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A B S TR A C T What mathematical or physiological principles govern the radii of 
blood vessels in the cardiovascular system and by what mechanisms are these 
principles implemented? This question is studied in the contexts of fluid dynamics 
and physiology of the cardiovascular system, and a possible answer is examined in 
the light of empirical data. 

I N T R O D U C T I O N  

T h e  power  H requi red  to p u m p  a fluid o f  viscosity "O th rough  a tube o f  radius r 
and length l, at a steady rate o f  f l o w f  and u n d e r  condit ions o f  fully developed 
Poiseuille flow, is given by 

14 = 8.0lfl lTrr 4. (1) 

A well-known implication o f  this simple formula  is the result that  almost 94% o f  
this power can be saved by simply doubl ing the radius o f  the tube,  all else being 
unchanged .  In o ther  words,  only 6% of  the power  is needed  to maintain the 
same flow o f  the same fluid th rough  a tube o f  the same length but  double  the 
radius. Consider  the circulation o f  blood in the cardiovascular system, using only 
approximate  data to illustrate the point  and ignor ing the pulsatile na ture  o f  the 
flow and many o ther  complications at this stage so as not to confuse the issue in 
hand.  Tak ing  77 = 0.03 poise for  the viscosity o f  blood,  consider a blood vessel 
segment  o f  length l = 10 cm in which the f l o w f  = 100 cma/s. I f  the vessel radius is 
1 cm, the power  requi red  to maintain the flow is 7,640 ergs/s or approximate ly  16 
cal/day. I f  the vessel radius is doubled,  all else being unchanged ,  the power  
required  is only 1 cal/day. And if  the vessel radius is halved, the power  requi red  
is 256 cal/day. For  the cardiovascular system as a whole,  the p u m p in g  power  
requi red  f rom the hear t  can be est imated f rom ano the r  form of  Eq. (1), namely 

H = f A P ,  (2) 

where ha° is the total pressure d r o p  in the systemic and pu lmonary  circuits a n d f  
is the cardiac output .  I f  one  takes AP = 120 mm Hg a n d f  = 100 cm3/s, Eq. (2) 
gives H ---33 Cal/day. Now, if all blood vessels in the cardiovascular system were 
o f  double  their  normal  radii while still conveying the same flow, the p u m p in g  
power requ i red  f rom the hear t  would be approximate ly  2 Cal/day. I f  the vessels 
were o f  half  their  normal  radii, the p u m p in g  power  would be 528 Cal/day. I f  one 
assumes, ra ther  generously,  that the cardiac efficiency is 10%, the cor respond-  
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ing metabolic rates of the heart would be 330 Cal/day for the system with normal 
radii, 20 Cal/day for the system with double the normal radii, and 5,280 Cal/day 
for the system with half the normal radii. Expressed in terms of  the total 
metabolic rate of  the host organism, which is approximately 2,500 Cal/day for an 
average man at rest, these metabolic rates of the heart represent approximately 
13% of  the total if the vascular system has normal radii, only 1% of  the total if the 
system has double the normal radii, and more than 200% of the total if the 
system has half the normal radii. 

These simple considerations leave little doubt that the radii of  blood vessels in 
the cardiovascular system are the outcome of  a very careful and deliberate 
design, and the following question therefore presents itself in an unequivocal 
manner. What principles govern the radii of  blood vessels in the cardiovascular 
system and by what mechanisms are these principles implemented? This ques- 
tion has many important implications in cardiovascular physiology and cardio- 
vascular disease. 

In studies of the heart and heart failure for example, it has long been 
recognized that the cardiac effort and efficiency and the aortic pressure against 
which the heart must pump are major factors (Starling and Visscher, 1927; 
Peters and Visscher, 1936; Visscher, 1937, 1938; Sarnoffet  al., 1958; Braunwald, 
1958; Katz and Feinberg, 1958). All these factors are strongly affected by the 
optimality of vascular radii. In the study of aneurysms at arterial junctions it has 
been suggested that local hemodynamic events may play a major role in the 
pathogenesis of  this lesion (Roach et al., 1972). These events depend critically on 
the geometry of  arterial junctions which, in turn, depends on the relative radii of  
the vessels involved in each junction. In the vascular beds surrounding localized 
cancerous tumors it has been observed that the cardiovascular system has the 
capacity to form new vessels and/or increase the radii of  existing vessels on a 
strictly local and ad hoc basis (Algire and Chalkley, 1945; Warren and Shubik, 
1966; Warren, 1968). By what mechanisms are these changes achieved? And can 
these mechanisms be reversed so as to diminish rather than increase the blood 
supply to a localized tumor? In the study of atherosclerosis, some theories 
ascribe a major role in the pathogenesis of this lesion to the shear force between 
blood and vessel tissue (Fry, 1968, 1969a, b, 1973; Caro et al., 1971; Caro, 1973). 
This shear force ~" depends critically on the vessel radius r as can be seen from 
Poiseuille's formula 

r = 471 f / z r r  a. (3) 

Thus if an abnormal shear level, high or low, is indeed a pathogenetic mecha- 
nism of atherosclerosis, it is important to ask first what is the "normal" shear 
level in blood vessels. Clearly, this question is coupled with that of  the optimum 
radii of  the vessels. 

To each of these and other problems in the cardiovascular system there may 
be an ad hoc solution and, insofar as clinical considerations dictate, one should 
aim perhaps unswervingly at the discovery of these solutions. But a thorough 
physiological understanding of  these problems requires a thorough understand- 
ing of  the operation and design aspects of the system which they afflict. The 
hemodynamic events which are implicated in these problems depend critically 
on the radii o f  the blood vessels involved. An inquiry is appropriate, therefore, 
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into the physiological factors and principles which govern these radii. The 
present study is devoted to this question. 

T H E  C O S T  O F  B L O O D  V O L U M E  C O N C E P T  

If  the length of a blood vessel is kept constant, an obvious effect of a change in its 
radius is a change in the lumen volume of that vessel. Thus if the radii of all 
blood vessels in the cardiovascular system were uniformly larger or smaller, the 
volume of blood contained in the vascular system would be correspondingly 
larger or smaller. While requiring less pumping power for circulating the blood, 
therefore, a cardiovascular system with uniformly larger vessel radii would entail 
a higher metabolic rate for the constant production and maintenance of  a larger 
volume of  blood. These considerations led Murray (1926) to the thesis that the 
radii of  blood vessels in the cardiovascular system are the outcome of  a compro- 
mise between the pumping power on the one hand and what he called "the cost 
of  blood volume" on the other. The quantitative nature of  this compromise can 
be readily derived as follows. 

Consider a blood vessel segment of length l and radius r. The pumping power 
associated with the vessel is given by Eq. (1). In addition to this, an amount of  
power is needed for maintenance of the blood tissue needed to fill the vessel. 
Murray (1926) postulated that this maintenance power is proportional to blood 
volume. For the vessel segment under consideration, therefore, the cost of  blood 
volume is k~r2l where k is a constant, and the total power requirement Ht 
associated with the vessel is given by 

= + k~'&l .  (4) l i t  lrr4 

This equation illustrates the antagonism between pumping power and the cost of  
blood volume which are represented by the first and second terms, respectively. 
I f  the radius r increases, the first term decreases and the second term increases, 
and if r decreases the reverse is true. A compromise is reached when the total 
power Ht is a minimum, and this occurs when 

dHt d2Ht 
d--~'=O and ~ > 0 .  (5) 

Applying these conditions to Eq. 4, one readily finds, as was reported by Murray 
(1926), that the compromise occurs at an optimum value of  r, to be denoted by 
r*, which is given by 

r *n = 16~fl/kcr 2. (6) 

The minimum power, to be denoted by lit*, is then obtained from Eq. (4) by 
substituting r* for r to get 

H *  = 8"olfl + kerr.21, 
7.fr . 4  

and substituting for k from Eq. (6) to get 

H *  = ~ ( 7 )  
7,gr , 4  • 
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Thus at optimum conditions the total power is minimum and is equal to three 
times the pumping power, and the maintenance power is equal to twice the 
pumping power. 

The most important outcome of the foregoing analysis is the result contained 
in Eq. (6) which indicates that these optimum conditions occur when the radii of 
blood vessels are proportional to the cube root of the flow which they convey, i.e. 

• r* ~ja/3. (8) 

This result plays an important role in the study of arterial branching (Zamir, 
1976 a, b). In a symmetrical arterial bifurcation for example, if ro denotes the 
radius of and f0 the flow in the parent artery, and ifrI  andf l  denote the radius 
and flow for each of the two daughter arteries, then f0 = 2fl and Eq. (8) yields 

r~  = 2r .3. (9) 

When one introduces the commonly used area ratio/~, which for a symmetrical 
bifurcation is defined by 

= 27rr12/Trro ~, (10) 

it follows from Eq. (9) that at optimum conditions 

----- 2 if3 ~ 1.26. (11) 

This result has been in the literature for many decades but it is often surrounded 
by an air of mystery. Thompson (1942), for example, describes it as "an approxi- 
mate result, familiar to students in hydrodynamics" and McDonald (1974) de- 
scribes it as "the average va lue . . ,  that is often quoted". It should be made quite 
clear that the value 1.26 for ~ in a symmetrical bifurcation is an implication of 
the cost of blood volume concept. More specifically, it is based on the optimum 
result that the radii of blood vessels in the cardiovascular system are propor- 
tional to the cube root of the flow that they convey. This relation between flows 
and radii has not been adequately tested so far. 

E M P I R I C A L  D A T A  

In vivo measurement of the radius of and the flow in a blood vessel is exceed- 
ingly difficult, and the search for empirical data on the relation between flows 
and radii is therefore a somewhat elusive task. Three major texts on the 
cardiovascular system (Attinger, 1964; Burton, 1965; McDonald, 1974) present 
tables from which such data can be derived. Close scrutiny of these tables 
indicates that they all originate at least in part from earlier data by Green (1950) 
who presents his data with the following comments: "accurate quantitative data 
are not available for the capacity of the circulatory system. I have, however, 
made a rough estimate of the relative capacities of the component parts of the 
circulatory system based in part on measurement from postmortem examina- 
tions upon animals and in part on calculations by Mall from detailed microscopic 
examinations of the mesenteric vascular bed". The data relate to the entire 
cardiovascular system of a 13-kg dog and are shown graphically in Fig. 1. Also 
shown in Fig. 1 is the optimum relation between f and r* as given by Eq. (6) 
which for the purpose of direct comparison has been written as 
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and hence  

where  

453 

f =  Kr *a, (12) 

l o g f  = log K + log (r'a), (13) 

(14) 

On the scales of  Fig. l ,  Eq. (13) represen ts  a family of  s t ra ight  lines, one line for  
each value o f  K as shown. 

- - K  m 3162 
~ K  Ill 1000 

Ioa  f / / / K  m 316 
- " / / / / K  - 100 

~ / K  ~ 32 

" 0  
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FIGUeE 1. Relation between blood flowf(cmS/s) and vessel radius r(cm). The solid 
triangles are based on data by Green (]950) for a ]3-kg dog where arteries are 
represented by • and veins by V. The straight lines are based on Eq. (13), namely 
l o g f  = log K + log &, with the indicated values of  K(/s). 

More recently,  Iberal l  (1967) p resen ted  a new set o f  data  with the following 
comments :  "For  the past thir ty years Green 's  t a b l e . . ,  has been  used as the 
c o m m o n  quanti tat ive source for  data  on the arterial  t ree in mammals .  T h e  
present  p a p e r  upda tes  that  table by coordina t ing  addi t ional  anatomical  data  
f r o m  man and  dog  into a unif ied model  o f  b ranch ing  levels". T h e  data relate to 
the arterial  system o f  a 23-kg dog .and  are  shown graphical ly in Fig. 2. I t  should 
be carefully noted  that  here  too, as in the case of  Green 's  data,  many  est imates 
are involved. These  estimates are based on work by Mall (1906), Patel et al. 
(1963), and  Suwa et al. (1963). 

Suwa et al. (1963) carr ied out  extensive m e a s u r e m e n t s  o f  arterial  resin casts 
and  the results were s u p p l e m e n t e d  by estimates of  the co r r e spond ing  blood 
flows to p roduce  a set o f  data relat ing to several organs  and  major  ar ter ies  in 
man.  These  data are shown graphical ly in Fig. 3. Suwa et al. explain that  in the 
case of  an o rgan  such as the brain,  their  data re fe r  to a hypothet ical  arterial  
t runk  which is made  up  by the union of  two internal  carot id and  two ver tebra l  
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arteries,  if one assumes a certain power  law for  arterial  b ranching .  O the r  organs  
are t rea ted  in a similar way. 

Wiedeman  (1962, 1963) carr ied out  some m e a s u r e m e n t s  of  the length,  d iame-  
ter ,  and  n u m b e r  of  blood vessels in the wing of  a living bat.  T h e  data relate to 
one major  ar tery  followed by all its branches ,  capillaries, venules,  small veins, 
and the major  collecting vein.  Al though no flow m e a s u r e m e n t s  were made ,  the 
f l o w f  at any b ranch ing  level can be expressed  in t e rms  of  the flow f0 in the main 
ar tery  since f0 = n f  where  n is the n u m b e r  of  branches  at that  level. Weideman ' s  

. ,  K =s "1t62 
/ / K  m I000 

,og f i$0~ 
, 

.!! 
-12 r'2, 4 

FIGUR~ 2. Relation between blood flowf(cmS/s) and vessel radius r(cm). The solid 
circles are based on data by Iberall (1967) for a 23-kg dog. The straight lines are 
based on Eq. (13), namely l og f  = log K + logr a, with the indicated values of K(/s). 

results are thus shown in a nondimens iona l  f o r m  in Fig. 4, toge ther  with a 
nondimens iona l  f o r m  of  Eq. (13), namely  

log(f/f0) = log(K/Ko) + log( r ' a / r ' a ) ,  (15) 

where  suffix 0 refers  to the major  ar tery.  
Atabek et al. (1975) carr ied out  highly e laborate  measu remen t s  of  the flow 

field in the left c i rcumflex coronary  ar tery  in thoraco tomized  dogs.  In  some of  
the dogs the flow field was measu red  u n d e r  normal  flow condit ions,  while in 
others  much  h igher  than  normal  blood flow rates were induced  by in t ravenous  
infusion of  d ipyr idamole .  T h e  data obta ined f rom the no rma l  cases are shown 
graphically in Fig, 5. 

D I S C U S S I O N  AND P R E L I M I N A R Y  C O N C L U S I O N S  

In Figs. 1-5, empir ical  data are shown toge ther  with the o p t i m u m  r e l a t i o n f  = 
Kr .3 for  d i f ferent  values of  K, We observe immedia te ly  that  a fairly wide range  
of  values of  K is needed  to encompasa  all the data.  On pure ly  mathemat ica l  
g rounds  the re fo re  it seems apt  to dismiss the theoretical  result  t h a t f  is p ropo r -  
tional to r *a, since propor t ional i ty  is no longer  mean ingfu l  when the constant  o f  
propor t ional i ty  is no longer  constant.  T h u s  at first sight it appea r s  that  the cost 
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of blood volume principle does not prevail in the cardiovascular system. But we 
must be cautious, for cardiovascular physiology is not a purely mathematical 
ground. 

First we must consider which parts of  the cardiovascular system are likely to be 
governed by an optimality principle based on the cost of  blood volume concept. 
We recall that while one function of  all blood vessels is to convey blood, many 
vessels perform additional functions. A primary function of the capillaries for 
example is the exchange of metabolic and waste products and, therefore,  
capillary radii are likely to be governed by an optimality principle which would 
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FIGURE 3. Relation between blood flowf(cm3/s) and vessel radius r(cm). The solid 
circles are based on data by Suwa et al. (1963) for the indicated organs and blood 
vessels in man. The  straight lines ar.e based on Eq. (12), n a m e l y f  = k r a, with the 
indicated values of  K(/s). 

facilitate this function. A function of  the aorta and its main branches is to absorb 
and modulate the major impact of the cardiac pulse and, therefore,  the volume 
and radii of these large vessels are likely to be particularly suited to this function. 
In the venous system, the pumping power is of such small significance that it 
may not play a major role in determining the vessel radii. Part of the cardiovas- 
cular system in which the compromise between pumping power and the cost of 
blood volume may play a major role is perhaps the arterial network between but 
not including the capillaries and the main arteries. In general it must be 
remembered that the cardiovascular system is not uniform in function or mode 
of operation and, therefore,  it is unlikely to be uniform in its design aspects. An 
optimality principle must be matched to the peculiar function and mode of 
operation of that part of the system in which it is purported to apply. An 
optimality principle based on the cost of  blood volume concept therefore may 
prevail very strongly in the case of blood vessels whose main function is to convey 
blood and rather weakly in the case of vessels with other functions. Such 
variations would manifest themselves quantitatively as different values of K in 
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dif ferent  parts  o f  the system, pe rhaps  like the range  of  values observed in Figs. 
1-5. 

A more  direct  test o f  the cost o f  blood volume concept  can be made  by 
consider ing the value o f  the cost o f  b lood constant  k. This  constant ,  as def ined  by 
Eq. (4), represen ts  the power  assumed to be needed  for  the constant  p roduc t ion  
and  main tenance  of  a unit  vo lume o f  blood tissue. U n d e r  o p t i m u m  condit ions,  k 
is re lated to the o p t i m u m  vessel radius  r* by Eq. (6) which gives 

k = 16q~ /Tr2r  *~. (16) 

Now by combin ing  Eq. (1) and (2) we obtain 

A P  = 8~ l f / r r r  4, (17) 

(K/Ko) ffi 5.01 

1 / / ( K / K o )  = 1.26 

Iog(f/fo) ~ JJ(K/Ko)  =0'32 
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FIGURE 4. Relation between blood flowf and vessel radius r nondimensionalized 
in terms of the flow f0 in and the radius r0 of the parent artery. The solid triangles 
are based on data by Wiedeman (1963) for blood vessels in a bat's wing, where 
arteries are represented by • and veins by V. The straight lines are based on Eq. 
(15), namely log (f/fo) = iog(K/Ko) + log(ra/raoo), with the indicated values of(K/Ko).  

which is a basic Poiseuille flow equat ion  with the following in terpre ta t ion .  With a 
fixed flow in a blood vessel o f  a fixed length l, if the vessel radius r is changed  the 
pressure  d r o p  &P requi red  to mainta in  the flow will change  cor respondingly .  In  
part icular ,  when the radius has the o p t i m u m  value r*, the pressure  d r o p  will 
have an o p t i m u m  value z~ °* and  we thus write Eq. (17) as 

A P *  = 8~Tlf/crr .4. (18) 

Substi tuting this into Eq. (16), we get finally 

k = 2 f f i J ' * /V* ,  (19) 

where  V* = ~rr*2l is the volume o f  a vessel o f  length I and  radius  r*. Eq. (19) is an 
express ion for  the value o f k  as predic ted  by the cost o f  b lood volume concept .  I f  
we apply  it to the ent i re  cardiovascular  system in man  with the a p p r o x i m a t e  data 

f = 100 cma/s, &P* = 120 m m  H g  and V* = 4,500 cm 3, we get 
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k --- 7,110 dynes/cm2/s --- 0.015 Cal /day/cm a . (2o) 

This  is to be c o m p a r e d  with the metabolic rate  o f  app rox ima te ly  0.025 Cal /day/g 
for  an average  m a n  at rest. T h e  a g r e e m e n t  in orders  o f  magn i tude  is certainly 
ha rd  to dismiss. 

Consider  the value o f  K now, the constant  o f  propor t iona l i ty  b e t w e e n f  and  r .3 
as def ined  by Eq. (14). Subst i tut ing k = 7,110 dynes/cm2/s and  "q = 0.03 poise in 
that equat ion,  we find 

K =382/s.  (21) 

When we r e fe r  to Figs. 1, 2, 3, and  5, this value o f  K represents  a s t ra ight  line 
which is well within and  fairly central  to the empir ical  data.  In  this compar i son  

t 3 / 

dog C • 

, oioo2'. 
FIGURE 5. Relation between blood flowf(cm3/s) and vessel radius r(cm). The solid 
circles are based on data by Atabek et al. (1975) for the left circumflex coronary 
artery in dogs. The stl'aight lines are based on Eq. (12), namelyf  = Kr  s, with the 
indicated values of K(/s). 

we mus t  recall that  the opt imali ty  principle on which this value o f  K is based is 
not expec ted  to prevail  un i fo rmly  t h r o u g h o u t  the vascular  network.  Also, this 
value o f  K relates to the ent i re  cardiovascular  system in man  while the da ta  in 
Figs. 1-5 relate to various parts  o f  the system in th ree  d i f fe ren t  species. 

With all these considerat ions in mind ,  it may be safely concluded that  the 
empirical  evidence before  us is at least not  opposed  to the theoretical  result  that  
the radii  o f  blood vessels in the cardiovascular  system are p ropor t iona l  to the 
cube root  o f  the flow that  they convey.  I t  should also be men t ioned  at the same 
t ime,  pe rhaps ,  that  the wide spread  o f  data  points may not rule out  o the r  
possibilities such as a nonl inear  relat ion between f and  r .3 or  a l inear relat ion 
b e t w e e n f  and  o the r  powers  o f  r*. Such alternatives are not  be ing pu r sued  in this 
study, however ,  since it is believed that  they mus t  first be just i f ied on physiologi- 
cal g rounds .  
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T H E  C O N S T A N T  S H E A R  T H E O R Y  

An optimality principle for the radii of blood vessels in the cardiovascular system 
must be subjectcd not only to comparison with empirical data but also to the 
crucial question of the mechanism by which the principle would bc imple- 
mented. For cxamplc, the cost of blood volume concept is well supported by 
Murray's (1926) physiological arguments and by the value of the cost of blood 
volume constant k which it predicts in Eq. 20. Howevcr, the concept by itself 
offers no fcasible mechanism whereby the radii of individual blood vessels would 
be controlled by the volume of blood in the entire system. 

When supplemented by the optimality principle of minimum power defined 
by Eq. (4) and (5), however, the cost of blood volume concept moves a step closer 
to answering the question of mechanism. The compromise between pumping 
power and blood volume suggests that blood vessel radii are governed by the 
flow that the vesscls convey rather than by the volume of blood in the entire 
system. Again, this result is wcll supported by the general observations that a 
parent blood vessel always carries more flow and has a larger radius than each of 
its daughter vessels. Thus the question now is how the radii of blood vessels are 
controlled by the amount of  flow which these vessels are designed to convey? An 
answer to this question is offered by the more specific result that the optimum 
radii of blood vesscls arc proportional to the cube root of the flow which they 
convey. Referring to Eq. (3) for the shear force ~" between blood and vessel tissue 
in Poiseuille flow, wc observe immediately that if r is proportional to the cube 
root o f f  then thc shear force z becomes a constant. 

If  pursued to its ultimate conclusion, therefore, the compromise between 
pumping power and blood volume leads to the theory that blood vessel radii in 
the cardiovascular system are proportional to the cube root of the flow which 
they convey and that this principle is implemented by maintaining a constant 
shear force between the blood and vessel tissue. 

While it offers answers to both parts of the question in hand, this "constant 
shear theory" clearly faces several difficulties. For example, the shear force ~" 
varies periodically in many vessels where the pulsatile nature of the flow still 
prevails. It also varies considerably when the amount of blood flow is changed 
with changing activity in different parts of the body. The shear force is not 
uniform in regions of complex geometry, such as blood vessel junctions. And 
finally, the wide range of values of K obtained from empirical data tends to 
dismiss the theory that ~" is constant throughout the system. All these difficulties 
can be resolved, however, if the constant shear theory is stripped from its simple 
mathematical form and then recast with the complex realities of physiology. If  
the shear force between blood and vessel tissue is to be monitored and con- 
trolled, the endothelial cells must be chiefly responsible for this function since 
they are the direct recipients of this force. These cells may be the main instru- 
ment for maintaining a constant shear in a blood vessel and hence for giving the 
vessel its optimum radius. In this role, however, endothelial cells are perhaps 
not sensitive to small or temporary changes in shear but, rather, to large and/or 
prolonged changes only. Rather than maintain a strictly constant shear force, 
therefore, the cells would tend to keep the force within a certain range. And 
since the properties of these cells are not likely to be uniform, this range of shear 
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may be d i f ferent  in d i f ferent  parts o f  the system. Thus  the "constant" shear  
theory  can accommodate  periodic variations in ~" as well as d i f ferent  values o f  K 
in d i f ferent  parts o f  the cardiovascular system. 

In its physiological fo rm,  the re fore ,  the constant  shear  theory  may be stated as 
follows. T h e  radii o f  blood vessels in the cardiovascular system are propor t iona l  
to the cube root  o f  the flow that they convey, the constant o f  proport ional i ty  
being a p roper ty  o f  the endothelial  cells which may be d i f ferent  in d i f ferent  
parts o f  the system. In places where  the main funct ion o f  the vessels is to convey 
blood,  the value o f  the constant is de te rmined  by a compromise  between 
pumping  power  and the cost of  blood volume. In places where the vessels 
require  relatively larger  or smaller radii to p e r fo rm  other  functions,  the value of  
the constant is correspondingly  dif ferent .  

T h e  sensitivity o f  endothel ial  cells to shear  forces is well suppor ted  by experi-  
mental  evidence,  most notably that  o f  Fry (1968, 1969a, b, 1973) and Flaherty et 
al. (1972). More  recently,  Rodbard  (1975) compiled and documen ted  a great  deal 
o f  fu r the r  evidence for  the constant  shear  theory  in general ,  and for  the role o f  
endothelial  cells in part icular.  T h e  clinical implications of  these f indings,  with 
re fe rence  to several cardiovascular lesions, are also discussed at some length in 
that paper .  

C O N C L U S I O N S  

Fluid dynamic considerat ions based on a simple Poiseuille flow model  indicate 
that in o rde r  to achieve a compromise  between pumping  power  and the cost of  
blood volume,  the radii of  blood vessels in the cardiovascular system must be 
propor t ional  to the cube root  o f  the flow which they convey. 

Empirical evidence,  much of  which is highly approximate ,  indicates a general  
t rend  towards this rule  in the cardiovascular system but  the constant  o f  p ropor -  
tionality between the radius and the cube root  o f  the flow appears  to have a wide 
range of  values. 

Subject to their  obvious limitations, these theoretical and empirical findings 
can be combined into a constant shear  theory  in which the shear  force acting on 
endothelial  cells is the major  mechanism for the control  of  blood vessel radii in 
the cardiovascular system. 
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