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Acetate synthesis from C02 by Acetobacterium woodii may occur as in homo-
acetate-fermenting clostridia, as indicated by high levels of enzymes of the
tetrahydrofolate pathway and by pyruvate-dependent formation of acetate from
methyl-B12 and methyltetrahydrofolate.

Several species of bacteria synthesize acetate
from C02 (18, 21). The pathway of this synthesis
has been investigated in Clostridium thermo-
aceticum (2) and C. formicoaceticum (13). These
clostridia perform a homoacetate fermentation
of sugars, and neither organism produces or uses
molecular hydrogen. Electrons generated during
the fermentation are accepted by C02, which is
reduced to acetate. The reduction of C02 to a
methyl group occurs with formate, 10-formyl-
H4folate, 5,10-methenyl-H4folate, 5,10-methyl-
ene-H4folate, and 5-methyl-H4folate as inter-
mediates (2). The methyl group of 5-methyl-
HJfolate is most likely transferred to a corrinoid
and is subsequently carboxylated in a transcar-
boxylation reaction with pyruvate to yield ace-
tate (17).
Acetobacterium woodii, which was recently

described (3), performs homoacetate fermenta-
tion of fructose and, in addition, grows auto-
trophically, reducing C02 in the presence of H2
to acetate. It is possible that A. woodii uses a
pathway similar to that of saccharolytic clos-
tridia for acetate synthesis. We wish to report
the levels of enzymes of this pathway in extracts
of A. woodii. Previously it has been demon-
strated that such extracts are able to form ace-
tate from C02 and H2 (16).
A. woodii was mass-cultured, by the method

of Balch et al. (3), either on fructose (N2 atmos-
phere) or on an H2-CO2(80:20) gas mixture in
basal medium supplemented with 2 g of Tryp-
ticase per liter of medium. Cells were harvested
in the stationary phase with a continuous-flow
Sharples centrifuge. Cells were suspended in 1
ml of N-tris(hydroxymethyl)methyl-2-amino-
ethanesulfonic acid buffer (pH 7.1) per g (wet
weight) and stored at -20°C under an H2 at-

mosphere until used.
Extracts of A. woodii were prepared by pass-

ing cell suspensions through a French pressure
cell at 16,000 lb/in2. A broken-cell suspension
was centrifuged under an H2 gas phase at 30,000
x g for 30 min at 50C. The resulting supernatant
solution was assayed at 300C for formate dehy-
drogenase, formyl-H4folate synthetase (EC
6.3.4.3), methylene-ILfolate dehydrogenase, and
methenyl-H4folate cyclohydrolase (EC 3.5.4.9)
(modified by following the decrease in absorb-
ancy at 350 nm) as described by O'Brien and
Ljungdahl (13). Formation of acetate from
[methyl-'4C]methylcobalamin and [methyl-
14C]methyl-H4folate was investigated as de-
scribed by Ghambeer et al. (7), except that the
assays were performed at 300C. Protein in ex-
tracts was estimated by measuring the turbidity
at 400 nm of a sample in 20% trichloroacetic
acid. Protein in whole cells was determined as
described by Strickland (20). Bovine serum al-
bumin was used as the standard. Corrinoids were
extracted from whole cells by the method of
Bernhauer et al. (4), converted to the dicyano
form, and quantitated by absorbancy at 580 nm
(molar extinction coefficient = 10.6 x 103). This
method lacks sensitivity for determining low
levels of corrinoids from whole cells.

H4folate, 5,10-methenyl-H4folate, and 5,10-
methylene-H4folate were prepared as described
by O'Brien and Ljungdahl (13). [methyl-
'4C]methylcobalamin was synthesized as de-
scribed by Mervyn and Smith (12). [methyl-"4C]
methyl-H4folate was prepared as described by
Blair and Saunders (5).
ATP, nicotinamide adenine dinucleotide, nic-

otinamide adenine dinucleotide phosphate, bo-
vine serum albumin, folic acid, coenzyme A, and
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TABLE 1. Levels of certain enzymes in crude extracts ofsome acetate-producing organisms
Methylene-H4folate dehydro-

Formate dehy- Formyl- Methenyl- genase
Organism Growth conditions drogenase" H4folate syn- ,k14folate cyclo-

units' thetase units hydrolase units Units Electron ac-
ceptor"

A. woodii H2 + C02 0.11-0.17 9.01-12.7 0.59-1.07 0.59-1.27 NAD
A. woodii Fructose + N2 2.95-3.91 8.8-9.2 0.24-0.36 0.36-0.81 NAD
C. formicoace- Fructose + CO2 0.15 8.7 0.15 8.1 NAD

ticumd
C. thermoaceti- CO2 + fructose, 2.63f 12.5 1.3 1.8 NADP
cum' glucose, or xy-

lose
a Methyl viologen was used as the electron acceptor.
b Units are given as micromoles of substrate used or product formed per minute per milligram of protein.
NAD, Nicotinamide adenine dinucleotide; NADP, nicotinamide adenine dinucleotide phosphate.

d O'Brien and Ljungdahl (13).
e Andreesen et al. (2).
f Andreesen and Ljungdahl (1).

cyanocobalamin were purchased from Sigma
Chemical Co. N-tris(hydroxymethyl)methyl-2-
aminoethanesulfonic acid was purchased from
Calbiochem. All other chemicals were of analyt-
ical grade and were from different sources.
The levels of formate dehydrogenase and the

three H4folate enzymes in extracts of A. woodii
are presented in Table 1. The levels of these
enzymes in A. woodii are comparable with those
found in extracts of C. thermoaceticum and C.
formicoaceticum. These values are 100 to 1000
times higher than those reported for Saccharo-
myces cerevisiae (9, 15) and Escherichia coli (6,
8, 19). The high levels of these enzymes indicate
their probable importance in cell metabolism
and suggest that A. woodii shares a common

pathway with the two homoacetate-fermenta-
tive clostridia.
Table 2 shows the results of the synthesis of

acetate from [methyl-"4C]methylcobalamin and
[methyl-14C]methyl-H4folate by extracts of A.
woodii grown on an H2-CO2 gas mixture. The
conversion of these substrates to acetate in ex-
tracts of A. woodii is not as efficient as in ex-

tracts of C. thermoaceticum. Still, the acetate
formation by extracts of A. woodii is dependent
on the presence of pyruvate and coenzyme A. A
requirement for pyruvate in these reactions has
been demonstrated for C. thermoaceticum (14,
18) and for C. formicoaceticum (13). A require-
ment for coenzyme A for the incorporation of
[methyl-"4C]methylcobalamin has been shown
for C. thermoaceticum (14). Results of prelimi-
nary experiments with extracts of A. woodii
prepared from fructose-grown cells also indicate
a need for coenzyme A and pyruvate for the
synthesis of acetate from [methyl-14C]methyl-
cobalamin in this assay system. The require-
ments for acetate formation, particularly that of
pyruvate, are indicative of a similar reaction in

TABLE 2. Conversion of the methyl-'4C moiety of
[methyl-'4Cmethyl-H4folate and [methyl-14C]-

methylcobalamin into acetate by cell extracts ofA.
woodii grown on H2 plus C02

metyl-4C dpm of dpm ofmethy Reaction system' methyl-14C acetatedonor added formed

CH3-B,2 Complete incuba- 333,900 15,550
tion mixture

CH3-B12 - Pyruvate 333,900 1,100
CH3-B12 - Dithiothreitol 333,900 14,910
CH3-B12 - Ferrous ammo- 333,900 16,360

nium sulfate
CH3-B,2 - Coenzyme A 333,900 3,350
CH3-H4folate Complete incuba- 49,700 1,340

tion mixture
CH3-H4folate - Pyruvate 49,700 30

a The complete incubation mixture contained (in a volume
of 1 ml) sodium pyruvate (30 ,umol), dithiothreitol (10 ,umol),
ferrous ammonium sulfate (5,umol), coenzyme A (3.3 ,mol),
[methyl-"4C]methylcobalamin (0.285 ,umol) or [methyl-14C].
methyl-H4folate (0.85 jmol), and cell extract (15 mg of pro-
tein). The incubation was for 10 min under N2 at 30°C. In the
case of [methyl-14C]methyl-H4folate, the dl form was used, of
which half was available as substrate.

A. woodii and in C. thermoaceticum.
Table 3 compares the levels of total corrinoids

in the acetate-producing bacteria and in some
non-homoacetate-fermentative organisms.
There is evidence for the involvement of corri-
noids in acetate synthesis in C. thermoaceticum
(7, 10, 11). Whole cells of this bacterium, C.
formicoaceticum, and A. woodii all contain lev-
els of corrinoids about 100 times higher than
those found in the non-homoacetate-fermenta-
tive organisms listed in the table.
The results presented here indicate similari-

ties between A. woodii and the homoacetate-
fermentative clostridia in that they possess high
levels of H4folate enzymes and high levels of
corrinoid. Furthermore, extracts of all three bac-
teria catalyze pyruvate-dependent conversion of
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TABLE 3. Levels of corrinoids in whole cells ofsome
homoacetate-fermnentative bacteria and some non-

homoacetate-fermentative bacteriaa
,umol of corrinoid

Bacterium per gram of whole-
cell protein

Acetobacterium woodii (H2 + C02) 0.64-0.94
A. woodii (Fructose + N2) ......... 1.21-1.36
Clostridium fornicoaceticum ...... 0.43-0.65
C. thernoaceticum ............... 0.44-0.63
Pseudomonas putida ............. <0.01
Escherichia coli ................ <0.01
Bacillus alvei ......... 0.02
C. sporogenes .................... 0.02

a P. putida was a gift from I. C. Gunsalus; E. coli B
was a gift from R. Gennis; B. alvei and C. sporogenes
were gifts from R. DeMoss; C. formicoaceticum and
C. thermoaceticum were grown, as described earlier
(2, 13), in media containing 106 M selenite, 105 M
molybdate, and 10-5 M tungstate.

[methyl-'4C]methylcobalamin to acetate. The
results suggest that the synthesis of acetate in
A. woodii is similar to that demonstrated in C.
thermoaceticum. In autotrophically grown A.
woodii, the reduction of CO2 to acetate provides
a system that is free from alternate carbon
sources, in studies of acetate synthesis from CO2.
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