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Treatment with inhibitors of polyamine biosynthesis,
which selectively lower intracellular spermine, does not
affect the activity of alkylating agents but antagonizes
the cytotoxicity of DNA topoisomerase 11 inhibitors
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'Istituto di Patologia Generale, Universita degli Studi di Milano and Centro di studio sulla Patologia Cellulare, CNR, Milan, Italy;2 Mario Negri Institute,
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Summary Inhibitors of ornithine decarboxylase (ODC), such as a-difluoromethylornithine (DFMO), may influence the cytotoxicity of anti-tumour
agents that interact with DNA. Intracellular levels of putrescine and spermidine were markedly reduced by ODC inhibitors while the level of
spermine, which is the main polyamine in nuclei, was unchanged. By combining a novel inhibitor of ODC, such as (2R, 5R)-6-heptyne-2,5-
diamine (MDL 72.175, MAP), with an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), such as 5'-{[(Z)-4-aminobut-2-
enyl]methylamino}-5'-deoxyadenosine (MDL 73.81 1, AbeAdo), spermine was selectively depleted in a human ovarian cancer cell line OVCAR-3
(i.e. spermine became almost undetectable whereas the levels of spermidine and putrescine were not affected). The depletion of spermine
blocked DNA synthesis with a consequent accumulation of cells in the G, phase of the cell cycle. Pretreatment with MAP plus AbeAdo did not
change the cytotoxicity of alkylating agents, such as L-phenylalanine mustard (L-PAM), 1,4-bis (2'-chloroethyl)-1, 4-diazabicyclo-[2.2.1] heptane
diperchlorate (DABIS), 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), cis-diamminedichloroplatinum (II) (cis-DDP), N-deformyl-N-[4-N-N,N-bis
(2-chloroethylamino)benzoyl] (tallimustine) or CC-1065, whereas it markedly reduced the cytotoxicity of DNA topoisomerase 11 inhibitors, such
as doxorubicin (DX) and 4'-demethylepipodophyllotoxin-5-(4,6-O)-ethylidene- P-D-glycopyranoside (VP-16). The addition of spermine before
drug treatment restored the sensitivity to the DNA topoisomerase 11 inhibitors, thus indicating that the reduced effect was related to the
intracellular spermine level. The reason for the reduction in cytotoxicity is unclear, but it does not appear to be related to a cell cycle effect or to
a decrease in the intracellular level of DNA topoisomerase 11. Drugs that modify polyamine biosynthesis are under early clinical development as
potential new anti-tumour agents. These findings illustrate the need for caution in combining such drugs with DNA topoisomerase 11 inhibitors.
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One of the more interesting characteristics of polyamines is their
apparent interaction with DNA (Feuerstein et al, 1991). These
polycations seem to exert specific effects besides their non-
specific electrostatic interactions. Studies in vitro have demon-
strated that polyamines, mostly spermidine and spermine, are
involved in the conversion of B-DNA into A and Z forms of DNA,
and help in DNA condensation (Thomas and Messner, 1988;
Feuerstein et al, 1991; Haworth et al, 1991). According to molec-
ular mechanistics calculations spermine binds to the major groove
producing a bend in B-DNA (Feuerstein et al, 1990).

Using 'real' DNA sequences from Saccharomyces cerevisiae,
rather than the homopolymeric or alternating co-polymer
sequences, it has been found that the secondary structure might be
the principal factor in polyamine binding to DNA. Polyamines
seem to bind strongly to particular DNA sequences, e.g. the TATA
element, and thus may play an important and dynamic role in chro-
matin structure and function in vivo (Xiao et al, 1991).

Indirect evidence has been reported of nuclear functions of
polyamines in mammalian cells (Hougaard, 1992). Spermine is
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present in the highest concentration in the mammalian cell nucleus
(Mach et al, 1982), although definitive data on cellular localization
and compartmentalization of polyamines have not been reported.

Polyamine metabolism is highly regulated, indicating that
polyamines have cellular functions beyond those of simple cations
(Pegg, 1988). Treatment with inhibitors of polyamine metabolism
alters the sensitivity of cultured cells to DNA-reactive chemothera-
peutic drugs, such as cis-diamminedichloroplatinum (II) (cis-DDP)
(Oredsson et al, 1982), nitrosoureas (Seidenfeld and Sprague,
1990) and doxorubicin (DX) (Seidenfeld et al, 1986a). These
investigations have been made with a- difluoromethylornithine
(DFMO), a specific and irreversible inhibitor of ornithine decar-
boxylase (EC 4.1.1.17, ODC) (Metcalf et al, 1978). ODC is the first
and rate-limiting enzyme in the polyamine biosynthetic pathway
that catalyses de novo synthesis of putrescine (Pegg, 1988).

S-adenosylmethionine decarboxylase (EC 4.1.1.50, SAMDC) is
the rate-limiting enzyme in the synthesis of spermidine and sper-
mine from putrescine (Pegg, 1988). The combination of specific
inhibitors of ODC and SAMDC can block polyamine biosyn-
thesis, causing a remarkable drop in spermine levels (Desiderio et
al, 1993). This result cannot be obtained with any ODC inhibitor
used alone (Pegg, 1988).

In the present study, we examined the effects of alkylating agents
and DNA topoisomerase II inhibitors on the survival of the human
ovarian carcinoma OVCAR-3 cell line after 72-h pretreatment with
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the combination of (2R,5R)-6-heptyne-2,5-diamine (MDL 72.175,
MAP) and 5'-{[(Z)-4-aminobut-2-enyl]methylamino)-5'-deoxya-
denosine (MDL 73.811, AbeAdo) inhibitors, respectively of ODC
(Mamont et al, 1984) and SAMDC (Danzin et al., 1990; Stjemborg
et al., 1993). OVCAR-3 ovarian carcinoma cells were almost
completely depleted of spermine and accumulated in the G,-phase
72 h after the combined inhibitory treatment. The depletion of
spermine did not affect the cytotoxicity of alkylating agents, but it
markedly reduced the cytotoxicity of DNA-topoisomerase II
inhibitors.

MATERIALS AND METHODS

Reagents and culture ware

DX and N-deformyl-N-[4-N-N,N-bis (2-chloroethylamino)
benzoyl] (tallimustine) were kindly provided by Upjohn-
Pharmacia, Milan, Italy; 1 ,3-bis (2-chloroethyl)- l-nitrosourea
(BCNU), 1 ,4-bis (2'-chloroethyl)-1 ,4-diazabicyclo-[2.2. 1] heptane
diperchlorate (DABIS) and L-phenylalanine mustard (L-PAM)
were from the Drug Synthesis and Chemistry Branch, Division
of Cancer Treatment, National Cancer Institute, Bethesda, MD,
USA; 4'-demethylepipodophyllotoxin-5-(4,6-0)- ethylidene-p-D-
glycopyranoside (VP-16) and cis-DDP were from Bristol-Myers
Squibb Company, Siracuse, NY, USA; CC-1065 was from Upjohn-
Pharmacia, Kalamazoo, MI, USA; MAP and AbeAdo were kindly
provided by Marion Merrell Dow Research Institute, Strasbourg,
France. Horse serum was purchased from Gibco Europe, Paisley,
UK. Propidium iodide and ribonuclease were purchased from
Calbiochem, CA, USA. Bromodeoxyuridine (BUdR) and goat anti-
mouse IgG conjugated with FITC were purchased from Sigma
Chemical St Louis, MO, USA. Anti-BUdR was from Becton
Dickinson, Mountain View, CA, USA; normal goat serum was a
product of Dakopatts, Denmark. Plastic flasks and Petri dishes used
for tissue culture were from Nunclon, Nunc, Denmark.

Cells and culture conditions

The OVCAR-3 human ovarian carcinoma cell line was used. For
all these experiments, cells were conditioned to grow in RPMI-
1640 medium supplemented with 10% horse serum that does not
contain amino-oxidases which can oxidize spermine to toxic prod-
ucts (Kaminska et al, 1990). The doubling time and morphology of
the cells growing in horse serum were the same as cell cultures
growing in fetal bovine serum.

Polyamine inhibitor treatment

Cells were seeded at a concentration of 20 000 cells ml-' and, after
at least two doubling times, 100 gM MAP and 25 jiM AbeAdo were
added to the culture medium for 72 h. The concentrations of MaP
and AbeAdo were selected on the basis of previous work
(Desiderio et al, 1993).

Anti-cancer drug treatment and clonogenicity

The effect of drug treatment was evaluated on exponentially
growing cells and on cells pretreated for 72 h with the combination
of the two inhibitors of polyamine biosynthetic enzymes. The
exponentially growing cells were seeded at a lower density than
those cells that were treated with MAP/AbeAdo so as to reach the

same cellular density at the time of the anti-cancer agents' treat-
ment. The control and inhibitor-pretreated cells were treated for 1
h with different concentrations of the anti-cancer agents. In
another set of experiments, reversion of the effect of MAP plus
AbeAdo was examined by adding 1 mm spermine 1 h before drug
treatment.

At the end of the drug treatments, 2000 cells were plated in 30-
mm Petri dishes with 3 ml of fresh medium containing 20 gM sper-
mine to allow growth of cells treated with MAP/AbeAdo. Cell
viability was checked using erythrosin B. The colonies were
allowed to develop for 10 days. Plating efficiency of the exponen-
tially growing control and MAP/AbeAdo pretreated cells was
between 85-90%. Addition of 20 gM spermine on control cells did
not affect this plating efficiency. The colonies were stained with
1% crystal violet solution in 20% ethanol, and the number of
colonies and mean clone area were measured using the Entry
Level image system (Immagini & Computer Italia). A background
correction was made, and the smallest control cell colony was
taken as the minimum for setting the cut-off point.

Flow cytometric analysis of cell-cycle phase
distribution and BUdR uptake

Monoparametric conventional cell-cycle analysis using propidium
iodide (a specific fluorescent dye for DNA) was carried out in
control and MAP/AbeAdo-treated cells at different times of treat-
ment and after inhibitor washout using a FACStar plus (Becton
Dickinson, CA, USA) instrument coupled to a Hewlett Packard
computer system. Cell cycle phase percentages were calculated on
at least 20 000 cells by the method of Krishan and Frei (1976).

For biparametric BUdR/DNA, 30 jM BUdR was added to the
cells for 20 min during the inhibitor treatment and, after the
inhibitor washout, cells were fixed with 70% ethanol at 40C. The
cells were washed with phosphate-buffered saline (PBS), and
DNA was denatured with 3N HCl for 30 min at room temperature.
Denaturation was stopped by the addition of 0. IM sodium borate
(pH 8.5) in excess, and the cells were centrifuged. The cells were
incubated for 15 min with a solution containing 0.5% Tween 20 in
PBS and 1% normal goat serum. BUdR uptake was detected after
1-h incubation with 100 jl of anti-BUdR monoclonal antibody
(diluted 1:10 in 0.5% Tween 20 in PBS), followed by another 1-h
incubation with 100 jil of FITC-conjugated goat anti-mouse IgG
(diluted 1:50 in 0.5% Tween 20 in PBS). After washing with PBS,
the cells were resuspended in a solution of 5 jig ml-' propidium
iodide in PBS and 10 000 U of ribonuclease for at least 2 h in the
dark (Erba et al, 1995).

Determination of polyamines

Cells from three flasks were pooled (1.5 x 106 cells) at various
times after MAP/AbeAdo treatment or inhibitor washout. Cellular
extracts were prepared in 200 jil of 0.2 N perchloric acid by ultra-
sonication and were centrifuged at 5000 r.p.m. for 20 min with an
Eppendorf microcentrifuge. Analysis was carried out using high
pressure liquid chromatography (Desiderio, 1992), with modifica-
tions (Loser et al, 1988). A C,8 reverse-phase Nova-Pak column
(4-jm particle size, 150 x 3.9 mm, Waters) was used for chro-
matographic separation of the polyamines, which were derivatized
post-column with o-phthalaldehyde. The protein content was
determined using the Lowry method (Lowry et al, 1951).
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protein content was determined by the Bradford assay. Fifty micro-
grams of protein of each sample were electrophoresed through 8%
sodium dodecyl sulphate (SDS)-polyacrylamide gels and trans-
ferred to nitrocellulose. Nylon filters were hybridized with mono-
clonal antibodies against human topoisomerase II alpha (kindly
supplied by Dr Scovassi, Pavia, Italy) and revealed with the
enhanced chemoluminesence (ECL) system after addition of anti-
mouse IgG (Amersham Italia, Milan, Italy).

RESULTS

As shown in Figure 1, MAP plus AbeAdo treatment for 72 h
completely inhibited cell growth. The inhibition was already

0 24 48 72 96 120 144 evident after 24-h treatment and lasted up to 144 h, even though
the inhibitors of polyamine biosynthesis were removed from the

MAP + AbeAdo medium at 72 h. When fresh medium containing 20 gM spermine
_o. was added to inhibitor-treated cells (72 h), the cells started to grow

Time (h) again exponentially after 24 h, i.e. from 96 h up to 144 h. Addition
Growth of OVCAR-3 cells during 72-h treatment with MAP/AbeAdo, of spermine to control cells did not modify the cell growth rate.
itor washout and addition of spermine. *, Cells growing in normal Figure 2 shows the polyamine patterns evaluated every 24 h
dium; E, cells growing in normal culture medium for 72 h, then during the 72-h inhibitory treatment and in the following 24 h in
with 20 gM supermine for 24 h; 0, cells growing in medium
IMAP and AbeAdo for 72 h, then in normal culture medium; O, cells with or without spermne addition. The MAP/AbeAdo treat-
ing in medium containing MAP and AbeAdo for 72 h, then in ment caused spermine levels to drop by 65-81% between 24 and
ontaining 20 gM spermine without the inhibitors 72 h, while the levels of the other polyamines were unchanged.

After inhibitor washout, only a marked increase of putrescine level
was observed at 24 h. This is because the activity of ODC, the rate-
limiting enzyme for putrescine biosynthesis, was no longer inhibited
and also because synthesis of the protein was probably increased
(Lovkvist-Wallstrom et al, 1995). When exogenous spermine was

n blot analysis added to cells treated with MAP/AbeAdo, the intracellular spermine
level increased about eightfold, reaching the value of control cells.

5 x 106) scraped from culture flasks were resuspended in After this treatment, putrescine did not increase as it is known that
f lysis buffer (1% Triton X-100; 10 mM Tris HCl pH 7.4; higher polyamines exert a negative feedback regulation on ODC,
sodium chloride; 1 mM phenyl methylsulphonyl fluoride blocking its translation and probably increasing enzyme degradation
5 ,ug ml-' aprotinine; 20 gg ml-' leupeptidine), left for 30 (Heby and Persson, 1990). In control cells, addition of spermine for
'C and centrifuged at 12 000 r.p.m. for 20 min at 40C. The 24 h caused an 1.8-fold increase in intracellular spermine.

B C

C

0._
2
a

E

0 24 48 72 96 120

MAP + AbeAdo

Time (h)

10 -

8.

6-

4.

2.

._c

0.

0)
E

E
C

24 48 72

MAP + AbeAdo

Time (h)

96 1'20

10

8

6

4-

2.

0
0 24 48 72

MAP + AbeAdo
Tmo
Time (h)

Figure 2 Polyamine levels in OVCAR-3 cells during 72-h treatment with MAP/AbeAdo, after inhibitor washout and addition of spermine. Polyamines in cell
extracts were assayed by HPLC. A, Putrescine; B spermidine; C, spermine. *, Cells growing in normal culture medium; O, cells growing in normal culture
medium for 72 h, then incubated with 20 gM spermine for 24 h; 0, cells growing in medium containing MAP and AbeAdo for 72 h, then in normal culture medium
for 24 h; 0, cells growing in medium containing MAP and AbeAdo for 72 h, then in medium containing 20 grm spermine without inhibitors for 24 h
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Figure 3 Biparametric DNA/BUdR (upper panel) and monoparametric DNA (lower panel) flow cytometric analysis of OVCAR-3 cells after 72-h MAP/AbeAdo
treatment, after inhibitors washout and addition of spermine. A, Exponentially growing cells; B, cells incubated with MAP and AbeAdo for 72 h; C, cells
incubated with MAP and AbeAdo for 72 h, then for 1 h in normal medium containing 20 gM spermine without inhibitors; D, Cells incubated with MAP and
AbeAdo for 72 h, then for 24 h in normal culture medium containing 20 AM spermine without inhibitors

Figure 3 shows the cell cycle phase distribution and the DNA
synthesis level, evaluated by BUdR incorporation, of control cells
(A) and cells treated for 72 h with MAP/AbeAdo (B). The
combined inhibitory treatment caused an almost complete reduction
of the cells in the S-phase of the cell cycle, as clearly shown by the
biparametric DNA/BUdR analysis (B) in which the majority of the
cells were in the GI phase of the cell cycle. When the DNA/BUdR
analysis was performed 1 h after 20 liM spermine addition to the
medium, the majority of the cells were still in the G, phase of the
cell cycle (C). However, at 24 h after spermine treatment, the cells
showed a DNA synthesis similar to the control cells (D).
The main purpose of the study was to investigate whether the

potential cytotoxic activity of several anti-cancer agents, with
different structures and modes of action, was affected by the
depletion of spermine observed after MAP/AbeAdo treatment.
Figure 4 shows the clonogenicity of cells treated with conven-
tional alkylating agents such as L- PAM, DABIS, BCNU, cis-DDP
or with some new alkylating compounds, such as tallimustine and
CC-1065, under the inhibitory treatment. No statistically signifi-
cant differences in cytotoxicity were observed in spermine-
depleted or non-depleted cells. However, when spermine-depleted

cells were treated with DX or VP- 16, two topoisomerase II
inhibitors, cytotoxicity was markedly lower. The addition of 1 mM
spermine before drug treatment restored the sensitivity to the DNA
topoisomerase II inhibitors, thus indicating that the reduction was
in effect, related to the spermine level (Figure 5). In fact, the addi-
tion of 1 mm spermine raised the intracellular spermine level as
observed after 20 ItM spermine without modifying the cell cycle
distribution (data not shown).

Treatment with MAP/AbeAdo did not reduce DNA topoiso-
merase IIa content as assessed by Western blot analysis (Figure 6).

DISCUSSION

The present study shows that the combination of an ODC
inhibitor, such as MAP, and a SAMDC inhibitor, such as AbeAdo,
selectively depletes intracellular spermine in human ovarian
cancer cells. As expected, the depletion of spermine blocked cell
growth without any detectable cytotoxicity. The fact that cells with
minimum levels of spermine but with normal levels of the other
polyamines accumulated in the G, phase of the cell cycle was
consistent with the view that spermine might be involved in DNA

British Journal of Cancer (1997) 75(7), 1028-10340 Cancer Research Campaign 1997
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Figure 4 Lack of effect of 72-h pretreatment with MAP/AbeAdo on the inhibition of clonogenicity of OVCAR-3 cells caused by L-PAM (A), DABIS (B), BCNU (C),
cis-DDP (D), tallimustine (E) and CC-1065 (F). The colonies were allowed to develop for 10-14 days in medium containing 20 AM spermine. *, Cells incubated
in normal medium for 72 h, then treated for 1 h with anti-cancer agents; O, cells incubated in medium containing MAP/AbeAdo for 72 h, then treated with anti-
cancer agents for 1 h

synthesis (Marton and Pegg, 1995). On adding spermine, the G1
block was rapidly reversed, and the cells progressed normally
through the other phases of the cell cycle. Therefore, the combina-
tion of MAP/AbeAdo provides a suitable system for investigating
the biological and pharmacological influence of spermine which is
the principal polyamine in the nucleus (Hougaard, 1992). In vitro
studies indicate that spermine is involved in the modification of
the structure and function of chromatin (Feuerstein et al, 1991;
Haworth et al, 1991). Therefore, the spermine level may influence
the activity of anti-tumour agents by modifying their interaction
with chromatin.

In order to investigate this point, we selected eight compounds
with different structures, six of them alkylating agents and two

DNA-topoisomerase II inhibitors. The alkylating agents cause
different DNA lesions. L-PAM and DABIS formi DNA interstrand
cross-links between guanine N7. In addition, these two drugs form
DNA monoadducts at guanine N7 position which differ slightly in
their sequence specificity (Broggini et al, 1990). Cis-DDP forms
DNA interstrand and intrastrand cross-links, the latter being quan-

titatively prevalent (Sherman et al, 1985; Eastman, 1986). BCNU
forms DNA interstrand cross-links between guanines and cytosines
located in a GC base pair, which are chemically different from
those formed by nitrogen mustards or cis-DDP (Cavanaugh et al,
1984; Seidenfeld et al, 1987). Mechanistically more different are
tallimustine and CC-1065 which do not alkylate guanines but only
N3 adenines with high sequence specificity (Broggini et al, 1991).
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Figure 6 DNA-topoisomerase Ila levels of OVCAR-3 cells, measured at
different intervals during 72-h treatment with MAP/AbeAdo

The depletion of spermine did not influence the cytotoxicity of
any of the alkylating drugs. This is in apparent conflict with some

published findings. Pretreatment with inhibitors of ODC, such as

DFMO or MAP, was in fact reported to change BCNU and cis-
DDP cytotoxicity (Chang et al, 1987; Milam et al, 1989; Hunter et
al, 1990). It is worth noting that separate treatment with these
inhibitors lowered spermidine and putrescine levels, while sper-

mine remained unchanged. Therefore the results of the present
study, in which, by combining MAP and AbeAdo, almost
complete depletion of spermine was obtained, cannot be compared
with the previous studies in which the other two polyamines were

decreased. A different modulation of the three polyamines appears

to influence the effects of the drugs in a different way. This is diffi-
cult to explain, but it may be the consequence of the different func-
tions of the three polyamines in the cells, which have been only
partly elucidated (Hougaard, 1992; Marton and Pegg, 1995).
To our knowledge, no reports have been published on the influ-

ence of polyamine levels on alkylating agents that bind in the
DNA minor groove, such as tallimustine and CC-1065 (Hurley et
al, 1988; Arcamone et al, 1989). These two drugs bind in the
minor groove of AT-rich sequences and alkylate N3 adenine with a

high degree of sequence specificity (Broggini et al, 1995).
Depletion of spermine did not cause any detectable change in the
cytotoxicity of both minor groove binders. These results could be
expected on the basis of the more recent theoretical studies on the
spermine-DNA interaction. In fact, whereas previous studies

(Liquori et al, 1967) suggested a more favourable interaction of
spermine within the minor groove of DNA, more recently
Feuerstein et al (1990) proposed a model which supports the inter-
action with the major groove, based on both structural and ener-

getic grounds.
In contrast to what has been found for alkylators, it appears that

spermine depletion caused a reduction in the cytotoxicity of DNA
topoisomerase II inhibitors. This was found both for DX, which
intercalates into DNA (Arcamone et al, 1989), and for VP-16,
which does not bind significantly to DNA. The reason for the loss
of effect of the DNA topoisomerase II inhibitor is unclear. The
following explanations can be suggested: (a) the arrest of cells in
the G, phase following spermine depletion might reduce the cyto-
toxic effect of drugs known to be cell cycle specific (Seidenfeld et

al, 1986b; Pohjanpelto et al, 1994); (b) spermine depletion might
be associated with a decrease in cellular levels of DNA topoiso-
merase II, known to be important in the activity of these
compounds; (c) DNA binding and the activity of DNA topoiso-
merase II could be affected by the local changes in the structure
and charge of chromatin, probably consequent to the drop in sper-

mine level (Pommier et al, 1989). The first two possibilities appear

unlikely as sensitivity to DNA topoisomerase II inhibitors was

completely restored by adding spermine before drug exposure,

even though the cell-cycle distribution was not modified by the
polyamine. DNA topoisomerase II levels were unchanged after
treatment with MAP/AbeAdo. The third explanation seems the
most likely, considering that changes in polyamine levels may

modify the activity of other DNA-processing enzymes (Basu et al,
1992) and are believed to affect the DNA binding of transcription
factors (Celano et al, 1989).
The reduced activity of DNA topoisomerase II inhibitors after

depletion of intracellular spermine suggests the need for caution
when combining novel drugs that modify polyamine biosynthesis,
such as CGP 48664 (Regenas et al, 1994), which is currently under
clinical investigation, with topoisomerase II inhibitors.
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