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ABSTRACT In the dark-adapted photoreceptor of the horseshoe crab, Limulus,
transient discrete depolarizations of the cell membrane, discrete waves, occur in
total darkness and their rate of occurrence is increased by illumination. The
individual latencies of the discrete waves evoked by a light stimulus often cannot
be resolved because the discrete waves overlap in time. The latency of the first
discrete wave that follows a stimulus can be determined with reasonable accuracy.
We propose a model which allows us to make an estimate of the distribution of the
latencies of the individual light-evoked discrete waves, and to predict the latency
distribution of the first discrete wave that follows a stimulus of arbitrary inten-
sity-time course from the latency distribution of the first discrete wave that
follows a brief flash of light. For low intensity stimuli, the predictions agree well
with the observations. We define a response as the occurrence of one or more
discrete waves following a stimulus. The distribution of the peak amplitudes of
responses suggests that the peak amplitude of individual discrete waves some-
times has a bimodal distribution. The latencies of the two types of discrete waves,
however, follow similar distributions. The area under the voltage-time curve of
responses that follow equal energy long (1.25 sec) and short (10 msec) light
stimuli follows similar distributions, and this suggests that discrete waves sum-
mate linearly.

Much is known about the chemical changes that occur when a visual pigment
molecule absorbs a photon (Hubbard, Bownds, and Yoshizawa, 1965). These
changes are presumed to cause the flow of electrical currents across the cell
membrane of the photoreceptor. The ionic bases of the currents have been
studied in both the lateral and ventral eye of the horseshoe crab, Limulus
(Fuortes, 1959; Kikuchi, Naito, and Tanaka, 1962; Smith, Stell, and Brown,
1968; Millecchia and Mauro, 1969). However, the mechanisms that link the
absorption of a photon to the resulting changes in the electrical properties of
the photoreceptor membrane are poorly understood. It is known, however,
that the photoexcitatory process is stochastic, so that random events must
intervene between the absorption of a photon and the flow of current across
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the cell membrane (Fuortes and Yeandle, 1964). Therefore, a detailed analysis
of the response variability of photoreceptors may prove helpful in specifying
the molecular events that make up the photoexcitatory process. The purpose
of this paper is to develop some techniques useful for the analysis of response
variability in the photoreceptor of the lateral eye of the Limulus.

Response variability is a prominent feature of the dark-adapted omma-
tidium of Limulus. Transient depolarizations of the photoreceptor membrane,
which have been called "bumps" or "discrete waves," are observed by using
an intracellular microelectrode. They occur in total darkness and their rate
of occurrence is increased by low levels of steady illumination (Yeandle,
1957, 1958). The noisy response observed at higher intensities of steady illu-
mination can be explained as the superposition of discrete waves (Dodge,
Knight, and Toyoda, 1968). If the response achieves sufficient depolarization,
nerve action potentials are generated at the eccentric cell axon.

When a sequence of identical brief pulses of light of low energy is presented
to the ommatidium, a given pulse in the sequence may or may not evoke a
response (one or more discrete waves). The responses observed vary in size,
shape, and latency from pulse to pulse. It is sometimes difficult to determine
exactly how many discrete waves make up a response, because the discrete
waves overlap in time. The probability that a short pulse of light of average
energy E evokes a response is given approximately by 1 - exp( - pE) where
p is a constant (Yeandle, 1958). Fuortes and Yeandle (1964) found that the
number of discrete waves evoked follows a Poisson distribution whose mean
was proportional to light intensity. Discrete waves may be evoked by light
flashes which deliver an average of 37.5 photons at the surface of the omma-
tidium (Borsellino and Fuortes, 1968). In the ventral photoreceptor cell of
Limulus, there may be as few as 5 photon absorptions per discrete wave
(Millecchia and Mauro, 1969). Taken together, these findings suggest that a
single discrete wave results from a single photon absorption. We accept this
suggestion as a working hypothesis. (For a review of the problem up to 1966
see Wolbarsht and Yeandle, 1967.)

We may define the latency of a response as the time between the onset of
the stimulus and the first detectable depolarization. For weak stimuli the
latency fluctuates from trial to trial as noted above, but for each trial where
a response occurs the latency can be measured unambiguously to within 20-
30 msec. The latencies of the individual discrete waves that make up a
response are often difficult or impossible to resolve. It is these, rather than
the response latency, that are of particular interest since the discrete waves
probably result from the absorption of single photons and, hence, their
latencies reflect the photoexcitatory process more directly than the response
latencies. In this investigation we propose a simple stochastic model applicable
to low energy light stimuli. The model allows the latency distribution of
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individual discrete waves to be determined from the latency distribution of
responses. The stochastic process proposed belongs to the class of processes
generally called nonstationary or time-dependent Poisson processes. We show
here that the model we propose can be used to predict the latency distribution
of responses to stimuli of arbitrary time-varying intensities from the latency
distribution of the responses to short flashes of light.

We have also examined in less detail the distribution of peak voltage of the
first discrete wave following a stimulus, the correlation between peak voltage
and the response latency, and the distribution of the areas under the voltage-
time curve of the response.

THEORETICAL

Let us assume that each discrete wave we observe is the result of a single
photon absorption. Not every photon incident on the ommatidium is ab-
sorbed by a photopigment molecule in the receptor and not every photon
absorbed necessarily causes a discrete wave. If the average number of photons
incident on an ommatidium during a short flash is E, then let pE be the
average number of photons that are absorbed and that are effective in pro-
ducing a discrete wave. The coefficient p is the probability that a photon
incident on the cornea will produce a discrete wave and is assumed to be
time independent. We call pE the average number of effective absorptions.

Consider a stimulus of finite duration whose intensity, in terms of number
of photons per second, varies arbitrarily with time t according to some
function I(t). The origin of the time axis is chosen so that I(t) is zero for t < 0.
The average number of effective absorptions in any small time subinterval At
at t is pl(t) At. Since photons are absorbed according to a Poisson process
(Pirenne, 1951), the probability that there will be n effective absortions in
this interval At is

[PI(t)At]n exp[-pI(t)At].

We make two assumptions,
1. The occurrence of a discrete wave associated with a particular photon
absorption is statistically independent of the occurrence of a discrete wave
associated with any other photon absorption.
2. If a photon is effectively absorbed at time t', the probability that the
discrete wave associated with that photon will occur in the interval (t', t)
depends on t - t' and not on t'. We call this probability R(t - t'), and
from its definition R(O) is 0 and R( ao) is 1. Let r(t) = dR(t)/dt, so that
r(t)At is the probability that a photon effectively absorbed at t = 0 will
produce its discrete wave in a small subinterval At at t. R(t) and r(t) are
the quantities of greatest interest in this theory.
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Let g,(t)At be the probability that the first light-evoked discrete wave
following a stimulus that begins at t = 0 occurs in a small subinterval At at t.
We assert that

gL(t) = pM(t)exp[-p M(t')dt'] (1)

where

M(t) = sI(t)r( t- )dt'. (2)

In order to prove this, divide the time axis into many small subintervals each
of length At. For some time t', t' < t, the probability P(t',t) that no discrete
wave will occur in the interval (t',t) due to effective absorptions in the small
subinterval at t' is

P(t', t) = c [ - R(t - t')]n[pI(t)At] exp [- pI(t')At]/n o
n=O

This is a consequence of enumerating and summing the probabilities of all
the different ways that this can occur. Using the Maclaurin series expansion
for the exponential function one sees that

P(t', t) =exp [- pI(t')AtR(t - t')].

Let GL(t) be the probability that the first light-evoked discrete wave occurs in
the interval (0, t) due to effective absorption of photons in this interval. Since
a photon absorbed in any subinterval preceding t could result in a discrete
wave occurring before t, the probability 1 - GL(t) of no light-evoked discrete
wave in the interval (0, t) is

I - GL(t) = II exp [- pI(t')AtR(t - t')].

Letting At -- 0, GL(t) becomes

GL(t) = 1 - exp[--p I(t')R(t - t')dt']. (3)

Since gL(t) is equal to dGL(t)/dt, and R(O) is zero, differentiating equation (3),
and using standard arguments concerning differentiation under the integral
sign yield equation (1) and hence equation (1) is proved.

The probability of observing a response evoked by a given stimulus is
GL( Ao), as can be calculated from equation (3) by letting t -o oo. As R( ) =
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1, the integral in equation (3) becomes fo0 I(t')dt', which is the energy E of
the stimulus in terms of total number of photons. Thus,

GL(oo) = I - exp (-- pE). (4)

Equation (1) is the density function for the time to the first event for what
is generally called a time-dependent or nonstationary Poisson process (see
Cox and Miller, 1965, or Blanc-Lapierre and Fortet, 1953). It should be
emphasized at this point that the physical model presented here, i.e. that one
discrete wave results from one photon absorption, is not the only one which
will lead to equation (1). We present it because it seems physically plausible
and is consistent with previous work.

Spontaneous discrete waves can be included in the formalism. Previous
work (Fuortes and Yeandle, 1964; Adolf, 1964) has shown that the intervals
between spontaneous waves follow the exponential distribution. This implies
that the probability of no spontaneous wave occurring in the interval (0, t)
is exp(- Mdt) where Md is the probability per unit time of a spontaneous
discrete wave occurring. If we assume statistical independence between
spontaneous and light-evoked waves, the probability that the first discrete
wave occurs in the interval (0, t) is

I - [I - G,(t)] exp (-Mdt).

Differentiating this expression yields

g(t) = [pM(t) + Md]exp[-p M(t')dt' - Mt]. (5)

The quantity g(t)At is the probability that the first discrete wave following a
stimulus occurs in the subinterval At at t, and can be estimated experimentally
from the response latencies. We discuss below how r(t) can be calculated
from measurements of g(t)At for short pulses, and then can be used to predict
g(t) for stimuli of different time courses. Comparison with experiment can be
made, and provides a test of the validity of equations (1) and (5).

METHODS

An intracellular electrode was inserted into a single ommatidium of the horseshoe
crab, Limulus, using standard techniques, and responses were recorded on a Grass
polygraph. The excised eye was bathed in artificial seawater at a pH of approximately
7.8. After successful insertion of a microelectrode, the eye was kept in the dark for 45
min to allow the discrete waves to achieve maximum size. Temperature was con-
tinuously monitored and maintained constant to within 0.1 0 C.

Sequences of light stimuli were presented in groups or runs. A run consisted of 500
(in some cases 1000) equally spaced light stimuli or trials. In each run there were two
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different types of trials, a control stimulus and a test stimulus. The control stimulus
was a 10 msec pulse of light whose energy was coarsely adjusted by means of a neutral
density wedge in the light path so that between 10 and 90 % of the stimuli evoked a
discrete response. The test stimulus, although constant for any one run, was selected
from one of three types: (a) a 10 msec pulse of light with energy about four times that
of the control stimulus; (b) a pair of pulses of light, each pulse identical to the control
stimulus; (c) a light pulse 1.25 sec in duration but delivering the same total energy as
the control.

Previous work (Fuortes and Yeandle, 1964) had indicated that a time interval be-
tween successive stimuli (interstimulus interval) of 5 sec insured a lack of correlation
between responses to successive stimuli. This interstimulus interval was adopted here
except in a few runs in which it was 6.3 sec.

In any run the control and test stimuli were presented in random order according to
instructions on a perforated paper tape. These instructions were punched on the tape
according to a table of random numbers before the experiment. The presentation of
each stimulus was preceded by the following sequence: the timer that determined the
stimulus interval signalled a tape reader to advance the tape to the next instruction
which in turn allowed a servomotor to position a neutral density filter in the light
beam and also set a switch to select the time course of the stimulus. Before the experi-
ment, the transmission of the neutral filter used was determined in the photostimulator
with a photomultiplier.

Both the test and control stimuli were monochromatic and at the same wavelength.
We used wavelengths 404,500, 656 nm in different runs with no substantial differences
in results. The results discussed here are based on the study of 53 runs with a total of
31,000 trials recorded in 14 ommatidia.

The records were measured by hand. First the intervals between stimuli were sub-
divided into a convenient number of subintervals. The subinterval duration, which
ranged from 20 to 40 msec, was fixed for any one run, and was determined by the
paper speed of the Grass recorder. For each trial the stimulus type and whether a
response began within the 5 sec interval following the stimulus were noted. If a re-
sponse occurred, the number of subintervals intervening between stimulus onset and
the beginning of the response was measured (the latency of the response). The peak
voltage of the response was also measured, where we defined the peak as the first
clearly detectable maximum following the beginning of a response.

In order to illustrate, Fig. 1 shows a sample of a recording sequence for one run.
Control and test stimuli appear in random order. The sequence of eight consecutive
trials shown in the figure was selected more or less at random from our recordings.
With reference to Table I, the trials have been numbered left to right and upper line
to lower line. The table indicates the measurements made. Trials 1 and 3 illustrate
that it was sometimes difficult to decide whether a response had occurred. We took
pains to be consistent in deciding whether a response had occurred. Fig. 1 gives an
exaggerated impression of the number of trials for which the decision was difficult.
Approximately 5-10 % of the trials we observed could be called "possible responses."

Latency histograms were plotted for each run showing the number of stimuli as a
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function of response latency (see Figs. 2 and 3). Perusal of these histograms indicates
that most of the light-induced responses occurred in the first 2 sec after stimulus onset.
We assumed that discrete waves that occurred in the last second of the interstimulus
interval were spontaneous. Md was estimated by counting the number of waves occur-
ring in the last 25 subintervals of the interstimulus interval for all stimuli of the run.
In some cases when the subinterval was 20 msec the last 50 subintervals were used.

The responses and conditions were also recorded on four-channel analogue tape and

6 7 3 4

FIGURE 1. 8 consecutive trials from a run of 500 trials in which the test stimulus was
1.25 sec long and of energy equal to the control stimulus (10 msec flash). Top trace
Dc-coupled, high frequency limited by pen response to about 40 Hz. A 5 mv calibration
mark is shown at the end of the eight trials. Middle trace, I sec time marker. Bottom
trace, light stimuli. (The variable spike at the beginning and end of the light stimulus
is an artifact.) The record strips are consecutive and have been separated vertically
only as a convenience for display. Temperature 12.0°C, wavelength 500 nm. Arrows
indicate beginning of responses.

TABLE I

Trial No. Stimului type Latency Peak height

msec ma

1 Test 460 0.6
2 Test NR
3 Control 1120 0.8
4 Test 925 4.8
5 Test 830 5.0
6 Test 2420 0.8
7 Control NR
8 Test 400 5.8

NR indicates no response.

the total area of each response was determined during the 4 sec interval following the
onset of the stimulus. By the use of a biasing circuit, electronic clipper, and analogue
integrator, the area of the voltage time curve exceeding a fixed reference level, just
above the baseline noise, was measured. The location of this reference level was deter-
mined visually on an oscilloscope
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METHOD OF ANALYSIS

From the experimental data for each
tabulated:

F the ratio of the energy of a con-
trol stimulus, Ec, to the energy of
a test stimulus, E. (As no abso-
lute energy calibrations were
made, F was determined from
the calibration of the neutral
density filters used.)

Nc number of control stimuli in the
run

M , number of control stimuli in the
run for which a response was ob-
served in the interstimulus inter-
val

Nt number of test stimuli in the run
Mt number of test stimuli in the run

for which a response was ob-
served in the interstimulus inter-
val

Tm number of subintervals in the
interstimulus interval

run the following parameters were

Td number of subintervals at the
end of the interstimulus interval
used for estimating the rate of
spontaneous discrete waves

Sd the total number of spontaneous
discrete waves counted in the
last Td subintervals for all stimuli
in the run

g,(k) the fraction of the number of
control stimuli for which the
response latency occurred in the
kth subinterval after the control
stimulus began. (k ranged from
I to T,).

gt(k) the fraction of the number of
test stimuli for which the re-
sponse latency occurred in the
kth subinterval after the test
stimulus began. (k ranged from
1 to Tm.)

The probability that the response latency is in the kth subinterval following

a stimulus (i.e., that the first discrete wave begins in the kth subinterval

following a stimulus) can be derived from equations (1) and (5). This results
in the following incremental form of equation (5) for the control stimulus:
fork = 1

g,(l) = pEr(l) + Rd (6A)

for k > I

k--

g,(k) = [Er(k) + Md] exp[- pE r(j) - Rd(k- 1)].
i"'

(6B)

Equation 6 B is the product of the probability that a discrete wave occurs
in the subinterval k and the probability that no discrete wave occurs in the
k - 1 preceding subintervals. The following estimates were made from the
tabulations for each run:

,;d = Sd/[(Ne + N,)Td]

pE. = -- [log, (I - M,/N) + TmMj.
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Equation 6 A was solved directly for r(l). With r(j) known for all j < k,
r(k) was determined from equation 6 B. Thus all values of r(k) was determined
iteratively for k > 1. If during the iteration r(k) became negative for a
particular k, r(k) for that k was set equal to zero. (This could and occasionally
did happen because of small sample (statistical) fluctuation in the estimates

of go(k).) The iteration was stopped as soon asEr(j) > 1 and the last r(k)
j-1

adjusted so that this sum equaled one. All subsequent r(k) were set equal to
zero.

For the test stimulus equation (2) was written in incremental form and
M(k) calculated using the estimate of r(k) derived from the control stimulus.
The latency distribution, gt(k), for the test stimulus was calculated from the
incremental form of equation (5):

k-1

gt(k) = [pEtM(k) + Md] exp [- pEM(j) - (k- 1)].
$-1

We used the same estimate of Md in this equation as we had used in equations
6 A and 6 B, but the pEt we substituted

pEt = -[log, ( - Mt/N) + TmMd].

This insured that the predicted probability of a response during the inter-
stimulus interval was approximately equal to Mt/Nt. As a check on internal
consistency we also estimated pE, by -[1 /F] [log( 1 - Mc/N.) + TMd]
and compared the two estimates.

Fig. 2 shows the latency histogram using a control stimulus. Equations
(6 A) and (6 B) were used to obtain an estimate of r(t), which is shown in this
figure referenced to the right ordinate scale. For most runs r(t) had a peak
slightly shifted to later times and a slower decay than the total response latency
distribution. This is expected from the theory. The variability of the estimate
of r(t) is inherent in the numerical method we used to obtain it and therefore
expected. We would expect that r(t) is a smooth function. As our understand-
ing of the photoexcitatory process improves we might be able to establish
a priori arguments for a particular form of r(t). However, the purpose of the
experiment reported here was to test the ability of equations 1 and 2 to predict
the latency distributions of responses due to stimuli of several different time-
varying intensities. Since we were not interested in testing the applicability
of a particular form of r(t) we chose to use a numerical estimate.

Fig. 3 shows examples of the latency histograms for the control stimuli and
the predicted and observed latency histograms for the three types of test
stimuli used. In column 2 of this figure where the test stimulus is a double
pulse, the first 500 msec of the test and control histograms represent the
response to identical stimuli. Here differences between the two histograms
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give an indication of the statistical fluctuation in sampling inherent in the
measurement.

Table II summarizes the data used for the runs shown in Fig. 3.
In order to decide whether the predicted and observed histograms differed,
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FIGURE 2. Response latency frequency histograms for a 10 msec light pulse and derived
function r(t). Bar diagram shows the number of responses, indicated on left ordinate, vs.
latency of response, indicated on abscissa. Triangles show derived r(t), indicated on
right ordinate, vs. time, indicated on abscissa. The right ordinate of the base of each
triangle gives the probability that a discrete wave resulting from an effective photon
absorption at zero time occurs in the subinterval whose center coincides with the abscissa
of the triangle's center. The length of the triangle's base is the duration of the sub-
interval. Only the first 2.06 sec are shown although tabulations were carried out to 5
sec. Temperature 9.8C, wavelength 500 nm. Number of trials in run 330. Number of
trials which gave a response 179. Number of subintervals in interstimulus interval 129.
Estimated probability per subinterval of a spontaneous wave 0.000333. The sum of the
r(t) values shown in this figure equals 0.9572. Four nonzero values of r(t) occurring after
2.06 sec are as follows: 2.16 sec r(t) = 0.008, 2.26 sec r(t) = 0.008, 2.56 sec r(t) =
0.0082, 2.40 sec r(t) = 0.0168. All values of r(t) for t > 2.4 sec are zero.

the histogram values were tabulated and grouped into M cells so that the
expected number of trials in which a response began was at least 10 for any
one cell. A 2 X M contingency table was constructed and a chi-square test
applied to test the null hypothesis that the expected and observed frequency
distributions were samples of the same population (Dixon and Massey, 1957).
In 44 of 53 runs (83%) the null hypothesis could not be rejected. This test
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implicitly assumes that the predicted and observed frequencies have com-
parable variability. This assumption may not be strictly true in our case and
seems likely to be violated when the test stimulus is a 1.25 sec flash of light,
because of the smoothing inherent in the convolution procedure. (See Fig. 3,
column 1.) Thus, runs of this type might yield acceptable fits when they
should not. In order to estimate the seriousness of this error, we have calcu-
lated a chi-square, goodness-of-fit test for the observed and predicted latency
histograms when the test stimulus was 1.25 sec long. Use of this chi-square test

TABLE II

Column I Column 2 Column 3

Control stimulus, msec 10 10 10
Test stimulus 1.25 sec pulse equal Two pulses each 10 msec duration

in energy to con- identical to con- but energy four
trol stimulus trol pulse times that of con-

trol pulse
Temperature, °C 14.5 12.5 12.4
Wavelength, nm 500 500 500
No. of control stimuli 251 508 694

(N,)
No. of test stimuli (N) 248 490 274
Fraction of control 0.757 0.463 0.530

stimuli that gave a
response

Fraction of test stimuli 0.810 0.563 0.938
that gave a response

Duration of interstimu- 5 5 5
lus interval, sec

No. of subintervals in 123 203 126
the interstimulus in-
terval (Tm)

No. of discrete waves in 27 58 60
the last 25 subinter-
vals (for all stimuli)

implicitly assumes that the predicted latency histograms had negligible
variability. There were 24 runs of this type, 7 of which produced unacceptable
fits to the predictions. The contingency table method on the other hand re-
jected two of these runs. Since the assumption that the predicted latency
frequency histograms had negligible variability is too strong, the method based
on this assumption rejected too many runs. Thus we can say that between 71
and 92% of the runs in which the test stimuli were 1.25 sec long, produced
acceptable fits to theory. The runs in which the test stimuli were either another
short flash or a pair of flashes produced predictions whose variability was
comparable to the observed data (see Fig. 3, columns 2 and 3) and, therefore,
the assumption of the contingency table test is not seriously violated. There

762



R. SREBRO AND S. YEANDLE Discrete Waves of Limulus Photoreceptor

were 29 runs of these types, 22 of which produced acceptable fits to theory
(76%). Moreover, in almost all runs which were rejected these obvious
reasons caused the failure: (a) insufficient light was used so that the estimate
of r(t) was poor; (b) the probability of a response was nearly equal to unity.

As noted in the Methods of analysis section two estimates of pEt were
made as a check on the internal consistency. If the assumptions of the pro-
posed model are correct, the estimate of pEt made from the control stimulus
and the value of F, minus the estimate of pE, made entirely from the test
stimulus should have equal probability of being plus or minus. For the runs
in which the test stimulus had energy equal to the control, the difference was
negative for 18 out of 24 runs which is just significant at the 5% level. How-
ever, the difference between the two estimates of pEt was no more than 10% for
any one run. (This small discrepancy may result from the assumption of
statistical independence of light-evoked and spontaneous discrete waves.) For
the two other types of test stimuli there was no systematic difference between
the two estimates of pEt. There was, however, more variability in the differ-
ence between the two estimates than in the case of the equal energy stimuli.
The two estimates of pE, are not equally reliable when F > 1 since the
numbers N., MC, Nt, and Mt that were used to make the estimates were
often of different magnitudes.

Peak voltage distributions were tabulated for each stimulus type and run.
Fig. 4 shows the two typical types of distributions we encountered; i.e., uni-
modal and bimodal. 17 of 53 runs had bimodal peak voltage distributions.
30 had unimodal peak voltage distributions and in the remainder, the occur-
rence of nerve action potentials prevented meaningful measurements. Corre-
lation coefficients were calculated for the peak voltage against latency for
each stimulus type and run. All runs having a bimodal peak voltage distribu-
tion had a significant negative correlation coefficient. However, the correlation
coefficients were within the range -0.15 to -0.52. 11 of the 30 runs having
a unimodal peak voltage distribution also had a significant negative correla-
tion coefficient within the same range. In those runs having a bimodal peak
voltage distribution and about equal numbers of responses in the two modes
we were unable to detect by visual inspection a difference in the latency
histograms plotted for the two modes separately.

Regression of the peak voltage and latency against the serial order number
of the response was done by run and stimulus type. (That is, the first response
due to, for example, a control stimulus was assigned the serial order number
1, the second response 2, etc. The time elapsed from the beginning of a run
is a monotonic function of the serial order number.) The slope of the regres-
sion line of peak voltage vs. serial order number was significantly different
from zero in 14 runs, about equally likely to be positive or negative, and
unrelated to the modal pattern of the peak voltage distribution. The slope
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FIGURE 4. Peak voltage fre-
quency histograms. Ordinates,
number of responses having a
peak voltage indicated by
abscissa. (See text for methods.)
The top histogram is an exam-
ple of a bimodal peak voltage
histogram. Top, temperature
15.0 0 C, wavelength 500 nm.
Bottom, temperature 12.5°C,
wavelength 500 nm. The stimuli
were 10 msec flashes in both
cases.

0.48 0.96 1.44
mv sec

1.92 2.401.92 2.40

FIGURE 5. Distribution of area under voltage time curve for responses due to a short
(10 msec) stimulus (top) and equal energy long (1.25 sec) stimulus (bottom). See text
for methods. Ordinates, number of responses having area equal to that shown on abscis-
sas. Trials for which there was no response are not shown. Temperature 15.60 C, wave-
length 656 nm.
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of the regression line of latency vs. serial order number was significantly
different from zero in only one run.

The total area of each response (see Methods) in a 4 sec interval following
the onset of the light stimulus, was determined in several runs where the
test stimulus was 1.25 sec long and of energy equal to that of the control.
Fig. 5 is an example of such an area histogram. Except for a slight tendency
of the long pulses to produce larger areas than the short pulses, the two types
of stimuli produce similar area histograms.

CONCLUSIONS

The data we have presented support the usefulness of equations (1) and (2)
as a general description of the timing of discrete waves. From equation (5)
it is seen that the latency distribution behaves as a nonhomogeneous Poisson
process with time-dependent rate parameter (pM(t) + Md). From equation
(2) it is seen that M(t) is the convolution of the intensity-time course of the
light stimulus with a function r(t). Given that each discrete wave is the result
of a single photon absorption, r(t) is the probability density function for the
latency of that discrete wave. Any physical (molecular) model that one might
consider for the linkage between the absorption of photons and the change
in membrane permeability thereby produced, must account for the shape and
behavior of r(t). The success of the formulation justifies the use of the methods
of linear systems analysis in exploring the properties of r(t).

The above conclusions about the timing of discrete waves are separate from
questions about how discrete waves sum. The results shown in Fig. 5 suggest
that discrete waves summate linearly regardless of how they are spaced in time.
Taken together, the findings suggest that the average response of the omma-
tidium to stimuli of low light intensity follows linear addition rules.

The origin of the bimodal peak voltage distributions we observed is un-
clear. Since the larger responses had peak voltages four or five times greater
than the smaller ones (see Fig. 4), they probably do not represent coincident
small discrete waves. It is more likely that there are two classes of discrete
waves. Responses with larger peak voltages also appeared to have a faster
rise time, which explains the slight negative correlation between peak voltage
and latency that we observed. We did not observe dramatic differences in
the latency distributions of the large and small responses and infer that large
and small discrete waves have identical latency distributions. It is possible
that the large discrete waves came from the same retinula cell in which our
electrode was inserted, while small ones were generated in more distant
retinula cells. It follows from this hypothesis that the responses sensed by an
electrode in the eccentric cell always have a unimodal peak voltage distribu-
tion. Since only one eccentric cell was included in this study (that cell did
produce unimodal peak voltage distributions), we are unable to test the
hypothesis.
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The regression analysis indicates that the latency distribution is stable
during the course of a run. On the other hand, the peak height is subject
to positive and negative drifts. The decoupling of peak height from latency
by unknown factors during the course of a run may indicate that the two
parameters are controlled by different mechanisms. For example, the timing
of a discrete wave may be the result of a sequence of changes in the shape of
the rhodopsin molecule that leads to a transient permeability increase of the
receptor membrane. These changes might well be temperature-sensitive but,
as the temperature was kept constant during a run, the response latencies
would not be expected to show significant drifts during the course of a run.
The size of a discrete wave, however, may depend not only on permeability
changes but also on the concentration gradients across the receptor membrane
of some ion, most likely sodium, that carries the electrical current associated
with the discrete waves. Since the gradients could not be controlled in these
experiments, slow drifts in response size would not be unexpected.
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