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Text S1

Sparse coding for reliable stimulus representation and learning

Why should the cortical representation of an acoustic stimulus be sparse? Several

explanations have been advanced. One set of proposals focuses on the energy

used by neural activity; sparse representations involve fewer spikes and thereby

minimize the energetic costs associated with a neural representation [1–3]. Other

proposals focus on the advantages of sparse representations for computation. For

example, it has been suggested that the statistics of natural sensory environments

are sparse, and that a sparse code provides a natural match tosuch environments

[4–6]. Recently, it was shown how a sparse overcomplete representation could be

used to solve the “cocktail party problem” (i.e. separate a single auditory stream

from several mixed together) [7].

Fig. S1 demonstrates one benefit of sparse representations in the present context.

This simple example is not intended as a model of auditory cortex, but merely

to illustrate some of the basic intuitions underlying sparse representations. We

compare the representation of auditory stimuli by two hypothetical neuronal pop-

ulations, one dense and the other sparse. In the sparse population (Fig. S1AB),

firing rates are drawn from the lognormal distribution we observed, whereas in the

dense population firing rates are drawn from a hypothetical Gaussian distribution

(Fig. S1CD), the mean firing rate and entropy (a measure of therepresentational

capacity) of which were matched to the observed distribution (seeSupporting

methods below).
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To examine the ability of each population to represent a pairof distinct stimuli,

we draw two patterns of firing rates (P1 and P2), corresponding to the two stimuli,

from the sparse distribution; and similarly draw two patterns from the dense distri-

bution. It seems reasonable to suppose that a good neural representation of a pair

of distinct stimuli should allow the stimuli to be easily discriminated. Specifically,

since at any instant an organism only has access to a set of spikes rather than to

the underlying firing rates, the stimuli should be discriminated on the basis of the

pattern of spikes across the population—that is, on the basis of the spikes repre-

senting a single instantiation of the firing rates. The question, then, is how well

a spike train drawn from P1 can be discriminated from a spike train drawn from

P2, and how this discriminability depends on whether P1 and P2 are drawn from

sparse or dense distributions.

The spike trains drawn from the sparse distribution are dominated by a few outliers—

a few neurons with high firing rates—which can be used to reliably discriminate

the pattern P1 from P2 even by eye. By contrast, the absence ofsuch outliers

in the spike trains drawn from the dense distribution makes it difficult to dis-

criminate these patterns. This intuition can be quantified by a discriminability

measureQ (seeSupporting methods below), which confirms that the sparse repre-

sentations were consistently more easily discriminated than the dense ones (Q=5.0

for sparse representations, compared toQ=1.9 for dense representations). More-

over, model neurons with Hebbian synapses learned to discriminate sparse pat-

terns more rapidly and completely than dense patterns (seeText S2). Thus the

presence of a handful of neurons with high firing rates can facilitate stimulus dis-

crimination and learning in a simple model.

Supporting methods for simulation experiments

To compare stimulus representations in sparse and dense neuronal populations we

computed the similarity of pairs of spike patterns that wereeither both generated

by neurons with firing rates drawn from lognormal (sparse) distributions, or both
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generated by neurons with firing rates drawn from truncated Gaussian (dense)

distributions. For the simulated lognormal distribution of firing rates we used

parameters given by the distribution of spontaneous firing rates (Fig. 3BC), with

a mean of 1.3 sp/s, and a standard deviation of 1.0 sp/s, both on a logarithmic

scale. To create a corresponding (truncated) Gaussian distribution of firing rates

we matched the mean firing rate and entropy of the lognormal distribution, which

corresponded to a Gaussian with a mean of 4.2 sp/s and a standard deviation of

5.2 sp/s, on a linear scale, with negative firing rates replaced by rates drawn again

from the same distribution until the distribution contained only non-negative firing

rates.

To simulate responses of neuronal populations, we first drewtwo patterns,X and

Y , of firing rates—each of these rate patterns was a vector ofn=200 values, rep-

resenting the firing rate of each neuron in the population. For the sparse patterns

each element of each vector was drawn from the sparse distribution; similarly for

the dense patterns, each element was drawn from the dense distribution. We then

generated 100 individual spike patterns from each rate pattern by treating each

element as the rate (in a 10 ms window) for a Poisson process.

We defined the discriminabilityq(X,Y ) between a pair of rate patterns (i.e. be-

tween two sets of firing ratesX andY over a population of neurons) as:

q(X,Y ) =
〈x · x′〉〈y · y′〉

〈x · y〉2
(1)

wherex and x′ are patterns of spike counts drawn fromX, and y and y′ are

spike patterns drawn fromY ; the brackets denote averages over all pairs of spike

patterns (instantiations of the Poisson spike trains). We then used the average of

this quantity over pairs of rate patterns to quantify how different spike patterns

drawn from the different underlying distributions were:

Q = 〈q(X,Y )〉rates (2)
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We thus could compareQ for patternsX andY drawn from a sparse distribution

with Q for patternsX andY drawn from a dense distribution.

The higher the discriminability score, the more discriminable are spike patterns

drawn from one pattern of rates when compared to another pattern of rates. A dis-

criminability score close to 1 means that spike patterns from one rate pattern are

(on average) the same as spike patterns from another rate pattern.
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