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Figure S2

Hebbian learning for sparserepresentations

Fig. S2 caption:

Hebbian learning is easier and faster for neuronal pattéensed from sparse
distributions of firing rates (sekext 2 for details.)

(A) The distribution of firing rates of dense and sparse poparatused in the
simulation. The parameters of the sparse (lognormal)iigton were taken from
the observed data; the parameters of the dense distribnéommatched in mean
firing rate and entropy.

(B) Sample rasters for the targeed) and backgroundb{ack) patterns, and the
associated firing rate histograms. A spike pattern from dinget distribution is

presented to a model neuron with Hebbian synapses everytatignon-target

spike patterns presented on alternating (backgroundd aara drawn from a new
distribution each trial. The target sparse distributiontams a few outliers that
dominate learning, whereas the absence of such outlieheidense distribution
leads to slower and less efficient learning.

(C) The ratio of responses elicited by target patterns on a moeleton with
Hebbian synapses (see Eq. ZText &2) to non-target responses is shown. The
ratio grows faster and asymptotes to a higher level for tharsgpdistribution,
indicating that learning is faster and more efficient.
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