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The constructed plasmid pBR322 and the native plasmid pMG110 were elimi-
nated (cured) from growing Escherichia coli cells by the antagonism of the B
subunit of the bacterial enzyme DNA gyrase. The antagonism may be by the
growth of cells (i) at semipermissive temperatures in a bacterial mutant containing
a thermolabile gyrase B subunit or (ii) at semipermissive concentrations of
coumermycin Al, an antibiotic that specifically inhibits the B subunit of DNA
gyrase. The kinetics of plasmid elimination indicate that plasmid loss occurs too
rapidly to be explained solely by the faster growth of plasmid-free bacteria and,
therefore, represents interference with plasmid maintenance.

A variety of chemical agents are capable of
eliminating (curing) certain plasmids from their
bacterial hosts. Such agents include acridine
orange (1, 21, 23, 51, 61), acriflavine (19, 20, 41,
60), ethidium bromide (6), chloroquine (17), and
sodium dodecyl sulfate (57). Many of these
compounds are more effective in eliminating the
sex factor F than in removing antibiotic resist-
ance plasmids (R-plasmids) from enteric bacte-
ria (59). Similarly, the antibiotic rifampin is
capable of readily eliminating F' lac from Esche-
richia coli (2, 47), but causes a loss of R-
plasmids only to a limited extent (31).

In contrast, the antibiotic novobiocin elimi-
nated 7 of 13 R-plasmids and an F-plasmid from
growing bacteria (40). The antibacterial action of
novobiocin and structurally related compounds,
such as coumermycin Al, results from the inhi-
bition of the B subunit of the bacterial enzyme
DNA gyrase (13). Although it is tempting to
relate the plasmid-curing capacity of these drugs
to their ability to inhibit DNA gyrase in vitro, it
is possible that plasmid elimination reflects an
action on a target unrelated to the gyrase. Re-
cently, Taylor and Levine reported that the
elimination ofa mutant R-plasmid by novobiocin
involves E. coli DNA gyrase (56). Subsequently,
Danilevskaya and Gragerov showed that cou-
mermycin Al induces a loss of the ColEl-
related, constructed plasmids pBR322 and
pMB9 and that for pMB9 E. coli DNA gyrase is
involved (8).
We now present experiments extending these

observations on plasmid elimination and show
(i) that pBR322 and the native plasmid pMG110
are cured from E. coli with a thermolabile DNA
gyrase at temperatures semipermissive for
growth, establishing independently of chemical

inhibitors the requirement of a functioning gyr-
ase B subunit for plasmid maintenance; (ii) that
elimination of these same two plasmids by cou-
mermycin Al involves the antagonism of E. coli
DNA gyrase; and (iii) that in kinetic experiments
plasmid loss occurs too rapidly to be explained
solely by the faster growth of plasmid-free bac-
teria and, therefore, represents interference with
plasmid maintenance.

MATERIALS AND METHODS
Cheicals. Coumermycin Al was a gift of W. Minor

and K. Price, Bristol Laboratories (Syracuse, N.Y.).
Cycloserine, a gift of R. Moellering and G. Eliopoulos,
was made by Eli Lilly & Co. (Indianapolis, Ind.).
Bromocresol purple (sodium salt) was from J. T.
Baker Chemical Co. (Phillipsburg, N.J.); penicillin G
potassium and chloramphenicol were from Parke, Da-
vis & Co. (Morris Plains, N.J.); ampicillin sodium was
from Bristol Laboratories (Syracuse, N.Y.); and tetra-
cycline hydrochloride was from Pfizer Inc. (New
York, N.Y.).

Bacterial strains and plsmids. E. coli N4177 [galK2
gyrB41(Ts)] and N99 (galK2) are isogenic strains,
kindly given to us by M. Gellert, that differ only in
their gyrB locus: N4177 carries a gyrB mutation (nitro-
soguanidine induced in another strain and P1 trans-
duced into N99) that results in coumermycin Al
resistance at 30°C or below and blocks bacterial
growth at elevated temperatures; N99 (gyrB+) is cou-
mermycin Al susceptible and grows well at 42°C. In
vitro, the DNA gyrase subunit B purified from N4177
and assayed for supercoiling activity at 1.4 mM ATP is
resistant to 10 ,ug of coumermycin Al per ml and has
less than 5% activity detectable at 42°C relative to
25°C; the N99 gyrase B subunit is inhibited by 1 ,ug of
coumermycin Al per ml and has equivalent activities
at 42 and 25C (M. Geliert, personal communication).
The coumermycin Al-resistant and temperature-sensi-
tive phenotypes of N4177 probably reside in gyrB,
because spontaneous mutation to temperature insensi-
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tivity is associated with reversion to coumermycin Al
susceptibility (D. Hooper, unpublished data).
pBR322, also given to us by M. Gellert, is a small,

multicopy, nontransmissible, constructed plasmid that
carries ampicillin and tetracycline resistance genes

and has a ColEl-related replication region (5, 55).
pBR322 was transformed into N4177 and N99 by the
method of Lederberg and Cohen (37). Many of our

experiments used bacterial strains carrying a circular
dimer of pBR322 (determined by agarose gel electro-
phoresis and electron microscopy), which arose spon-
taneously and was stably maintained in recombina-
tion-proficient bacteria, as has been observed by
others (3, 46). pBR322 dimers appear to be eliminated
to a greater extent than monomers with the antago-
nism of the B subunit of DNA gyrase (J. Wolfson, D.
Hooper, M. Swartz, unpublished data), possibly be-
cause dimer copy number may be lower than that of
monomers (22).

Plasmid pMG110 was found in a multiply resistant
E. coli clinical isolate, from the Bacteriology Labora-
tory of the Massachusetts General Hospital (kindly
provided by L. Kunz and R. Moellering). pMG110 has
a molecular mass of approximately 170 megadaltons,
is conjugative, and codes for resistance to ampicillin,
chloramphenicol, gentamicin, mercury, tellurite, tetra-
cycline, and tobramycin. pMG110 belongs to the re-
cently identified incompatibility group H II (D. Brad-
ley, V. Hughes, M. Winters, D. Hooper, and M.
Swartz, unpublished data).
Media and growth conditions. For the growth of

bacteria in liquid cultures, the supplemented minimal
medium of Kreuzer and Cozzarelli (46 mM K2HPO4,
23 mM KH2PO4, 8 mM (NH4)2SO4, 0.4 mM MgSO4, 6
mM FeCl3, 1 mM sodium citrate, thiamine [1 ,ug/ml],
glucose [5 mg/ml], thymine [5 ,ug/ml], uracil [5 ,ug/ml],
and Casamino Acids [500 ,u.g/ml]; 32) was used. A 10-
or 20-ml amount of medium per 125-ml Erlenmeyer
flask was shaken 100 times per min in a temperature-
controlled, rotary-platform water bath. Inocula for
experiments involving plasmid-containing bacteria
were from overnight stationary cultures grown at 30°C
in supplemented minimal medium containing tetracy-
cline (20 ,ug/ml) and contained less than 1% plasmid-
free bacteria. For determining titers, bacteria were
diluted in 0.9%o NaCl, plated on tryptone-yeast extract
(TYE) agar ([per liter of water] 10 g of tryptone [Difco
Laboratories, Detroit, Mich.], 5 g of yeast extract, 8 g
of NaCl, 15 g of agar), and incubated at 30°C. In
experiments testing the elimination of pBR322 dimer
or pMG110 from N4177 and N99 at different tempera-
tures, bacteria were inoculated from overnight cul-
tures at 103 colony-forming units (CFU) per ml, incu-
bated for 2 h at 25°C with agitation, transferred to
water baths set at the indicated temperatures, and
incubated with agitation for 18 h, at which time each
culture was diluted and plated on TYE agar. After
growth at 30°C, colonies were counted and scored for
the presence of the plasmids.
Assay for plasmid presence or absence. The presence

of plasmids in bacterial colonies was assayed with
filter paper impregnated with penicillin and a pH-
indicator dye ("test paper"). Bacteria containing cer-

tain beta-lactamases, including those specified by
pBR322 and pMG110, turn test paper dye from green
to yellow, presumably by the release of protons with
enzymatic cleavage of penicillin. In the assay, test

paper is touched for 10 s to a TYE agar surface
containing colonies, which are partially transferred to
the paper; when the paper dries, colonies are scored as
plasmid containing (yellow), plasmid free (purple), or
mixed (part yellow, part purple). Mixed colonies occa-
sionally are seen and are counted as uncured, because
at least some bacteria in the colony retain plasmids.
Disparities between the results of test paper and
replica-plating for individual colonies were assessed
under all experimental conditions and were 0.36% (2/
550). Test papers were made in the following way.
Bromocresol purple (100 mg/ml, in water) was diluted
1/10 into a 20% aqueous solution of penicillin G.
Whatman no. 2 filter paper was dipped into the mix-
ture, allowed to dry, cut into a convenient size (usually
1 by 3 cm), and stored in scintillation vials in a
desiccator jar at either 4°C (papers stable for weeks) or
-20°C (papers stable for at least 12 months). The test
paper assay is a modification of the method of Slack et
al. (48a) for detection of P-lactamase production in
limited numbers of clinical isolates of Haemophilus
influenzae.
For replica-plating to detect the presence of

pBR322, the template plate contained TYE agar, and
velvet replicas were transferred successively to three
MacConkey agar plates containing tetracycline (50 Fg/
ml), ampicillin (25 pg/ml), and no antibiotic; for the
detection of pMG110, resistance to chloramphenicol
(50 ,ug/ml) was additionally scored.

Statistical methods. For the analysis of the concen-
tration dependence of coumermycin Al-induced plas-
mid elimination from N4177(pBR322) and
N99(pBR322), the data were fitted with a square root
transformation to straight lines with the same slope;
the significance of the difference in the y-intercept of
these two lines, reflecting the concentration difference
effective in equivalent plasmid elimination in the two
strains, was then assessed by Student's t test.

RESULTS
Plasmid elimination from bacteria tempera-

ture-sensitive in the B subunit of DNA gyrase.
N4177 [gyrB(Ts)] carrying pBR322 was grown at
permissive (25°C) and semipermissive (36.5°C)
temperatures in liquid medium, titers were de-
termined, and the colonies were assayed for the
presence of plasmids. The elimination of
pBR322 after 14 generations of growth at 36.5°C
was 92%, but only 1% after 16 generations of
growth at 25°C. In contrast, a 2% loss ofpBR322
from strain N99 (gyrB+) was seen at both tem-
peratures, indicating that thermolability was not
intrinsic to the plasmid DNA molecule. We
interpret these data as evidence that pBR322
requires a functional gyrase B subunit to be
maintained in a population of growing bacteria.

Similar results were obtained for plasmid
pMG110: elimination from strain N4177 was 6%
at 30°C, 46% at 35°C, and >99% at 37°C. Curing
from N99 was <1% at all three temperatures.
To determine the rate of plasmid elimination

occurring at permissive and semipermissive
temperatures and the growth rates of plasmid-
containing and plasmid-free cells, we studied the
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10 12 fold higher. We interpret these estimates as
'T evidence that plasmid-free cells appearing early

in curing are derived not only from the growth of
preexisting plasmid-free cells, but also, to a
greater extent, from the curing of plasmid-con-
taining cells. In the above calculations, we as-
sume that the growth rate of N4177 in a flask
separate from N4177(pBR322) is the same as if
the two strains were growing in the same flask.

Similar kinetic experiments were performed
with N4177(pMG110) (Fig. 1B). Generation
times for N4177(pMG110) and N4177 were 63
and 56 min, respectively (data not shown). Cal-
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that the faster growth of bacteria lacking

pBR322 (di- pMG110 was able to account for the appearance
Lad 36.5C. of only 22% of the plasmid-free cells.
x 103 CFU/ Plasmid efmintlon by coumermycin Al: in-
) flasks and volvement of DNA gyrse. Experiments investi-
ne flask was gating the involvement of E. coli DNA gyrase in
i from each plasmid elimination by coumermycin Al were
I culture of carried out with strains N4177 and N99 at 25C
36.5lCamid and 30°C, temperatures at which N4177 growsv() and at well and at which its gyrB mutation confers

growth. N = resistance to 12 ,ug of coumermycin Al per ml.
ber of cells. Cultures of N4177(pBR322) and N99(pBR322)
Lter than 150 were grown for 26 h at 25°C in the presence of
imination of increasing concentrations of coumermycin Al,
The experi- titers were determined, and the colonies were
177(pBR322 scored for plasmid presence. N4177(pBR322)W4G110) was grew to a final titer of greater than 1 x 108 CFU/
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ation. In ed at higher drug concentrations (Fig. 2A), con-
st detected firming the coumermycin Al resistance of
'C, and the N4177. The coneentration of coumermycin Al
rease with producing equivalent levels of plasmid elimina-
9 genera- tion was higher in N4177 by a factor of slightly
in N4177 less than two (Fig. 2B). This difference in drug
25°C. The concentration was significant (P < 0.001), and
ds (47 min/ its magnitude was consistent with the difference
d than that in coumermycin Al required to inhibit the multi-
n) over the plication of the two strains .(data not shown).
at shown). That pBR322 is eliminated from N4177 at drug
Atimate the concentrations that do not affect the final bacte-
ices to the rial titer is perhaps surprising; however, this
:rved. Ear- curing is occurring under conditions that likely
loss is first are semipermissive with bacteria growing more
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FIG. 3. Kinetics of elimination of pBR322 (dimer)
from N4177 (Cou') and N99 (Cou') by coumermycin
Al (4.5 ,g/ml) at 30°C. N4177(pBR322 dimer) and
N99(pBR322 dimer) were inoculated at 4.5 X 103 and
2.7 x 103 CFU/ml, respectively, in 20 ml of medium
and incubated at 30°C with agitation for 2 h. Coumer-
mycin Al was added to 4.5 ,ug/ml (at a titer designated
0 generations), and incubation was continued, with
aliquots plated at hourly intervals. N4177(pBR322
dimer) (0) and N99(pBR322 dimer) (0) versus genera-
tions of bacterial growth.
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in the absepce of coumermycin Al, the sponta-
neous loss of pMG110 was greater from N4177
than from N99, as described earlier in this
manuscript, confirming that a mutation in the
gyrase B subunit can alter the stability of
pMG110.
Because coumermycin Al-induced elimina-

tion of pMG110 from N99 occurs at drug con-
centrations very near those inhibiting bacterial
multiplication, it was not possible to generate
data on the kinetics 6f pMG110 loss from N99
adequate to assess the contribution of
N99(pMG110) and N99 growth rate differences.

DISCUSSION
Prior studies by two groups of investigators

have documented the involvement of bacterial
DNA gyrase in plasmid elimination by novobio-

cin and coumermycin Al. Taylor and Levine
(56) isolated a temperature'sensitive mutant
(pDT4) of an incompatibility group H2 plasmid
which, in contrast to the parental plasmid, was
eliminated from E. coli by novobiocin at permis-
sive temperatures. Danilevskaya and Gragerov
(8) showed that subinhibitory concentrations of
coumermycin Al eliminated the constructed
ColEl-related plasmids pBR322, pMB9, and
pOD162. Neither pDT4 nor pMB9 was eliminat-
ed from E. coli strains containing a gyrB muta-
tion determining resistance to coumermycin Al,
thus establishing the involvement of bacterial
DNA gyrase in plasmid elimination by novobio-
cin and coumermycin Al for pDT4 (56) and
pMB9 (8), respectively. Our experiments extend
these findings for coumermycin Al to include
pBR322 and the first wild-type plasmid,
pMG110, confirming that DNA gyrase is a target
of coumermycin Al in producing plasmid elimi-
nation. Additionally, our kinetic studies identi-
fied two components contributing to the emer-
gence of plasmid-free cells during the
antagonism of gyrase: loss of plasmids from
plasmid-containing bacteria and faster groWth of
plasmid-free cells. The latter component is not
unexpected. Even under noncompromised con-
ditions of growth, plasmid-containing cells may
multiply more slowly than plasmid-free cells (14,
18, 29), and such a difference may be accentuat-
ed if replicating plasmid and bacterial DNA are
competing for a limiting intracellular pool of
functioning gyrase.
Because the use of chemical inhibitors in

studies of in vivo functions leaves uncertainties
regarding drug permeability, drug metabolism,
and secondary targets, it is important to assess,
if possible, the role of an enzyme in vivo in the
absence of inhibitors. Our data with a tempera-
ture-sensitive gyrB mutant demonstrate for the
first time in the absence of novobiocin and
coumermycin Al the requirement for a function-
ing gyrase B subunit for the maintenance of
plasmids in vivo.

In considering possible mechanisms for plas-
mid elimination with gyrase antagonism, it is
worthwhile reviewing briefly the structure and
some activities ofDNA gyrase. The enzyme has
four subunits: two "A," antagonized by nalidix-
ic acid and oxolinic acid (11, 52), and two "B,"
inhibited by novobiocin, coumermycin, and
structurally related compounds. In vitro, gyrase
catalyzes a variety of reactions (7, 10), including
the introduction of negative superhelical twists
into covalently closed double-stranded DNA
circles (12) (ike plasmid DNA molecules) and
separation (decatenation) and rejoining (catena-
tion) oftwo DNA circles interlocked like links in
a chain (25, 33). In vivo, gyrase maintains nega-
tive superhelical twists in intracellular DNA

~4
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circles (12, 44) and is necessary for DNA repli-
cation, the transcription of certain operons,
DNA repair, and recombination (7, 10).
Because the elimination of plasmids by the

antagonism of gyrase occurs during continued
bacterial multiplication, a process essential for
plasmid maintenance appears to be more sus-
ceptible to the inhibition of DNA gyrase than is
bacterial multiplication. Possible sites for such a
selective interference in the plasmid life cycle
are many, but five merit specific mention. (i)
Gyrase antagonism might cause the loss of nega-
tive superhelical twists needed for the initiation
of plasmid DNA replication (16, 27, 44, 45). (ii)
The inhibition of gyrase might impair the decat-
enation of two interlocked, covalently closed
monomeric DNA circles, the product of a round
of plasmid replication via the Cairns form (9, 15,
24, 25, 28, 34, 43, 48, 53, 54); this failure of
decatenation might cause aberrant segregation
(33, 42). (iii) The antagonism of gyrase might
result in the defective removal of positive super-
helical twists that might accumulate ahead of
and slow the progression of the growing point in
replicating Cairns forms (27). (iv) Gyrase inhibi-
tion might result in a failure to repair plasmid
DNA molecules effectively, leading to plasmid
destruction. Such destruction has been reported
for ColEl DNA after treatment with chloram-
phenicol and coumermycin Al (8). Not ad-
dressed in that study (8), however, was the
contribution of chloramphenicol treatment,
which results in the presence of RNA bases in
mature ColEl DNA (4) that might then be aber-
rantly repaired. Finally (v), selective effects of
DNA gyrase inhibition on plasmid maintenance
might result directly from differing affinities of
gyrase for binding sites on plasmid and bacterial
DNA; DNA gyrase has preferred binding se-
quences on plasmid molecules in vitro (7, 10)
and, presumably, does also on plasmid and
bacterial DNA in vivo (50). Of these mecha-
nisms for plasmid elimination by gyrase antago-
nism, we consider the inhibition of the initiation
ofDNA replication and aberrant decatenation as
leading possibilities. It seems not unlikely that
different mechanisms may operate in the elimi-
nation of different plasmids.
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