Supplemental Materials

Materials and methods

Cycloheximide chase assay

Cells expressing HA-tagged proteins were grown in indicated medium to $OD_{600} \sim 0.6$. Cycloheximide (50 µg/ml final concentration) was added to start the chase. Every 15 min, a 1 ml aliquot of the cell culture was withdrawn and total cellular proteins were prepared as described (1).

Figures and figure legends

Figure S1. Mutations in five CKI consensus sites of *PTR3* do not significantly affect *AGP1-lacZ* reporter gene expression. *ptr3* Δ cells (strain ZLY1917) were transformed with plasmids carrying various *PTR3* constructs as indicated. Transformants were grown in SD medium with or without 0.02% leucine and β -galactosidase assays were conducted

as described in Materials and methods. Plasmids used: WT, pZL1949; *S118A*, pZL2157; *S228A*, pZL2147; *S353A*, pZL2265; *S421A*, pZL2261; *T435A*, pZL2269.

Figure S2. An *rts1* Δ mutation does not activate *AGP1-lacZ* expression in co-cultured wild type cells carrying an *AGP1-lacZ* reporter gene. Indicated cells were grown in SD medium with or without 0.02% lecuine as indicated and β -galactosidase activities were determined as described. ZLY044, WT *AGP1-lacZ*; ZLY2535, *rts1* Δ . In the co-culture experiment, equal amount of ZLY044 and ZLY2525 cells were inoculated and grew to a combined OD of 0.6-0.7. Based on growth rates of independent cultures, the ratio of the amount of ZLY044 to ZLY2535 cells in the collected co-culture for β -galactosidase assay is 1:1 when grown in SD medium without leucine.

WT T525A Ptr3-myc

Figure S3. The threonine 525 to alanine mutation in Ptr3 does not affect its interaction with Ssy5-C. $ptr3\Delta ssy5\Delta$ cells (RBY875) carrying centromeric plasmids expressing Ssy5-HA (pZL2340) and wild type Ptr3-myc (pZL1949) or the mutant Ptr3(T525A)-myc (pZL2122) were grown in SD medium with 0.02% leucine. Ptr3-myc and Ptr3(T525A)-myc were immunoprecipitated with anti-myc antibody and myc- and HA-tagged proteins were probed with anti-myc and anti-HA antibody, respectively. Ssy5 and Ssy5-C-HA indicate full-length and the C-terminal fragment of Ssy5. "*" indicates the heavy chain of anti-myc antibody.

Figure S4. Mutations in *SSY1* and *PTR3* do not increase instability of Ssy5-C, the Cterminal fragment of Ssy5. $ssy5\Delta$ (RBY909), $ssy1\Delta$ $ssy5\Delta$ (RBY873), $ptr3\Delta$ $ssy5\Delta$ (RBY875) cells transformed with a centromeric plasmid expressing Ssy5-HA (pZL1668) were grown in SD medium with 0.02% leucine to mid-log phase. Stability of Ssy5-C-HA was examined by cycloheximide chase assay as described in Figure S1. Ssy5-C-HA was probed with anti-HA antibody.

Figure S5. An N-terminal 6xHA tagged Ssy5 is not constitutively active. $ssy5\Delta$ cells carrying a *AGP1-lacZ* reporter gene (strain ZLY1939) were transformed with control vector pRS416, *HA-SSY5* (pZL840), or non-tagged *SSY5* plasmid (pZL736) and grown in SD medium with or without 0.02% leucine. β -galactosidase activity assay was carried out as described in Materials and methods

Tables

Strains used.

Strain	Genotype	Source/Reference
ZLY2879	MATa ura3 PTR3-myc::kanMX4	This study
ZLY2902	MATa ura3 STP1-HA::kanMX4	This study
ZLY1917	MATa ura3-52 ptr3-Δ15 AGP1::AGP1-lacZ::kanMX4	This study
ZLY044	MATa ura3-52 AGP1::AGP1-lacZ::kanMX4	This study
ZLY2535	MATa ura3-52 rts1 Δ::kanMX4	This study
RBY875	MATa ura3-52 lys2-Δ201 ptr3-Δ15 ssy5Δ::kanMX4	This study
RBY909	МАТа ura3-52 lys2-Δ201 ssy5Δ::kanMX4	This study
RBY873	MATa ura3-52 lys2-Δ201 ssy1-Δ13 ssy5Δ::kanMX4	This study
ZLY1939	MATa ura3-52 ssy54::kanMX4 AGP1::AGP1-lacZ::kanMX4	This study

Plasmids used.

Plasmid	Description	Source/Reference
pZL1949	pRS416 containing HIS6-PTR3-myc, expressing Ptr3 with a 6xHis tag at the N-	This study

	terminal end and a 9xmyc tag inserted between residues 157 and 158 of Ptr3.	
pZL2157	pRS416 containing HIS6-PTR3(S118A)-myc.	This study
pZL2147	pRS416 containing HIS6-PTR3(S228A)-myc.	This study
pZL2265	pRS416 containing HIS6-PTR3(S353A)-myc.	This study
pZL2261	pRS416 containing HIS6-PTR3(S421A)-myc.	This study
pZL2269	pRS416 containing HIS6-PTR3(T435A)-myc.	This study
pZL1668	pRS416 containing SSY5-HA, expressing Ssy5 with a 3x HA tag at the C-terminal	This study
_	end.	-
pZL2340	pRS417 (CEN LYS2) containing SSY5-HA, expressing Ssy5 with a 3x HA tag at	This study
	the C-terminal end.	
pZL1949	pRS416 containing HIS6-PTR3-myc, expressing Ptr3 with a 9xmyc tag inserted	This study
	between residues 157 and 158 of Ptr3 and a 6x HIS tag between residues 1 and 2.	
pZL2122	pRS416 containing HIS6-PTR3(T525A)-myc9.	This study
pZL840	pRS416 containing HA-SSY5, expressing Ssy5 with a 6x HA tag at the N-terminal	This study
	end.	-
pZL736	pRS416 containing SSY5.	This study

Supplemental References

1. Liu, Z., M. Spirek, J. Thornton, and R. A. Butow. 2005. A novel degronmediated degradation of the RTG pathway regulator, Mks1p, by SCFGrr1. Mol Biol Cell 16:4893-904.