to three: one for the four double homozygotes, one for the four single heterozygotes,
and one for the double heterozygote. The n-step formulas from which proportions
in the nth generation can be computed are

Double homozygotes 2+8 I.' + (8 3444(4 - s) (2-s) (2) 2(2 s) 4 4(4- s)j

Single heterozygotes (2-s) (4-s) + (-) [2(2-s)] (4)[2(4-s)1

Double heterozygote (4 + ( 8)1

with limiting values f,(n), n -
,

Double homozygotes (2 + s)/[4(4 -s) (2 -s)]
Single heterozygotes t/(2 - s) (4 -s)
Double heterozygote t/(4 - s).

These methods can be applied to cases involving any number of genes but, in
view of rapidly increasing complexity as gene numbers increase, further extension
appears hardly worth while unless need arises.
Summary.-A genetic model was constructed which permits direct calculation

of expected genotypic frequencies in any generation for populations mating under
mixed selfing and random outcrossing. The model is generally applicable to the
case of a single diallelic locus and, under certain restrictions about the initial
composition of the population, can be extended to diallelic multilocus cases.
General n-step formulas are given for the one- and two-locus cases. Applications
of the results to other mixed mating systems are discussed.
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ON A NEW APPROACH TO THE COMPUTATIONAL SOLUTION OF
PARTIAL DIFFERENTIAL EQUATIONS

BY RICHARD BELLMAN, ROBERT KALABA, AND BELLA KOTKIN

THE RAND CORPORATION, SANTA MONICA, CALIFORNIA

Communicated by S. Chandrasekhar, May 31, 1962

1. Introduction.-At the present time, there exist several approaches to the
numerical solution of partial differential equations, of which the most versatile and
frequently employed is that of approximation by means of difference equations.
The technique has many advantages: conceptual simplicity, wide applicability,
and ready suitability for digital computation. It also has disadvantages: pre-
dilection toward instability and frequent requirement for large storage capabilities
and excessive computing time, particularly in the treatment of multidimensional
equations.

In this note, we wish to indicate a modified approach which may be superior
in some situations. It is based upon two themes. The first is that of using a more
efficient way of recreating a function than by storing its values at grid points, and
the second is the idea that an approximating algorithm should as clearly as pos-
sible exhibit the properties of the actual solution. Thus, for example, if the solu-
tion is nonnegative, this fact should be evident from the relations used to obtain
it computationally. It is to be expected that algorithms with these replicating
properties will be more stable than those without these properties. Whether or
not algorithms of the desired type always exist is an interesting and unsolved prob-
lem at the present time.

2. The Equation u, = uuy.-To illustrate these ideas in a simple setting, let us
consider the equation

u= uu, u(x,O) = g(x), (2.1)

which has the great merit of possessing an explicit analytic solution,

u = g(x + ut), (2.2)

and which displays a "shock" phenomenon. Both of these characteristics are ex-
tremely useful for testing computational techniques. Let us assume, for con-
venience, that g(x) is an odd function, periodic of period 2.

In place of the usual type of difference approximation, we use the relation

u(xt + A) = u(x + u(x,t)A,t), (2.3)


