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Modulation of doxorubicin resistance in a doxorubicin-
resistant human leukaemia cell by an immunoliposome
targeting transferring receptor
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Summary Using a doxorubicin-resistant subline (K562/ADM) of human leukaemia K562 cells (Tsuruo et al, 1986), the effect of
immunoliposomes that targeted a cellular transferrin receptor (TFR) was examined by neutralization of doxorubicin (DOX) resistance. OKT9-
CIL, prepared by conjugation of DOX-encapsulated liposome with an anti-TFR monoclonal antibody, OKT9 (Aisenberg and Wilkes, 1980),
showed similar binding to both K562 and K562/ADM. Although an 80-fold higher sensitivity to free DOX on cell growth inhibition in K562 than
in K562/ADM was found, the difference was clearly diminished after OKT9-CIL treatment through the increased sensitivity of K562/ADM. The
cellular DOX level 30 min after the exposure of free DOX was 45-fold lower in K562/ADM than in K562, whereas nearly equivalent DOX levels
were detected in K562 and K562/ADM after OKT9-CIL treatment. In addition, DOX in K562/ADM in the free DOX treatment was efficiently
excreted by 54% within 120 min of incubation, whereas almost all DOX supplied by OKT9-CIL remained uncleared. Fluorescence
microscopic observation showed that OKT9-CIL was internalized into juxtanuclear vesicles in K562/ADM cells. These results suggest that

OKT9-CIL has a potency to accumulate DOX, resulting in augmentation of DOX cytotoxicity in DOX-resistant tumour cells.
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Multidrug resistance is one of the major factors decreasing the effi-
cacy of tumour chemotherapy (Harris and Hochhauser, 1992). This
phenomenon is at least partly mediated by P-glycoprotein, which is
highly associated with a membrane factor of various tumour cells.
Cellular P-glycoprotein exerts its effect through a pump that excretes
intracellular anti-tumour drugs (Gros et al, 1986).

We have shown that liposomes encapsulating DOX (chemo-
immunoliposomes, CILs), which target tumour-associated anti-
gens, immunoselectively bind to the corresponding tumour cells
and are then internalized, resulting in an increase in the intracel-
lular level of DOX (Tanaka et al, 1989; Suzuki et al, 1994, 1995a).
Thus CIL-targeting cells with multidrug-resistant phenotype could
lead to a distinct intracellular DOX distribution that may result in
the decreased excretion of DOX.

A membrane transferrin receptor (TFR) is associated with cell
growth in malignant cells and some normal cells (Hamilton et al,
1979; Trowbridge and Omary, 1981) and is internalized into cells
by endocytosis through the binding of transferrin or anti-TFR anti-
bodies (Weissman et al, 1986; Esserman et al, 1989; Girones and
Davis, 1989). Thus TFR possess properties suitable for a target
antigen for endocytosis of CILs.

In the present study, changes in the intracellular fate of DOX
and its cell growth-inhibitory effect were determined after expo-
sure of a DOX-resistant human leukaemia cell to an anti-TFR CIL.
The results obtained indicated a possible advantage of the
approach for overcoming multidrug resistance in tumour cells.
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MATERIALS AND METHODS
Cell lines

Human myelogeneous leukaemia K562 and its DOX-resistant
subline K562/ADM (Tsuruo et al, 1986) were generously provided
by Dr Tsuruo, Institute of Molecular and Cellular Biosciences,
University of Tokyo. These cell lines were maintained in
Dulbecco’s modified Eagle minimal essential medium (Nissui
Pharmaceutical, Tokyo), 2 mM L-glutamine, 1 uM sodium pyru-
vate, 10 mm Hepes, kanamycin at 60 pg ml-!, pH 7.4 (standard
medium) containing 10% heat-inactivated fetal calf serum (FCS)
(MA Bioproducts, Walkersville, MD, USA) and with 0.3 pg ml-!
DOX only in the case of K562/ADM.

Chemicals

Dipalmitoylphosphatidylcholine was obtained from Nichiyu
Liposome, Tokyo. Dipalmitoylphosphatidylethanolamine, choles-
terol and m-maleimidobenzoyl-N-hydroxysuccinimid oester
(MBS) were supplied by Sigma Chemical, St Louis, MO, USA.
Doxorubicin hydrochloride (DOX) was generously donated by
Kyowa Hakko, Tokyo. FITC was from Dojin Chemical, Tokyo.
Sepharose CL6B, protein G-Sepharose and SPDP were purchased
from Pharmacia Fine Chemicals, Uppsala, Sweden. MBPE was
prepared as previously described (Hashimoto et al, 1983). Leucine-
free medium was prepared from RPMI-1640 select amine kit
(Gibco, NY, USA). L-[4,5-*H]leucine ([*H]leucine) was obtained
from Amersham Lab., Buckinghamshire, UK.

MAbs

The hybridoma cell line, which secretes an anti-TFR mouse IgG2a
MADb OKT9 (Aisenberg and Wilkes, 1980), was obtained from the
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Figure 1 CIL binding to K562 and K562/ADM. Cells (2 x 10%) were mixed
with CIL in a final DOX concentration of 30 ug mi-! in the presence or
absence of OKT9-IgG (final concentration of 1 mg mI-') in 0.2 ml, of SP
medium, containing 1% sodium azide for 1 h at 37°C. Sodium azide was
added to neutralize the effect of endocytosis on the binding. After incubation,
total cellular DOX was measured by fluorometry as described in Materials
and methods. Columns and bars represent the mean and s.e.m. from three
determinations respectively

Cancer Cell Repository, Tohoku University. SER4 (mouse IgG1),
which was raised against a tumour-associated antigen c-erbB-2
product gpl85 (Masuko et al, 1989), was used as an unrelated
control MAb. AL-6 (mouse IgM), which was raised against
immunoliposomes, recognized MBPE on liposomes (Suzuki et al,
1992). MAbs were purified from ascites of mice transplanted with
the corresponding hybridoma cells by 50% ammonium sulphate
precipitation, followed by protein G affinity chromatography for
IgG or gel filtration on Sepharose CL6B for IgM.

FITC-conjugated AL-6 was prepared to determine cell-surface
CIL, by coupling AL-6 with FITC at a molar ratio of 1:50. The
molar ratio in the product was about 1:12.

Thiolation of IgG was performed by SPDP substitution at a
molar ratio of 1:5 as described previously (Carlsson et al, 1978).

Preparation of liposomes

CIL was prepared as described previously (Suzuki et al, 1995a).
Briefly, a lipid film prepared from a mixture of dipalmitoyl-
phosphatidylcholine (25 pmol), cholesterol (17.5 pmol) and
MBPE (2.5 umol) was suspended in 2 ml of 125 mM ammonium
sulphate, 10 mm Hepes and 2 mM EDTA (pH 5.2) and was
extruded ten times through 0.1-um pore size polycarbonate
membrane at 45°C to form small, unilamellar liposomes (SULs).
Resultant liposome suspension was chromatographed on a
Sepharose CL6B-packed column (1.6 X 30 cm) equilibrated with
HBS pH 6.8. Liposomes eluted at void volume were collected, and
were then incubated with 1 mg of DOX for 1 h at 45°C. The lipo-
somes were separated from unencapsulated (free) DOX by
Sepharose CL6B chromatography as described above, and were
then incubated with 2 mg of thiolated IgG for 1 h at 37°C followed
by an additional incubation with 5 pl of 2-mercaptoethanol for
30 min. Antibody-coated DOX-encapsulated liposomes (CILs)
were purified by Sepharose CL6B chromatography with HBS
pH 7.4, sterilized by filtration through a 0.2-um pore size poly-
carbonate membrane, and then stored at 4°C until use. Contents
of lipid, antibody and DOX in liposomes were determined as
described previously (Hashimoto et al, 1983; Tanaka et al, 1989).
The resultant CILs contained 26.8-31.9 pug of antibody and
45.8-58.1 ng of DOX per pmol of total lipid.

Fluorometric analysis for total cellular DOX

Cells were washed once with ice-cold PBS, mixed with free
DOX or CIL in 0.2 ml of SP medium and incubated in various
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Figure 2 Down-regulation of cell surface OKT9-CIL. Intact (open symbols) or formalin-fixed (closed symbols) cells were incubated with OKT9-CIL

(30 ug DOX mi-") for 2 h at 4°C, washed twice with ice-cold PBS, and further incubated in SP medium for the indicated period at 37°C. An aliquot of cells was
directly measured for total DOX content (circles) and another aliquot of cells was further treated with FITC-AL-6 and processed for flow cytometry (triangles)
as described in Materials and methods. Per cent mean fluorescence intensities as compared with the values at time 0 are shown. Symbols and bars
represent the mean values and s.e.m., respectively, from three determinations. A, K562/ADM; B, K562
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Figure 3 Fluorescence micrographs of K562 and K562/ADM cells treated with OKT9-CIL or free DOX. Cells were treated with 30 ug mi-' free DOX (A and B) or
OKT9-CIL (C—F) at 37°C or 4°C, respectively, for 1 h. Cells were washed with ice-cold PBS and then further incubated at 37°C in SP medium for 0 min (A—C) or
2 h (C-F) in the presence (D) or absence (A-C, E and F) of 1% sodium azide. Cells were washed twice with ice-cold PBS and were immediately observed for
DOX fluorescence by fluorescence microscopy (Olympus, Tokyo, Japan, BH-2) with <570 nm cut filter for emission of DOX fluorescence. (A) K562; (B—F)
K562/ADM. F is a phase-contrast micrograph of the identical field to E. Bar in F = 1.0 um. Magnifications of all micrographs are the same

conditions as described in the legends to the figures. After washing
twice with ice-cold PBS, cells were mixed with 0.3 M hydrochloric
acid, 50% ethanol to extract DOX, and then incubated for 20 min
at 37°C. After centrifugation at 500 g for 10 min, the fluorescence
intensity of DOX (and its metabolites) in the supernatant was
determined fluorometrically at 480 nm (excitation) and 580 nm
(emission). An external standard curve for DOX was obtained by
plotting the percentage recoveries of DOX from control samples
mixed with known doses of DOX.

Flow cytometric analysis

Flow cytometry allows convenient quantification of lower level
cellular DOX using a smaller number of cells than with fluorom-
etry, although it provides information only on relative fluorescence
intensity of the cells. Thus, we used it to determine (Figure 5) the
amount of cellular DOX under the detection limit in fluorometry.
Cells were treated with free DOX solution or CIL suspension in
SP medium for 2 h at 4°C with vortexing at 15-min intervals, then
washed twice with ice-cold PBS and reincubated for 0-2 h at 37°C
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in SP medium. After incubation, cells were washed with ice-cold
PBS and were divided into two aliquots. An aliquot of the cells
was analysed for total cellular DOX and others were analysed for
cell-surface CIL. To determine the total DOX level, the cells were
immediately analysed by a FACScan flow cytometer (Becton
Dickinson, Mountain View, CA, USA) with excitation at 488 nm
and emission at 545-590 nm for DOX fluorescence. To determine
cell-surface CIL, the cells were further treated with FITC-AL-6
(50 pg ml-!) for 1 h at 4°C. After washing twice with PBS, the cell
fluorescence was analysed by a flow cytometer as described above
except for emission at 515-545 nm (for FITC fluorescence). In
both cases, the fluorescence intensity of 5000 viable cells for each
sample was recorded. All determinations were performed at a
similar detection sensitivity. Mean fluorescence intensity (MFI) of
each sample was computed.

Analysis for cell growth inhibition

The cell growth-inhibitory effect was determined on the basis of
the [*H]leucine incorporation of the tumour cells because
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Figure 4 Cell growth inhibition by CIL and free DOX. Cells treated with free DOX or CIL in various DOX concentrations were assayed for their [*H]leucine
incorporation. Per cent of mean [*H]leucine incorporation as compared with that of non-treated cells (control) is shown. Symbols represent the average values
from four determinations. All s.e.m. values were less than 15.3%. (A) K562; (B) K562/ADM. £\, OKT9-CIL; O, SER4-CIL; @, free DOX

[*H]leucine but not [*H]thymidine incorporation was highly corre-
lated with the viable cell number after the treatments. Thus it also
includes the cytostatic effect.

Reciprocal dilutions of free DOX solution or CIL suspension
(100 pl) and 1 x 10° cells suspended in 100 pl of SP medium were
mixed in a test tube and incubated for 30 min at 37°C. The cells
were washed twice with standard medium, centrifuged at 200 g for
5 min, and suspended in 1 ml of standard medium containing 10%
FCS. An aliquot of the cell suspension was analysed by flow
cytometry (see above). Other aliquots were distributed in quad-
ruplicate into Falcon flat-bottomed 96- well tissue culture plates
(4 x 10° cells per well), and were then cultured in 200 pl of fresh
standard medium containing 10% FCS for 3 days in a humidified
carbon dioxide incubator. After culturing, cells in each well were
starved of leucine by exchanging the medium for leucine-free
medium (100 pl). After 2 h incubation, cells were pulsed with
[*H]leucine (0.5 pCi per well) for an additional 4 h, and then
harvested by a multiwell cell harvester. The radioactivity of the
cells was measured by standard liquid scintillation counting.

RESULTS

Binding of OKT9-CIL to target cells was determined and
compared with a non-reactive control, SER4-CIL (Figure 1).
OKT9-CIL showed binding to K562 and K562/ADM that was
respectively 26 and 17 times higher than binding of SER4-CIL.
Binding was inhibited by more than 85% with an excess amount of
OKT?9 IgG (thinly hatched columns in Figure 1), indicating that
OKT9-CIL bound to target cells via liposomal ligand (OKT9 IgG
on the liposome surface).

Internalization of CILs by K562 and K562/ADM cells was
demonstrated as shown in Figures 2 and 3. The levels of cell-
surface OKT9-CIL were decreased during incubation at 37°C in
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both cells (open triangles in Figure 2A and B), but the rates of the
decrease were higher in K562 (68% at 120 min) than in
K562/ADM (37% at 120 min). The decrease in total cellular DOX
level was, however, within 5% of the initial value in both cells
(open circles in Figure 2A and B). This process did not occur in
fixed cells (closed symbols in Figure 2) and was suppressed in the
presence of some endocytosis inhibitors (Berinstein et al, 1987;
Collins et al, 1989), such as sodium azide, ammonium chloride,
chloroquin and colchicine (data not shown). Thus, the decrease in
CIL on the cell surface suggests the endocytosis of CILs. To inves-
tigate the intracellular localization of DOX, self-fluorescence of
DOX in cells treated with DOX or CIL was observed using fluo-
rescence microscopy (Figure 3). In K562 cells treated with free
DOX for 2 h at 37°C, bright DOX fluorescence was observed
in both the nucleus and cytosol (Figure 3A). However, in
K562/ADM cells treated with free DOX, only weak fluorescence
was observed in perinuclear vesicles (Figure 3B). When
K562/ADM cells were treated with OKT9-CIL at 4°C, liposomal
DOX fluorescence was observed as a ring shape indicating the
localization of DOX on the cell surface (Figure 3c). Prolonged
incubation at 37°C resulted in the accumulation of the fluores-
cence into juxtanuclear vesicles (Figure 3E). These phenomena
were inhibited in the presence of sodium azide in the second incu-
bation (Figure 3D). K562 treated with OKT9-CIL showed similar
phenomena to those shown by K562/ADM as above (data not
shown).

In analyses of cell growth inhibition in K562, OKT9-CIL inhib-
ited leucine incorporation in a dose-dependent manner with an
IC,, of 0.35 ug DOX ml-! (Figure 4A, open triangle). This value is
simillar to that for free DOX (0.45 pg DOX ml'). SER4-CIL
(non-targeting control) showed a far higher IC, (8 pg DOX ml-! in
Figure 4A), whereas in K562/ADM (Figure 4B) OKT9-CIL
showed a 3.5 times lower IC_, (8 pg DOX ml') than free DOX

50
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Figure 5 Association and retention of DOX in K562 and K562/ADM. (A and C) Cells were analysed for DOX level by flow cytometry using residual cell
suspensions from the analysis in Figure 4. Mean fluorescence intensities for DOX are shown. (B and D) Cells were treated with 30 ug mi-' DOX or OKT9-CIL
for 30 min at 37°C, washed with ice-cold PBS, and further incubated at 37°C jn SP medium for the indicated periods. Cells were then analysed for cellular DOX

{

level by flow cytometry. Per cent of cellular DOX level as compared with the values at time 0 is shown. (A and B), K562; (C and D), K562/ADM. O, SER4-CIL;

A, free DOX; O, OKT9-CIL

(28 pg DOX ml-'). SER4-CIL did not show any inhibition of
leucine incorporation over the dose range. The effects of antibody-
non-coated doxorubicin-containing liposomes were similar to
those of SER4-CIL in both cells (data not shown).

The intracellular level of DOX was also examined by flow
cytometry. The cellular DOX level was increased in a dose-depen-
dent manner in both cells treated with free DOX. The values were
1545 times lower in K562/ADM than in K562 (triangles in
Figure 5A and C). Whereas DOX levels in cells treated with
OKT9-CIL were similar for both cell lines (squares in Figure SA
and C), DOX values in cells treated with free DOX were 35 times
higher in K562/ADM cells (squares and triangles in Figure 5C).
Control SER4-CIL resulted in a far lower DOX level than OKT9-
CIL in both cells (circles in Figure SA and 5C), indicating that
DOX uptake from OKT9-CIL was liposomal antibody dependent.

Figure 5B and D shows the excretion rate of DOX from cells
that had been treated with CIL or free DOX. In K562, the DOX
level was unchanged during the incubation irrespective of DOX or
CIL treatment, whereas in K562/ADM the intracellular DOX level
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was immediately decreased to 46% of the initial value when DOX
was supplied as free DOX; DOX supplied as OKT9-CIL remained
close to 100% of the initial value even after 120 min incubation.

DISCUSSION

An anti-TFR CIL, OKT9-CIL, showed specific binding to a DOX-
resistant leukaemia line, K562/ADM. OKT9-CIL was internalized
into juxtanuclear vesicles and retained in the cells, resulting in a
cell growth-inhibitory effect on K562/ADM that was 3.5-fold
higher than that of free DOX.

Gervasoni et al (1991) and Marquardt and Center (1992)
reported on the intracellular vesicles in resistant cells into which
daunorubicin, an anthracyclin anti-tumour drug, is accumulated. In
resistant cells, daunorubicin is first accumulated by lysosomes and
Golgi (-like) vesicles and then excreted after longer incubation
times. These results are almost identical to our results. Intracellular
distribution of DOX-encapsulated liposomes with no specific
ligand (DOX-Lip) has also been reported (Thierry et al, 1993).

British Journal of Cancer (1997) 76(1), 83-89
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DOX-Lip was delivered to the nucleus of parental tumour cells,
whereas in resistant cells DOX-Lip diffused homogeneously
throughout the entire cytoplasm. These findings differ from our
own observations (shown in Figure 3) that OKT9-CIL was finally
localized in juxtanuclear vesicles in both the parental K562 and
the resistant K562/ADM cells. It is noteworthy that the DOX
supplied by OKT9-CIL resulted in no DOX efflux even in the
resistant K562/ADM (Figure 5D). Thus, the vesicles in which
OKT9-CIL accumulated may be different from DOX-Lip-
localizing vesicles. Considering the transferrin recycling process
(Matthay et al, 1989), these OKT9-CIL-accumulating vesicles
might be specifically induced by a TFR-mediated liposome—cell
interaction.

DOX resistance has been reported to be overcome by verapamil
via inhibition of DOX efflux (Tsuruo et al, 1981, 1982). Verapamil
also augments the cytotoxicity of DOX-Lip in resistant cells
(Sadasivan et al, 1991). However, in the present study, the growth-
inhibitory effect of OKT9-CIL on K562/ADM was not augmented
by verapamil (data not shown). This suggests the possibility that
the OKT9-CIL inhibited cell growth by a different mechanism
from that for free DOX or Lip-DOX.

Drug resistance has also been reported to be inhibited by low
cytosolic pH (Willingham et al, 1986; Hindenburg et al, 1989;
Marquardt and Center, 1992). This suggests that the drug efflux
mechanism is associated with the ionization of drugs within cells.
In our system, the DOX encapsulated in the inner space of CIL is
thought to be highly concentrated as the sulphate salt to form a gel
(Lasic et al, 1992). Thus, this gelated, ionized DOX may be one of
the reasons why the DOX in OKT9-CIL escaped from the efflux
mechanism in K562/ADM.

In general, liposomal drugs have some pharmacological advan-
tages, such as low immunogenicity, deposit ability and tissue-
specific localization. With the in vivo application of liposomal
drugs, the uptake of liposomes by reticuloendothelial tissues may
have limited the effect. In order to overcome this difficulty, we
have recently prepared a CIL coated with polyethyleneglycol
(Suzuki et al, 1995b). This CIL not only showed specific cytotoxi-
city to tumour cells but also remained in the circulation for a long
time. This technique is also applicable to OKT9-CIL. Thus,
overall, OKT9-CIL has potential to be a useful therapeutic reagent
in the treatment of DOX-resistant TFR-positive tumours.

ABBREVIATIONS

DOX, doxorubicin; CIL, chemoimmunoliposome(s), doxorubicin-
encapsulated immunoliposome(s); Hepes, N-2-hydroxyethylpiper-
azine-N'-2-ethanesulphonic acid; MAb, monoclonal antibody;
SPDP, N-hydroxysuccinimidyl-3-(2-pyridyldithio)- propionate;
FITC, fluorescein isothiocyanyl; PBS, phosphate-buffered saline;
FCS, fetal calf serum; SP medium, standard medium:PBS (1:1)
containing 5% FCS; HBS, Hepes-buffered saline, 20 mm Hepes,
150 mM sodium chloride (pH 7.4); MBS, m-maleimidobenzoyl-N-
hydroxysuccinimido ester; MBPE, MBS derivative of dipalmi-
toylphosphatidylethanolamine.
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