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INBRED GENETIC LOADS AND THE DETERAIINATION OF
POPULATION STRUCTURE

BY HOWARD LEVENE*

DEPARTMENTS OF MATHEMATICAL STATISTICS AND ZOOLOGY, COLUMBIA UNIVERSITY

Communicated by Th. Dobzhansky, A ugust 2, 1963

Morton, Crow, and Muller, in a pioneering paper,1 gave a method for determining
from inbred and outbred individuals whether the genetic load in a population was
due mainly to deleterious genes maintained by mutation pressure (mutational
load) or to genes maintained because the heterozygote was superior to the homozy-
gotes (the segregational load of Crow2 or the balanced load of Dobzhansky3).
Morton, Crow, and Muller applied their method to some human data from France
and the United States, and concluded that the load due to inbreeding was mainly
mutational. The method was subsequently applied by many authors. Perhaps
the best and most extensive human data is that of Neel and Schu114 from Japan,
while the best nonhuman data so far published is that of Dobzhansky, Spassky, and
Tidwell5 on Drosophila. These two studies did not rule out a major role for over-
dominant loci. Recently there has been some controversy over the validity of the
approach of Morton, Crow, and Muller, and it has been criticized on mathematical
and theoretical grounds by Li6' 7 and Sanghvi8 and defended by Crow.9 The
present paper is devoted exclusively to continuing this discussion and to an exami-
nation of whether or not population structure can be determined by this method
in practice. The question of whether, in Dobzhansky's terminology, the classical
or the balanced theory is in fact more nearly correct can be attacked in many
other ways, and will not be considered here.

Consider a single locus with two alleles. Under the assumption of random
mating, zygotic frequencies will be p2 AA 2pq AA q2 aa. Let the expected num-
ber of offspring one generation later of each of the three genotypes be w1, W2, W3,
respectively. The expected number of offspring of a random individual one genera-
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tion later will be wbo = p2w, + 2pqw2 + q2w3. The population size will be decreas-
ing, stable, or increasing, according as wvo is less than, equal to, or greater than one.
However, as long as we are only interested in gene frequencies and not population
size, the w's may all be multiplied by a common constant without altering any-
thing, and in most experimental situations it is easier to find such relative w's
rather than absolute ones. Crow2 defined genetic load as A = (w, - i0o)/w1,
where wj is the largest of the w's. The load as thus defined is independent of scale,
it being the proportionate loss of average fitness due to the presence of the less fit
genotypes. For convenience, Crow took the largest wj = 1. This convention
becomes a pitfall in the applications, as was seen but not clearly explained by Li.6

If we now suppose that all individuals are artificially made homozygous while the
gene frequency, q, of a remains fixed, wv becomes zDl = pw1 + qw3, and the load be-
comesB + A = (w, - viD)/wi. The ratio of the random load to the homozygous load
is (B + A)/A = (w1 - fii)/(wi - fvo) and is invariant when all the w's are added
to or multiplied by a constant. Now let us suppose that the AA homozygote is
the most fit. It is convenient to let w, = 1, W2 = 1 - hs, and W3 = 1 - s, where
h and s are positive. Then B + A = qs and A = 2q(1 -q)hs + q2s, and

B + A qs 1(1)
A 2q(1q)hs + q28 2h(1q) + q '

which is independent of s. If h = 0, (B + A)/A = 1/q, while if h > 0, (B + A)/
A -> 1/(2h) as q 0, and, whenever q is small compared to 2h, we will have ap-
proximately

B+A _ 1
A 2h (2)

Further, let A mutate to a at rate m = 2,u, where jA is the probability of mutation in
a gamete and m the expected number of mutations per zygote. Then there will be
an equilibrium established, with equilibrium gene frequency q = X/m/(2s) if
h = 0 and a is completely recessive, or approximately q = m/(2hs) if h > 0 and hs is
much larger than m, as is usually the case. Also under these conditions q will be
small, and if q is small compared to 2h, which will be true if m is small compared to
4sh2, then q may also be expected to be small, and equation (2) will be approxi-
mately correct. This equation was obtained by Crow2 by a different argument,
using the same assumptions. Actually, this result is independent of m, q, s, or of
any assumptions on h except h > 0, and holds if and only if the actual q is small
compared to 2h.

If, on the other hand, the heterozygote is superior, it will be convenient to let
w, = 1 - kt, W2 = 1, and w3 = 1 - t, where k and t are positive. 10 Then there will
be an equilibrium with q = q = kt/(kt + t) = k/(l + k), independent of the value
of t, which measures the strength of the selection. It is also convenient, though not
essential, to let aa represent the poorer homozygote, so that k < 1. Then B + A =
qt + (1 - q)kt, and A = q2t + (1 - q)2kt, giving

B + A qt + (1-q)kt q + (1-q)k
A q2t + (1-q)2kt q2 + (1-q)2k (3

which is independent of t. Considering (B + A)/A as a function of q for fixed k,



VOL. 50, 1963 GENETICS: H. LEVENE 589

1000

700 -
500 - h= 0

h-.001
300- -_
200-

100-

70 - "

B+A o

520

.001 .002.003 .005.007.01 .02 .03 .05 .07 .10 .20 30 .50 .70 1.0

q

FIG. 1.-Value of (B+A)/A as a function of gene frequency q on logarithmic
coordinates for a semidominant locus with various h (dashed lines), and for a heterotic
locus with various k (solid lines). See text for further explanation.

it is easy to show that it takes the value 1 for q = 0 and q = 1, the value 2 for q =
f = k/(l + k) and for q = 1/2, and attains a maximum value of (1 + Vk)2/(2Vk)
when q = (- k + VIk)/(l - k). This last value is between q and 1/2. Figure 1
gives (B + A)/A as a function of q for various values of k, using equation (3), and
for various values of h, using equation (1).
Morton, Crow, and Muller' and Crow2 assumed that the population was at

equilibrium with q = q, and thus (B + A)/A would be 2, compared to a much
larger value for a mutational load, where they felt that (B + A)/A = 1/2h would
be of the order of 25. Crow extended the results for the segregational case to n
alleles and showed that at equilibrium (B + A)/A < n, taking this maximum value
only if all heterozygotes had the same value of w. Since it was felt that in general
there would not be many equally fit heterozygotes, the basic method was to esti-
mate (B + A)/A (or for technical reasons B/A), and if this was large (say greater
than 10) decide that the load was largely mutational. However, two further ex-
tensions had to be made by Morton, Crow, and Muller' before the method could be
applied. First, it could be extended without change to many loci acting together
provided their effects were independent, or not "synergistic." This is nearly, but
not quite, the same as assuming additive effects or no epistasis. Nonsynergistic
environmental effects were not explicitly included, but it was shown they would
tend to reduce the value of B/A. Second, B + A, the load for complete homozygo-
sis, corresponds to an inbreeding coefficient, F = 1, and normally cannot be ob-
served. However, it could be estimated from the load in individuals who resulted
from the mating of close relatives, which happens by chance in a finite population
with small effective population size.
There are a number of difficulties in applying this method. First, most applica-

tions so far have been based on mortality (or survival) between two points in the
life cycle, e.g., stillbirths, neonatal deaths, and juvenile deaths (Morton, Crow,
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and Muller'), and survival from egg to imago (Dobzhansky, Spassky, and Tid-
well5). Here, assuming that all environmental or accidental causes of death could
be eliminated, the ideal genotype would have 100 per cent survival. If the prob-
ability of survival of genotype i is vi, then wj = vizj, where zi includes differential
survival at other stages of the life cycle, differential fertility, and other factors af-
fecting over-all fitness. The data used estimates only v, and the assumption that
the actual q based on wq4 will be close to the q calculated from v, q,, is unwarranted.
Thus, even if q is close to the true qwu it may be quite different from the ostensible
q, based only on v; and it is only when q equals qs that (B + A)/A, calculated from
survival data, will equal 2 for a heterotic locus. Examination of Figure 1 will
show how much the (B + A)/A ratio can depart from the theoretical, when q # q.
For example, gene a may be kept at a frequency of 0.03 by over-all heterozygous
advantage, but behave like a deleterious semidominant with h = 0.01 when only
survival is considered, and under those conditions will give an ostensible (B + A)/
A = 20. Thus, studies based only on mortality are of doubtful value at best for
determining the nature of the genetic load.
On the other hand, studies involving all components of fitness over an entire

generation on a population in genetic equilibrium are extraordinarily difficult and,
as far as I know, have never been carried out even for Drosophila. Even if they
could be carried out, another difficulty would arise. Dobzhansky"' 12 and others
have pointed out that a best genotype is pretty much of a fiction. Given a large
number of loci, the number of possible genotypes is so large that even if there is a
best it probably will occur at most in one individual in an occasional generation.
Even under the "classical" theory, with the best genotype homozygous for all the
"normal" alleles, Muller"3 has estimated that the average human is heterozygous
for at least 8 deleterious genes. The probability that an individual carries none
would then be of the order of magnitude of e-8 = 0.0003, and the ideal would still
be too rare to be usable experimentally. Furthermore, one cannot now define a
perfect genotype on a priori grounds; for example, the number of offspring of an
active human male could be in the hundreds, but no such person would be detected
by a genetic survey.

In the literature, the largest w is taken as one, and thus in practice the load is
always given as 1 - fw, although in his text Crow points out that this is a conven-
tion. Li6 proceeded to criticize the use of 1 - fv as making the "load" depend on
the notation one used. This criticism is perhaps misdirected, but nevertheless Li
has performed a useful service in pointing out how extremely sensitive the (B +
A)/A ratio is to the quantity from which one subtracts v. The conventional
setting of the maximum w equal to one has helped to sweep under the carpet the
very real difficulty of finding that maximum-a difficulty that is not ameliorated
by the fact that we may divide all the other w's by this maximum once we have
found it. The fact that a unique beneficial mutation creating a new and larger
maximum w will instantly, and before it is increased in frequency by selection, in-
crease the load in the population is a semantic problem and irrelevant for the
present purpose.
The two difficulties discussed above are so great that it seems doubtful if the

calculation of B/A ratios can shed any real light on the nature of the genetic load.
However, they by no means exhaust the difficulties. All evidence suggests that w
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values vary considerably from one generation to another, so that no population is
in genetic equilibrium for its present adaptive values. We have pointed out the
difficulties caused by such a departure from equilibrium. Likewise, if a population
occupies several ecological niches, as most populations probably do, the theory is
upset in ways that have not as yet been explored.

Finally, it seems to the present author that epistatic interactions are too com-
mon and important to be ignored. The implications have only been explored for
one simple case. Consider two loci each with two alleles and fitnesses, as follows:

BB Bb bb
AA 1-2c-d 1 -c 1-2c-d
Aa 1-c 1 1-c
aa 1-2c-d 1-c 1-2c-d

We assume c > 0. If there is any equilibrium, by symmetry it is with A and B
each having a frequency of 1/2. For these gene frequencies

B+A 2d
=2+ .(4)

A 4c + d

If d = 0, there is no epistatic interaction and (B + A)/A = 2. If d > 0, the double
homozygote is less fit than would be expected under additivity, and (B + A)/A is
greater than 2, taking a maximum value of 4 when d > 0 and c = 0. If d < 0,
(B + A)/A is less than 2, taking a value of 4/3 when d = -c. Professor Crow has
pointed out (personal communication) that if there is epistasis the load is no
longer a linear function of F, but a quadratic. We can easily show that for the
present example the load under partial inbreeding is (c + 1/4d) + (c + 1/2d)F +
(1/4d)F2. Setting F = O gives A = c + 1/4d, and F = 1 gives B + A = 2c + d,
giving (B + A)/A as above. However, if B is estimated from data based on small
degrees of inbreeding, F2 will be very small compared to F and can be ignored, giving
a linear relationship for small values of F. The slope B will then be estimated as
c + 1/2d, and the estimated (B + A)/A ratio will be (2c + 3/4d)/(c + 1/4d) =
2 + d/(4c + d), giving a value of 2 when d = 0 (as it should), but a maximum of 3
when c = 0 and d > 0. Thus, the (B + A)/A ratio will still be inflated by epistasis,
but to a lesser degree. It is clear that with larger numbers of loci the effects might
be even larger. With d > 0, the graph of load against coefficient of inbreeding
would curve upward for large F. There is some evidence from Dobzhansky,
Spassky, and Tidwell' and from unpublished data that this actually happens for
Drosophila for F = 1/4, and even more when a single chromosome is made com-
pletely homozygous, giving F = 1 for that part of the genome.

In closing, it may be noted that Li6 and Sanghvi8 have suggested using fi',/ii'o
instead of (B + A)/A as a measure of inbreeding depression, and that Dobzhan-
sky12, 14 has suggested taking fvo = 1 and measuring adaptedness of all genotypes
as a departure, plus or minus, from this norm. While both these suggestions have
value in discussing the biological aspects of adaptedness, inbreeding depression, and
genetic norms, and Dobzhansky's standard is operationally simpler than Crow's,
neither formulation is useful for determining the relative importance of the muta-
tional and the balanced load. Thus, for this purpose, neither formulation is a rival
for the (B + A)/A ratio, which in theory, under Crow's assumptions, will make
this determination. It is unfortunate that the difficulties discussed in the present
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paper make it unlikely that the (B + A)/A ratio will answer the question in
practice.

This paper is dedicated to Dr. L. C. Dunn in appreciation of a cherished teacher, colleague,
and friend.
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VARIATIONAL BOUNDARY VALUE PROBLEMS FOR QUASI-LINEAR
ELLIPTIC EQUATIONS, I*

BY FELIX E. BROWDERt
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Communicated by A. Zygmund, July 29, 1963

In a preceding note under a similar title,' which we shall refer to below as (I),
we have presented a new form of the orthogonal projection method for solving
variational- boundary value problems for equations of the form

Au = EZ1,1a,1 < mD'[aac(x, u, ..., D u)Dau] = f. (1)
It is our purpose in the present note to strengthen and generalize these results to
equations of the form

Au = Elal mDa[Aa(x,u,... .,D"u)] -f (2)

while replacing the positivity assumptions of (I) by semiboundedness assumptions
of the type which appear in the study of linear elliptic operators of order greater
than two. In order to treat differential operators of the form (2), we shall study
below properties of nonlinear operators in Hilbert space satisfying even weaker
continuity conditions than those considered in (I). To treat the case of semi-
boundedness rather than positivity, we consider the perturbation of such operators
by compact operators.


