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Text S1

Spar se coding for reliable stimulus representation and learning

Why should the cortical representation of an acoustic dtisbe sparse? Several
explanations have been advanced. One set of proposalstoousthe energy
used by neural activity; sparse representations involwerfespikes and thereby
minimize the energetic costs associated with a neural septation [1-3]. Other
proposals focus on the advantages of sparse represestiraaomputation. For
example, it has been suggested that the statistics of hagmsory environments
are sparse, and that a sparse code provides a natural maetht@nvironments
[4-6]. Recently, it was shown how a sparse overcompletesgmtation could be
used to solve the “cocktail party problem” (i.e. separatengls auditory stream
from several mixed together) [7].

Fig. S1 demonstrates one benefit of sparse representatitims present context.
This simple example is not intended as a model of auditoryegpibut merely
to illustrate some of the basic intuitions underlying spamspresentations. We
compare the representation of auditory stimuli by two higptital neuronal pop-
ulations, one dense and the other sparse. In the sparseapopuFig. S1AB),
firing rates are drawn from the lognormal distribution weerved, whereas in the
dense population firing rates are drawn from a hypothetieaigSian distribution
(Fig. S1CD), the mean firing rate and entropy (a measure ofgjeesentational
capacity) of which were matched to the observed distrilu{see Supporting
methods below).



To examine the ability of each population to represent a adfistinct stimuli,
we draw two patterns of firing rates (P1 and P2), correspgdithe two stimuli,
from the sparse distribution; and similarly draw two patteirom the dense distri-
bution. It seems reasonable to suppose that a good neurasegpation of a pair
of distinct stimuli should allow the stimuli to be easily disninated. Specifically,
since at any instant an organism only has access to a setkefgpither than to
the underlying firing rates, the stimuli should be discriatéd on the basis of the
pattern of spikes across the population—that is, on thestzdghe spikes repre-
senting a single instantiation of the firing rates. The qaoasthen, is how well
a spike train drawn from P1 can be discriminated from a sp#ie drawn from
P2, and how this discriminability depends on whether P1 ghdrE drawn from
sparse or dense distributions.

The spike trains drawn from the sparse distribution are dated by a few outliers—
a few neurons with high firing rates—which can be used tollidiscriminate
the pattern P1 from P2 even by eye. By contrast, the absensecbf outliers

in the spike trains drawn from the dense distribution makedifiicult to dis-
criminate these patterns. This intuition can be quantifigdh ldiscriminability
measure) (seeSupporting methods below), which confirms that the sparse repre-
sentations were consistently more easily discriminatad the dense one®€5.0

for sparse representations, compare@td..9 for dense representations). More-
over, model neurons with Hebbian synapses learned to wlis@ate sparse pat-
terns more rapidly and completely than dense patternsTee¢es2). Thus the
presence of a handful of neurons with high firing rates catfitee stimulus dis-
crimination and learning in a simple model.

Supporting methods for ssimulation experiments

To compare stimulus representations in sparse and densenaépopulations we
computed the similarity of pairs of spike patterns that wedtieer both generated
by neurons with firing rates drawn from lognormal (sparssjritiutions, or both
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generated by neurons with firing rates drawn from truncatedsSian (dense)
distributions. For the simulated lognormal distributiohfioing rates we used
parameters given by the distribution of spontaneous firatgs (Fig. 3BC), with
a mean of 1.3 sp/s, and a standard deviation of 1.0 sp/s, Inothlogarithmic
scale. To create a corresponding (truncated) Gaussiarbdigin of firing rates
we matched the mean firing rate and entropy of the lognormséilolition, which
corresponded to a Gaussian with a mean of 4.2 sp/s and a stat&laation of
5.2 sp/s, on a linear scale, with negative firing rates repldoy rates drawn again
from the same distribution until the distribution contadraly non-negative firing
rates.

To simulate responses of neuronal populations, we first drenpatterns X and
Y, of firing rates—each of these rate patterns was a vecto=200 values, rep-
resenting the firing rate of each neuron in the populatiom.tf® sparse patterns
each element of each vector was drawn from the sparse disbmb similarly for
the dense patterns, each element was drawn from the detrseuticn. We then
generated 100 individual spike patterns from each rateeqmatiy treating each
element as the rate (in a 10 ms window) for a Poisson process.

We defined the discriminability( X, Y) between a pair of rate patterns (i.e. be-
tween two sets of firing rate¥ andY over a population of neurons) as:

(@ x’><y2- y) )
(z-y)

wherex and 2z’ are patterns of spike counts drawn frokh andy andy’ are

spike patterns drawn froi; the brackets denote averages over all pairs of spike

patterns (instantiations of the Poisson spike trains). hga used the average of

this quantity over pairs of rate patterns to quantify howedédnt spike patterns

drawn from the different underlying distributions were:

Q(Xa Y) =

Q - <Q(X> Y)>mztes (2)



We thus could compar@ for patternsX andY drawn from a sparse distribution
with @ for patternsX andY drawn from a dense distribution.

The higher the discriminability score, the more discrinbieaare spike patterns
drawn from one pattern of rates when compared to anothesrpaif rates. A dis-
criminability score close to 1 means that spike patternsifome rate pattern are
(on average) the same as spike patterns from another rigemat
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