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ABSTRACT

	

Activation and inactivation properties of Ca currents were inves-
tigated by studying the behavior of single Ca channels in snail neurons . The
methods described in the previous paper were used . In addition, a zero-phase
digital filter has been incorporated to improve the analysis of latencies to first
opening, or waiting times. It was found that a decrease in the probability of
single channel opening occurred with time . This was especially marked at 29°C
and paralleled the inactivation observed in macroscopic currents. The fact that
a single channel was observed means that there is a significant amount of
reopening from the "inactivated" state . Small depolarizations at 18°C showed
little inactivation . From these measurements, histograms ofsingle channel open,
closed, and waiting times were analyzed to estimate the rate constants of a
three-state model of activation . Two serious discrepancies with the model were
found. First, waiting time distributions at -20 mV were slower than those
predicted by parameters obtained from an analysis of the single channel closed
times . Second, it was shown that the time and the magnitude of the peak of the
waiting time histogram were inconsistent with a three-state model. It is con-
cluded that a minimum of four states are involved in activation . Some four-
state models may be eliminated from further consideration . However, a com-
prehensive model of Ca channel kinetics must await further measurements .

INTRODUCTION

In the preceding paper (Lux and Brown, 1984), it was shown that activation of
whole cell Ca currents and membrane patch Ca currents proceeded along
identical lines . Activation is not a Hodgkin-Huxley ms process and there was
strong evidence that a linear, sequential, three-state model of activation did not
fit the results either . Using data from patches containing single channels, the
activation process is examined in more detail in the present paper. The waiting
times until first opening were found to be distributed in a way not predicted by
the three-state model . Inconsistencies with the three-state model were also
reported by Hagiwara and Ohmori (1983) . An additional finding was that the
probability of opening of a single channel decreased at longer times . This is a
direct demonstration of inactivation of Ca channels .
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METHODS

Most of the methods were described in the previous paper and additional methods related
to data analysis are described here. A zero-phase digital filter was used to process the
single Ca channel currents. We began to use this filter primarily because of our interest
in the distribution of waiting times, i .e., the time from the beginning ofa voltage pulse to
the first channel opening . This distribution may be markedly affected by the types of
analog filtering that are currently employed for single channel analysis. The problem that
occurs is that filters with very good amplitude cut-off in the frequency domain also have
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FIGURE 1 .

	

Pulse responses of analog filters and a zero-phase digital filter . (A)
Below is the 2-ms pulse used as an input to the analog filter used in the "linear
phase" or Bessel mode (eight-pole) . Above are the responses with the filter cut-off
(3-dB point) at 4, 2, and 1 kHz . "Delays" as measured to the time of half-maximum
response were 0.27, 0.53, and 1 .0 ms, respectively . (B) The analog filter is in the
Butterworth or "flat amplitude" mode (eight-pole). Delays are 0.23, 0.44, and 0.84
ms with cut-off frequencies of4, 2, and 1 kHz . Note that there is significant ringing
in the pulse response of a Butterworth filter. (C) Pulse response of the zero-phase
digital filter described in the text for 3-dB cut-off frequencies of 1, 2, and 4 kHz
(eight-pole) . Note that there is no apparent time shift of the response . (D) Pulse
response of the zero-phase digital filter with noise present having a uniform
amplitude distribution and with the 3-dB cut-off frequency at 1 kHz (eight-pole) .
The filtered and unfiltered responses are superimposed to illustrate that no time
shifting occurs and that the original width of the pulse is maintained at half the
maximum amplitude .

significant phase shifts. In the time domain, these phase shifts appear as a "phasic delay"
in the pulse response, and this occurs at filter cut-offfrequencies where the pulse response
may be otherwise acceptable, i .e ., the pulse may reach full amplitude . In Figs. 1 A and B
we show the pulse response for a commercially available analog filter (model 852;
Rockland, Inc ., Gilbertsville, PA) . Using the time to half-maximum as a measure o£ the
delay, we measured delays as long as 1 ms, as indicated in the figure legend, when filtering
at 1 kHz . It is possible to configure this filter to have a 16-pole response; this would result
in approximately twice the delay . There are various solutions to the problem . It would be
possible to correct the distribution after it was measured if the pulse response o£ the filter
were known, the detector level were known, and the single channel data were relatively
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noise free . Another possibility would be to use matched filters on the current and voltage
traces; the beginning of the voltage pulse would then be measured in the same manner
that the channel openings are detected . The solution that we have chosen is simpler : it
consists of using a zero-phase digital filter (Kormylo and Jain, 1974) that is implemented
as discussed below . The zero-phase filter results in no time shifting of the signal, as shown
in Figs . 1 C and D. In addition to its zero-phase characteristic, the digital filter has other
quite useful attributes. Since the filtering is done off-line, we can digitize the data at a
high sampling rate and then choose a filtering scheme that gives a good signal to noise
ratio yet still allows one to see fast activity in the trace. A by-product of this procedure is
that since the anti-aliasing analog filter is set at a relatively high cut-off frequency of 5-
10 kHz, the capacitive artifact will decay faster and may therefore reach the dynamic
range ofthe A/D converter more quickly.
A zero-phase digital filter is quite easy to implement for fixed record length data . It

consists of taking any available digital filter and passing it through the data in both the
forward and backward direction . Kormylo and Jain (1974) also presented a method for
longer lengths of data. We used a single-pole Butterworth filter that is applied repetitively
to give any number of poles in the filter response . The single-pole Butterworth design
allows one to avoid the "ringing" that would be present in a multiple-pole Butterworth
filter, as is shown for an analog filter in Fig . 1 B . In Fig. 1 C, we show the pulse response
of the digital filter. Note that there is absolutely no time shifting of the data . In Fig. 1 D,
we show the pulse response obtained in the presence of noise .
We have arranged our single channel data in the form of histograms such as those that

are commonly employed. Histograms were plotted as the number ofevents in a time bin .
In some cases we have plotted a "rest" bin, which includes the rest of the events occurring
after the last bin . Single channel openings or closings, which occurred at the end of a
trace, were discarded from the distributions .

Our methods for fitting the model-dependent probability density function (PDF) to the
observed histograms take into account the fact that transitions of <300 ps in duration
were excluded from the analysis . As an example of our approach, consider the open time
distribution . Assuming a Markovian process with a single open state, the PDF is given by

PD =
1 e_r~,

	

(1)r

where r is a constant. The number of events expected in a bin at time t is given by
ft`r+At/Y

+-nr/sNeIN = NTOT

	

PDdt,

NMEAS = NTOT fi PDdt,r,

where NTOT is the total number of events in the distribution and the integral extends
across a bin of width At. Because of the limited frequency response of the measurement,
the beginning of the histogram was truncated . The total number of events measured in
the histogram, NMEAs, is given by the following :

where T, is the time where the beginning truncation ends. From Eqs. 1-3 we obtain the
following working expression :

NBUV = NMEAs er''"[eat_°`/s)/= _ e-Q+er/s)/*] .

	

(4)

A similar expression was used by Dionne and Liebowitz (1982) . In addition to the bins
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described above, we allow a "rest" bin, which includes the rest of the events that have
duration longer than a time T4. The number in this bin is given by

NAFST = NMEAs eTii,eT11.̀

	

(5)

Eqs. 4 and 5 are the equations that we fit to the data . Note that the only free parameter
is the mean open time, T.

Similar analyses can be applied to the other histograms normally obtained . The starting
point is always the PDF, and the ones we use are given in Appendix A. In addition, in
Appendix A we present an analysis of the identifiability of the rate constants of a three-
state model. That is, we have examined what parameters may be uniquely obtained from
the various histograms .
To fit the data to the model we used a nonlinear optimization routine that is a modified

form of the Marquardt routine (Marquardt, 1963), as it appears in Bevington (1969) . The
number of unitary events was not as large as we might have wished . This is largely because
the intervals between stimuli were long due to the slow inactivation process. Hence we
used a variety of methods for estimating the goodness of fit . We used various objective
functions such as unweighted least squares, weighted least squares, maximum likelihood,
and a "robust" estimator (Jennrich and Ralston, 1979). As described by Jennrich and
Ralston, the maximum likelihood estimator is easily implemented for the case of multi-
nomial data using a "weighting" of each bin with the inverse of the model value there.
With the latter three techniques, we constrained the weights attributed to a single point
to be <_ 1 . This helps eliminate unreasonably large weighting ofthe bins in which very few
events occurred . Each objective function gave slightly different estimates ofthe parameters
of interest, as reported later . For the most part, the estimates were within a range that
did not change the conclusions. We report standard deviations on the estimates as
described by Jennrich and Ralston (19'79). As pointed out by Jennrich and Ralston,
standard deviations on the parameters should be regarded cautiously .

Additionally, we have not accounted for the fact that unresolved briefopenings would
tend to divide the longer closed times into shorter ones . Nor have we accounted for the
fact that unresolved, brief closures would also change the open time measurements. Such
effects are discussed by Dionne and Liebowitz (1982) .

RESULTS

The characteristic activity of a single Ca channel when the potential is stepped
from -50 to -5 mV is shown in Fig. 2. The random nature of the transitions is
apparent, as is the repetitive nature of the discharge, although the frequency
with which transitions occur is clearly greater during the first 25 ms . Some
intervals among a sequence of repetitive openings may be very brief compared
to others, giving rise to a bursting pattern of discharge (Fenwick et al ., 1982 ;
Brown et al ., 1982 ; Hagiwara and Ohmori, 1983).
At a lower temperature the number of openings early in the trace is clearly

reduced (Fig . 3), although later in the trace the number of transitions seems to
be similar to those observed at higher temperatures . The summed currents at
the bottom of the figure reflect these differences.
Of interest in Fig. 2 is the fact that apparent inactivation occurs in the average

of the patch currents . This occurs despite the fact that no outward currents were
observed and no change in unitary amplitude took place. This is direct evidence
that Ca channels inactivate because of a decrease in the probability of opening.
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As discussed in the preceding paper (Lux and Brown, 1984), the patch contained
a single channel because there were no simultaneous openings . Assuming that
we have measured activity from a single channel, the openings later in the pulse
are from recurrent openings of the same channel. This indicates that the process
decreasing the probability of channel opening, which we have called inactivation,
is not due to an absorbing state. The channel can return from this state. Of
additional interest is the fact that inactivation is apparent in Fig. 2 at 28°C but
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FIGURE 2. Patch recording of a single Ca channel at 28°C following a step
depolarization from -50 to -5 mV. Thetime ofthe voltage step is indicated by the
vertical line . The linear components of capacitive and leakage currents were re-
movedby subtraction of the current response to a hyperpolarizing pulse of equiva-
lent amplitude as described in the preceding paper. Below are averaged patch
currents from 68 recordings . Note that the averaged current shows a tendency to
"inactivate."

not in Fig. 3 at 9°C. Similar results are shown in Fig. 12 of the preceding paper.
This effect of temperature qualitatively agrees with results from whole cell
currents (Fig . 2 of the preceding paper) and is another way in which patch
recordings agree with whole cell measurements .
There were relatively few times when there were no channel openings, or

failures, during the voltage clamp pulses . In the experiment of Fig. 2, there were
no failures at 28°C . The absence of arty apparent inactivation in the average
current from the single channel measurements at 9°C argues that the 15 failures
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out of 72 trials in this case (Fig . 3) were not due to an independent inactivation
process. The failures that occur at 9°C are more likely due to the finite length
(50 ms) of the record . This conclusion is confirmed by the results in Fig . 12 of
the previous paper, in which data from 200-ms pulses were obtained. Only one
failure occurred in 49 records at 9°C and none occurred at 28°C .
Because of the difficulty in obtaining large numbers of records on the same

patch, we decided to investigate the voltage dependence of inactivation in the
following manner.
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FIGURE 3.

	

Patch recording under the same conditions as in Fig. 2 except that the
temperature has been reduced to 9°C. Note that the channel openings early in the
trace are much less frequent here than in Fig . 2 . Also note that the average current
shows that turn-on has been significantly slowed as was found for macroscopic
currents at 0°C (Fig . 3 of preceding paper) . Average current from 72 recordings.

In Fig . 4 the probability of channel opening was averaged across the first 50
Ins and across an entire 400-ms pulse; both were then plotted against potential .
This time-averaged probability of the channel being open was calculated as the
fraction of the length of the trace in which the channel was open . Using 30
single channel records, the fractional open times averaged for the first 50 ms
were compared with the fractional open times averaged over the entire record .
The average values of the latter were found to be smaller at potentials above -5
mV. This result is consistent with the inactivation that occurs in whole cell
currents at higher potentials at room temperature . The mean open times were



BROWN ET AL.

	

Activation andInactivation ofCa Channels in Snail Neurons

	

757

similar for the two sets of data, as were the average numbers of openings per
burst. The relationship between Po and potential was similar to that between
normalized whole cell tail currents measured at -50 mV following steps to
prepulse potentials over the same range (Brown et al ., 1988).

Histograms ofChannel Activity

In Fig. 5 we have plotted the histograms normally obtained from analysis of
single channel data . Unitary activity was measured in 25 records of 350 ms
duration at -20 and 0 mV . In previous work a three-state model of activation
was used (Fenwick et al ., 1982 ; Brown et al ., 1982). We have also used the same
model to present the single channel kinetics in more detail than we had done
previously . In the kinetic scheme below we assume voltage-dependent rate
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The probability of opening, P� as a function of potential. The values
were computed from records that had evidence of only one active channel. The
number of records, n, per data point, ranged from 4 to 20 . The Po values were
estimated on the left-hand side as the fraction of time that the channel was open
over a period of 50 ms, and on the right-hand side, as the same fraction over the
total record length of 400 ms . The P.-V relationship is similar to the relationship
between the normalized amplitude of tail currents recorded at .a return potential of
-50 mV and the potential during the preceding command step (Brown et al ., 1985).

constants . We let R, A, and O stand for "rest," "activated," and "open" states,
respectively, and we are interested in the probability of transitions between these
states.

R k~A kl0

	

6
k_1 k_s

The distributions of the open times were described by a single exponential
function and the open time histograms at two potentials are shown in Fig. 5.
The number of openings was much less at -20 mV compared with 0 mV. The
data were fit according to Eqs. 4 and 5 and the mean open times were 1.6 and
1 .4 ms at -20 and 0 mV, respectively . Over the range of -20 to 0 mV, at 5-mV
increments, there was little voltage dependence of the mean open time . Further-
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more, the mean open time did not appear to be affected greatly by cooling, as
described in the previous paper .

Single channel activity shows very brief closed times and much longer closed
times as seen in Figs . 2 and 3 (see also Lux and Nagy, 1981 ; Fenwick et al .,

20

N
-20mV p l,

oMV

aW
0

m!

FIGURE 5 . Open time (left), closed time (middle), and burst length (right) of
histograms of single channel data obtained at -20 and 0 mV. Temperature was
18°C. Data points are plotted in the center of the bins. In the case of the open time
and burst duration plots the bin widths are 0.3 ms . The closed time histogram is
plotted with bin widths of 0.3 and 3 ms to try to illuminate the two phases in the
decay of the data, and the change in bin width causes the discontinuity in these
plots . The first bin, combining openings of <-300 ps, is truncated in each plot
because of the finite response time of the clamp . Actual transitions in this bin were
excluded from the fitting as described in the Methods . In the case of the open and
closed time histograms the last data point is a "rest" bin, which includes all of the
rest of the data with longer intervals as described in Methods . Smooth curves in the
plots are obtained from a three-state model. The open time histograms were fit
with Eqs . 4 and 5 as described in the text using a least-squares objective function .
The closed time histograms were fit using Eq. Al . From these two histograms all
parameters in the model were identified, and the prediction for the burst length
data is plotted using Eq . A9 . Parameters in units of 1 /ms at -20 mV are k+ , = 0.17
t 0.04, k_, = 0.37 t 0.09, k+2 = 0.19 t 0.03, and k_ y = 0.60 t 0.02 ; the numbers
of events measured were 89 and 96 for the closed time and open times, respectively ;
and the corresponding total numbers of events after extrapolation to time zero
were 94 and 115 . Parameters at 0 mV are k+i = 0.13 t 0.02, k_, = 0.35 t 0.05,
k+2 = 0.40 t 0.03, and k_2 = 0.70 t 0 .05 ; the number of events measured were
563 and 592 for the closed and open times, respectively ; and the corresponding
total numbers of events after extrapolation to time zero were 630 and 728 . The
time constants in milliseconds, computed from the k's above given in the order of
the open r, the faster closed -r, the slower closed r, the faster burst duration r, the
slower burst duration r, the faster macroscopic relaxation r, and the slower macro-
scopic relaxation r are 1 .67, 1 .5, 21, 1 .1, 4.0, 1 .0, and 2.7 at -20 mV and 1 .43,
1 .23, 16, 0.8, 1 .6, 0 .7, and 3.1 at 0 mV. These calculations were carried out using
the full expressions for the various time constants as they appear in the text .

1982; Brown et al ., 1982). Consistent with this observation are the two clear
phases in the decay of the closed time histograms (Fig . 5) . The closed time
histograms were fit with equations similar to Eqs . 4 and 5, derived from the PDF
in Appendix A, Eq. Al . In Appendix A we show that the rate constants k+i , k_ ,,
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and k+2 are uniquely identifiable from the closed time histogram . Fits to the data
are shown in Fig. 5, and parameter estimates are given in the figure legend . At
-20 mV the number of events was small and there is some uncertainty about
fitting the distributions with exponential functions. But the patterns were similar
to those obtained with the much larger numbers present at 0 mV. We should
note that the distribution of open times is biased toward longer values because
the briefest closures may not be resolved because of bandwidth limitation . A
similar problem occurs when unresolvable brief openings interrupt closed times.

Bursts were identified as openings separated by short gaps ; these groupings in
turn were separated from each other by very much longer intervals. This resulted
in the biexponential distribution of closed times. Bursts were defined then as
repeated openings separated from other openings by periods three or more times
the fast time constant of the closed time histogram. This definition included
single openings . The distribution of burst durations is shown in Fig. 5. As
described in Appendix A (Eq. A9), the apparent burst length is expected to be
biexponentially distributed, and the parameters k_,, k+2, and k_2 should be
uniquely identifiable from the data . In the case of our Ca data, bursts are not
always clearly demarcated . Because of the somewhat arbitrary nature of defining
a "burst" length and the fact that we truncated the bursts at 6 ms, we did not try
to identify parameters from this distribution . Instead we used the parameters
already identified above to predict a burst length distribution, and the predicted
curves are shown in Fig. 5. This fit was fairly good, and there were no free
parameters in the predicted curve.

Several other parameters can be calculated using the rate constants given in
the legend to Fig. 5, and these are compared here to the appropriate experimen-
tal measurements . The average number of openings per burst was measured
directly and in seven patches average values of 1 .29 ± 0.20 and 1 .51 t 0.31
openings per burst were found at -20 and 0 mV, respectively . The predicted
value for openings per burst is given by 1 + k+2/k_,, and the values were 2 .2 at
0 mV and 1 .5 at -20 mV . The calculated probability of opening is easily obtained
from Eq. 6, and it was 0.13 at 0 mV and 0.09 at -20 mV. These values are less
than the usual values measured directly from the data, and this may be another
clue that the three-state model is insufficient . The fast time constant in the closed
time distribution, calculated from Eqs. A2 and A3, had a value of 1 .23 ms at 0
mV and 1.5 ms at -20 mV. These latter values may be compared to values
calculated from the approximate method used by Fenwick et al . (1982) given by
(k_1 + k+2)'', which were 1 .33' ms at 0 mV and 1 .78 ms at -20 mV. The two
time constants for the current relaxations and noise spectra are obtained from
the eigenvalues of the matrix equation associated with Eq. 6 and they are given
by

where

and

T,,2' = 0.5 [b t (b2 - 4c))1/2 (7)

b = k+, + k+2 + k_, + k_2 (8)
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c = k_,k_2 + k+1k_2 + k+tk+2

	

(9)
(Lowry and John, 1910; Colquhoun and Hawkes, 1977) . They were calculated
to be 0 .7 and 3.1 ms at 0 mV and 1 .0 and 2.7 ms at -20 mV; these values are
within the range of the noise values measured experimentally (Table II, Lux and
Brown, 1984), although the tail current T's tend to be much faster (Table II,
Lux and Brown, 1984; Brown et al ., 1983) . The difference may arise from
missed fast openings and closures.

0MV

FIGURE 6 .

	

Waiting times at different potentials . (A and B) Waiting time histograms
are shown at 0 and -20 mV from a single experiment. The experiments were done
at room temperature with pulse durations of 50 ms . The smooth curves in both
cases were obtained using Eq. A8 and the parameters for a three-state model as
found in Fig. 5 . The number of measurements at 0 mV was 151 with 12 failures,
and at -20 mV the number of measurements was 81 with 9 failures . The computed
curves were obtained by multiplying the PDF integrated across the time bin by the
total number of records including the failures. The presence or absence of the
failures does not affect the position ofthe peak . Note that at -20 mV the predicted
curve from a three-state model is somewhat "faster" than the measured response.
(C) Waiting time histogram from another cell at -20 mV using 40-ms pulses. The
smooth curve is from the same model and parameters as in B . The number of
measurements was 62 and the number of failures was 24 .

The distributions of the latencies to first openings, or waiting times, are shown
in Fig . 6 . The openings came from a single channel, as deduced from arguments
presented earlier . Two distributions of waiting times taken from the same patch
at -20 and 0 mV are shown in A and B, and C shows additional measurements
at -20 mV from another patch. The presence of both a rising phase and a falling
phase in the data is evidence of an additional electrically silent state between the
"rest" and "open" states . Adjoining states would require the absence of a preced-
ing rise .
The smooth curve plotted on the histograms is the waiting time predicted
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from parameters estimated in Fig . 5 . Note that in each case the peak is larger
than the predicted response and occurs later . Thus, the waiting time measure-
ments are somewhat "slower" than the waiting time predictions based on the two
closed time measurements . This indicates that the waiting time data may empha-
size different kinetics than the closed time data, which were obtained continu-
ously along the voltage clamp pulse . We suggest that there is an additional state
in the activation process that has been uncovered by the waiting time measure-
ments .
There is a possible source of error in the above analysis . Inactivation was

present at 0 mV; thus, kinetic parameter estimates were corrupted by this in a
manner to make the closed times longer . These longer values in turn act to delay
the peak predicted by the three-state model . At -20 mV there was no inactivation
(see Fig . 4), which should simplify the analysis . These arguments may explain
why there is less discrepancy between the times to the measured and predicted
peaks in Fig . 6A than in Figs . 6B and C.
As shown in Fig . 7, the waiting time is greatly prolonged at a lower temperature

(compare also Figs . 2 and 3) . In addition, a relatively large number of records
showed no openings in this relatively short pulse, although with 200-ms pulses
there was only one failure in 49 records at 9°C. Thus, many first openings may
occur quite late . These results are consistent with observations in over 50
experiments that the turn-on of the macroscopic currents is greatly prolonged
by decreases in temperature (Lux and Brown, 1984 ; Brown et al ., 1983) .
As discussed above, we found that the peaks of the waiting time histograms

did not match those predicted from steady state measurements . Next, we tried
to fit these data with Eq . A8 . We found that the fits failed near the peaks, and
that the two p values tended to be almost equal, i.e ., there was only one value
for p . The p values in Eq . A8 are the eigenvalues for the system of differential
equations describing the three-state model with an absorbing open state . The
closed time PDF is obtained from this system of differential equations and has
the same system eigenvalues . The only difference in analyzing the closed time
or waiting time, as opposed to the complete system, is the initial condition applied
to the system of equations . Experimentally we determined that the waiting time
p's tended to be equal, and thus were clearly discrepant with the reciprocal time
constants obtained from the closed time data .

These results led us to investigate the relationship between the time of the
peak and the size of the peak of the waiting time PDF for a three-state, sequential
model as described in Appendix B. The analysis indicates that it is impossible to
reconcile the waiting time measurements with a three-state model. First, in Fig .
8A we have plotted the magnitude of the peak, f(p), vs . p at a constant time to
peak of 1 ms . An amplitude found on this curve will normally be associated with
2 p values as was described previously . However, there is a maximum in this
curve and only a single p value is obtained there . This explains why we tended
to obtain similar p values with the relatively "large" measured peaks. Also, we
found that our measured peak waiting times often fell above the maximum value
in a plot such as that in Fig. 8A . Thus, in Eq. B8 we present an expression
relating the maximum permissible value for the peak of the PDF, PRo*(tp), and
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Effect of temperature on the waiting time histogram at -5 mV. The
number ofmeasurements was 68 at 28 °C and there were zero failures . The number
of measurements at 9°C was 72 and there were 15 failures . Records were 250 ms
in length . Note that with the decrease in temperature there is a marked "slowing"
and broadening of the waiting time distribution .
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(A) The solid line is a plot of the maximum value of the waiting time
PDF given byf(p) defined in Eq . B5 . The time of peak was set at 1 .0 ms. Given a tP

of 1 .0 ms and a maximum value of the PDF corresponding to one of the three
horizontal curves, we find either two distinct p values, a repeated p value, or no
permissible p values . (B) The smooth curve is the maximum allowable value of the
peak of the waiting time PDF as a function of tp from Eq . B8 . Measured values for
a three-state model must lie in the "acceptable region ." The ordinate shows the
maximum probability density (1/ms) . Potential and temperature are indicated . All
but one of the data points lie in the "forbidden zone."
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the time of peak, tp. This equation is plotted in Fig. 8B and there we have
indicated an "acceptable" region where the data points must lie in order to be
consistent with a three-state model. Note that all but one of the data points lie
outside the acceptable region, giving us a second inconsistency with the model.
Moreover, one source of error would make the discrepancy larger, which is that
peak values were taken from histograms of the data with finite bin widths ; such
values would tend to be smaller than the true peak values .

DISCUSSION

The bursting behavior of single Ca channels and the biexponential nature of the
closed time histogram has led to a three-state model of activation as an explana-
tion (Fenwick et al ., 1982 ; Brown et al ., 1982). The rate constants of such a
model gave results that were consistent with the two relaxation T's measured for
the turn-offof whole cell Ca currents and with the twocorner frequencies shown
by noise spectra. Inconsistencies occur when the distribution of latencies to first
opening or waiting time is considered . Moreover, in whole cell current measure-
ments, we previously reported that the T's fitting the tail currents did not
adequately account for the delay in the turn-on currents (Brown et al ., 1983).
Also, cooling had a much larger effect on turn-on than on turn-off at comparable
potentials .

In the present paper we have concentrated to a large degree on the waiting
times. These were measured accurately in the present experiments because
phasic delay caused by filtering wasavoided. The zero-phase digital filter allowed
us to resolve the channel openings at bandwidths that ordinarily might produce
serious delay.
The measured waiting times tended to be "slower" than the waiting time

distribution predicted from parameters obtained from a three-state model as
applied to the closed time data measured throughout the record (Fig . 6) . Note
that this was true at -20 mV and at 19°C, conditions in which inactivation was
minimal or not present in either whole cell or averaged patch clamp currents .
Such a consideration is important because inactivation would complicate the
closed time histogram. In all but one case the peak and the time of peak of the
waiting time PDF fell outside the acceptable region for the three-state sequential
model (Fig . 8B). These results and the results of the macroscopic current
experiments should be incorporated into a model of Ca current activation that
requires, as a minimum, four states rather than the minimum three states
proposed previously . Along these lines, Hagiwara and Ohmori (1983) have
recently suggested that activation of Ca channels cannot be accounted for by a
three-state model on the grounds that the faster of the two time constants from
a closed time histogram is much less potential dependent than the slower time
constant . They indicate that this result is inconsistent with the manner in which
the two time constants depend on the rate constants in the closed time PDF of a
three-state model. Their latency histograms showed potential dependence but
were inconclusive in regard to their compatibility with the closed time PDF. As
an alternative, Hagiwara and Ohmori (1983) proposed the following scheme :
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closed, kI closed2 k2 open ks closed3 .

	

(10)k_1 k_2 k_ 3
We have found several inconsistencies with this scheme . First, assuming closed,
to be initially filled when the membrane is at rest, this scheme gives the same
waiting time distribution prediction as a three-state model. Thus, our analyses
above would also apply to this model, particularly the results in Appendix B, and
it would suffer from the same deficiencies . Note that the assumption that closed,
includes all of the channels at rest is not arbitrary . If closed2 or closed3 were to
include some channels at rest, then one would not see an initial delay in the turn-
on of macroscopic Ca current. This follows from the differential equation
describing the probability of being in the open state, i.e .,

d(open) - _(k-2 + k+3 o en + k+2(closed2) + k_3(closed3	11dt

	

)( P )

	

)

	

()

Immediately after initiation of a voltage clamp step, the probability of being in
the open state is zero, and because a delay is observed, the first derivative of this
probability is also zero . It follows from Eq. 11 that closed2 and closed 3 must
therefore be zero, and the argument is complete . The remaining arguments
have to do with expectations from macroscopic currents . As a result of the
closed3 state having a fairly fast kinetic exchange with the open state, we would
expect a rising phase in the tail currents. But this has not been observed (Fenwick
et al ., 1982 ; Brown et al ., 1983 ; Luxand Brown, 1984) . Additionally, the voltage
dependence of the steady state activation parameter, as measured by tail current
amplitudes, might be expected to pass through a maximum. Again, this was not
observed (Brown et al ., 1983). Another four-state model is one in which three
closed states precede the open state. Such a model has been proposed to explain
macroscopic Ca current (Brown et al ., 1983), but the single channel data have
not yet been incorporated into this scheme .

Cooling may slow transitions from the first closed state of a minimal four-state
model (or earlier steps in higher-order models). Thus, turn-on of macroscopic
currents is more affected than turn-off and waiting time and slow closed times
are more affected than open times or fast closed times. This may indicate that a
metabolic process modulates an early transition . Cachelin et al . (1983) have
recently shown that cAMP increases the opening probability of Ca channels and
this could be related to our observations . Metabolic regulation of channel density
is also possible, but it would not explain the kinetic effects we observed on
macroscopic and single channel currents .
The foregoing interpretation neglects transitions to the inactivated state .

However, a complete kinetic scheme for Ca channels must include inactivation .
A long-standing sore point in the Ca current literature is whether inactivation is
due to contamination from outward currents that are either Ca or non-Ca
related. The reduction in Po at longer times at potentials above -5 mV is proof
of an inactivation process that occurs as a result of a decreased probability of
channel opening. We wish to point out that the reason that we have found
evidence of inactivation in patch currents, whereas other investigators have not
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(Fenwick et al ., 1982 ; Hagiwara and Ohmori, 1983), has to do with our experi-
mental conditions . We used Ca rather than Ba (see Fig. 4 of the preceding
paper), and we have done experiments at room temperature or above, where
inactivation of macroscopic Ca currents (Y. TsudaandA. M. Brown, unpublished
observations ; and Fig. 12 of the preceding paper) and patch currents (compare
Figs. 2 and 3 and Fig. 12 of the preceding paper) is much greater. Reuter et al .
(1982) observed inactivation of multichannel patch clamp Ba currents during 1-
s depolarizations and after depolarizing patch prepulses of unspecified duration .
In their case, complete inactivation wasobserved, although in most circumstances
voltage-dependent inactivation of Ba currents is usually far from complete
(Brehm and Eckert, 1978 ; Brown et al ., 1981).
Of additional interest is the fact that the Ca channels reopen following a

closure in what might be thought of as an inactivated state; that is, there are
some fairly long closed times in records in which the inactivation is present in
the averaged patch current. A biexponential time course of inactivation of
macroscopic Ca currents has been described (Brown et al ., 1981) with one very
slow component, and the time course for recovery of macroscopic currents is
also at least biexponential with full recovery requiring as long as 10 s (Yatani et
al ., 1983) . The decreased probability of opening that we have observed in the
presence of inactivation coincides with the fast inactivation process. The macro-
scopic currents may be completely inactivated by a slower process, which implies
that unitary activity would cease in a sufficiently long record .
The question as to whether inactivation is coupled to or independent of

activation remains open . For Ca current-dependent inactivation, coupling is
obligatory. Sodium channels at comparable levels of activation show many more
nulls (Patlak and Horn, 1982; D. L. Kunze and A. M. Brown, unpublished
observations) . For the sodium system, inactivation is treated as an independent
process, although coupling certainly has its adherents. The comparison might
favor a coupled model for Ca channels where nulls would never occur. However,
the fact that inactivation is not completely absorbing on the time scale of our
experiments leaves open the possibility that the two processes are independent
for Ca channels as well .

APPENDIX A

Identifiability Analysis Applied to the PDFs of a Three-State Model
Before undertaking a parameter estimation problem, the identifiability of the parameters
must be examined . As we will demonstrate, the rate constants of interest are uniquely
identifiable from open time, closed time, and burst length PDFs but not from the waiting
time PDF. Identifiability concepts have normally appeared in systems theory analysis and
compartmental analysis (for recent reviews see R. F. Brown, 1980 ; Cobelli and DiStefano,
1980). We have analyzed the PDFs normally obtained for a three-state, sequential model
(Eq. 6). In terms of an identifiability analysis, the most interesting PDF is the closed time
PDF as given below (Colquhoun and Hawkes, 1981):

Pci(t) =

	

k+2

	

[(k+l - Ps)e°'' + (Pa - k+,)e°4']
Ps - Ps

(A1)
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where

and

Eq . A 1 can be written in the following form:

where

and

P3, P4 = 0.5[b + (b 2 - 4c)° .5]

	

(A2)

b = k+2 + k+ , + k_,

c = k+sk+, .
(A3)

Pc, = Ae°,` + BeN`,

	

(A4)
where A and B can be obtained by inspection . Consider that we could fit the data to Eq .
A4 and obtain A, B, P3, and P4 . The identifiability analysis then consists of determining if
we can obtain a unique set of parameter values, k+ ,, k_,, and k+2 from A, B, p3, and P4
using the available equations . From the expressions for A and B we obtain

Thus, we have shown that the three rate constants are uniquely identifiable from the
data . We wish to point out that we are not guaranteed unique identifiability from the
above four equations in three unknowns since the equations are nonlinear . In practice we
program Eqs. A1-A3 and make the rate constants the only free parameters in the
optimization routine . This is preferable to using an equation of the form of A4 because
A4 has an additional free parameter . An additional advantage is that many parameter
estimation routines will then provide confidence intervals on the parameters of interest .
The waiting time PDF PRO (Patlak and Horn, 1982; Colquhoun and Hawkes, 1981) is

given by

P3P4 P3P4PRO =

	

e o ,= -

	

eP,t

	

(A8)
P4 - Ps

	

P4 - P3

where p3 and P4 are defined above (Eqs. A2 and A3) . Note that in Eq . A8 only two
parameters appear . Thus, in this case if we fit the data with Eq . A8 we would obtain two
equations relating quantities in A8 to the three rate constant parameters ofinterest . Thus,
an infinite number of rate constants would satisfy the equations, and the rate constants
are not identifiable from the waiting time distribution .
The apparent burst length PDF (Colquhoun and Hawkes, 1981) is given by

AN + BP3.
k+1 = (A5)B+A

Other results quickly follow and we obtain

A(P4 - Ps)k+2 = (A6)
k+1 - Ps

and
k_, _ (P3 + P4) - k+2 - k+, . (A7)

Pbu PIP2= - °'` - -
(P2

[(k+2 + k_, p,)e + (P2 k+2 k_,)eos']
- Pl)(k+2 + k_,) (A9)

P,, P2 = 0.5[b ± (b 2 - 4c)'- 5] (A10)
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From analyses similar to those above, it can be shown that k_,, k+2, and k_2 are identifiable
from the apparent burst duration data . The last distribution that is normally considered
is the open time distribution . The trivial result here is that k_2 is identifiable from the
open time distribution .
We should note that identifiability as we use it here says nothing about the properties

of the data . Identifiability is purely a mathematical concept . When working with real data,
the best parameter estimates are obtained from the global minimum of the objective
function, or the minimum over the entire parameter space . Local minima of the same
value would lead to non-unique parameter estimates even if an analysis such as that above
indicated that the parameters were uniquely identifiable .

APPENDIX B

Analysis of the Time and Amplitude of the Peak ofthe Waiting Time PDF
The equation for the waiting time ofa three-state, sequential model is given by Colquhoun
and Hawkes (1981):

Ps - P4

where ps and P4 are given in Eqs . A2 and A3.
Eq . B1 has a maximum that occurs at time t P and we find it by differentiating Eq . B1,

We now wish to find the value of the maximum . We insert Eq . B3 into B1 and after
considerable rearrangement obtain

Using Eqs . B2 and B4 we get

b=k_Y +k+2+ k_,

c = k_2k_, .

/ P4

PRO(t1) = P4
I P41 P! - P4

1\ Pa

PRO =

	

P3P4

	

(e P4(R _ e
PstR)

	

(B 1 )

(B4)

PRO(tP) = P4e°4`P = Pse°s'P =f(P) .

	

(B5)
In Eq B5,f(p) is the maximum value of the waiting time PDF, and it is plotted in Fig. 8A
as a function of p with tP = 1 .0 ms . Note that given a waiting time histogram with a peak
at 1 ms and the amplitude of the peak, we can obtain the p values from this curve .
Depending on the value of the peak we can obtain two p values corresponding to pa and
P4, or at the peak of this function we would get two p's of value pP, corresponding to a
repeated eigenvalue of the system .
We wish also to investigate the maximum amplitude permissible from this PDF. From

the results above, this should occur in the case of redundant roots, i .e ., pp = B/2 from

setting the result to zero, and solving for tP . We quickly obtain

PS = e_IP(P4-P!) , (B2)
P4

and after rearrangement we have

In(ps/P4)
tP = (B3)

Ps - P4
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Eqs. A2 and A3 . In this case, Eq. B1 is no longer valid, and we must solve the set of
differential equations once again for the case of a repeated root given by pP = B/2 . The
result is

We now find the maximum value of this function as a function of time . The peak occurs
at

and the value at the peak is given by
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