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Text S2

Hebbian learning for sparse representations

We have studied a single neuron model with Hebbian synapses to compare learn-

ing of neuronal activity patterns arising in sparse (lognormal) or dense (Gaussian)

distribution of firing rates (Fig. S2). Parameters for sparse and dense distributions

were estimated from data, as described inText S1. Briefly, the sparse (lognormal)

distribution of firing rates had mean=1.3 sp/s, and std=1.0 sp/s (both on a loga-

rithmic scale). Parameters of the dense (Gaussian) distribution (mean=4.2 sp/s,

std=5.2 sp/s) of firing rates were chosen so that the two distributions had the same

mean firing rate and entropy. Elements from the dense distribution with negative

firing rates were discarded and drawn again from the same distribution until the

dense distribution contained only non-negative firing rates.

From the firing rate distributions we then generatedtraining setof k firing rate

patterns, each consisting ofn neurons with firing rates chosen randomly from the

same firing rate distribution. One neuronal pattern was randomly chosen to be the

targetpattern, and the rest were labeled asnontargetpatterns. Every other pattern

in the training set was then replaced by the target pattern. From the training set

of firing rate patterns we then generated a set of spike patterns representing popu-

lation outputs during 10 ms windows: each firing rate was replaced by a number

of spikes generated by a Poisson process (λ=firing rate) in a 10 ms window. Each

input spike pattern in the training data set thus represented a 10 ms snapshot of

neuronal spiking activity. Note that while the targetfiring rate patternswere iden-

tical, the actual targetspike patternswere not (although they were similar, seeText

S1), because they were generated by a stochastic Poisson process.
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We simulated learning in a single sigmoidal neuron withn inputs (corresponding

to n neurons in the input patterns) and one output. In each trial (a single presen-

tation of input pattern) the sigmoidal neuron computed its output (response) as a

weighted sum of its inputs transformed by a sigmoid function. After the trial, the

neuronal response was used to compute a new set of synaptic weights.

Thus, the neuronal responseyt in trial t was computed as:

yt = σ

(
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)

, (1)

wherewt−1

i are current synaptic weights (computed in the previous trial) associ-

ated with current inputsxt

i
, andσ = 1/(1 + e−100z+6.2) is a sigmoid function with

z as parameter (i.e.z =
∑

i wixi).

The weightswi were initialized with values from 0 to 1 drawn from a uniform

distribution, and then normalized so that
∑

wi = 1. After presentation of each

input pattern, weights were adapted according to a Hebbian learning rule:

wt

i
= wt−1

i
+ η ytxt

i
(2)

wheret = 1, . . . , k denotes trials (presentations of individual input patterns),η is

the learning rate,yt is the current neuronal response (i.e. postsynaptic activity),

xt

i
denotes theith input in the current trial (i.e. presynaptic activity),w0

i
is the

set of initial synaptic weights.wk

i
is thus the final set of synaptic weights after

presenting allk input patterns.

Fig. S2 documents the learning process in detail for both sparse and dense rep-

resentations. Panel A shows the two distributions of firing rates from which we

generated input firing rate patterns.

Panel B shows examples of input spike patterns generated from firing rate patterns

for n=100 neurons andk=100 trials. Red dots show spikes generated by the target

pattern (every second trial), black dots show spikes from the nontarget patterns.
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The histograms on the right side of each of the input patternsshow spiking activity

for target patterns (red line), and nontarget patterns (black line). Note that the

red histogram is easily distinguishable from the black histogram for the sparse

distribution.

We repeated the simulation experiment 1000 times, each timedrawing a different

set of n=100 neurons, andk=100 trials. Panel C shows the ratio of target to

nontarget responses averaged across experiments (line thickness represents the

standard error of the mean). The value at each point (trialt) was computed as

σ(
∑

i w
t

i
xt

i
) for each experiment and then averaged across experiments.
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