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ABSTRACT Receiver operating characteristic (ROC) analysis of nerve mes- 
sages is described. The hypothesis that quantum fluctuations provide the only 
limit to the ability of frog ganglion cells to signal luminance change information 
is examined using ROC analysis. In the context of ROC analysis, the quantum 
fluctuation hypothesis predicts (a) the detectability of a luminance change signal 
should rise proportionally to the size of the change, (b) detectability should 
decrease as the square root of background, an implication of which is 
the deVries-Rose law, and (c) ROC curves should exhibit a shape particular to 
underlying Poisson distributions. Each of these predictions is confirmed for the 
responses of dimming ganglion ceils to brief luminance decrements at seotopic 
levels, but none could have been tested using classical nerve message analysis 
procedures. 

I N T R O D U C T I O N  

Receiver operating characteristic (ROC) analysis provides a framework for 
testing hypotheses concerning measured neuronal activity (see Appendix). 
In this paper, R O C  analysis is employed to test implications, not other- 
wise testable, of the hypothesis that only quantum fluctuations limit the 
ability of retinal ganglion cells to signal luminance change information. 

Quantum Fluctuations 

The earliest statement that quantum fluctuations should set the limit on the 
detectability of luminance change for a visual system is due to deVries (1943) 
and to Rose (1948). Since the number of arriving quanta in a fixed space/time 
interval obeys a Poisson probability distribution, a slight change in that  
number, as would occur for a luminance increment or decrement, might be 
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impossible to distinguish from the naturally occurring fluctuations of that 
number. The variance of a Poisson distribution equals the mean, so that the 
luminance change that satisfies the requirement  that it be just detectable 
increases as the mean is increased. 

deVries and Rose independently arrived at the quantitative statement that 
the just-detectable luminance increment, E, should rise as the square root of 
the background luminance, B. Tha t  is, 

E = K B  1/2. (1 )  

This is called the deVries-Rose law. In the frog, as is the case in other animals, 
the deVries-Rose law only holds over a very small range of low backgrounds 
(ten Doesschate, 1958). More commonly, increment threshold is independent 
of background (near absolute threshold) and rises proportionally to back- 
ground (Weber's law) at higher levels (ten Doesschate, 1958; Maturana  et 
al., 1960). While the deVries-Rose law indisputably represents an ideal 
towards which evolutionary pressure may push (Barlow, 1964), data  con- 
sistent with the law provide only weak support because they can be alterna- 
tively explained as a region of transition in the threshold versus background 
curve between absolute threshold and the Weber law behavior at higher 
levels. 

In vertebrates, the best evidence of quantum fluctuation effects comes from 
the studies of Barlow and Levick (1969 a, b) concerning "on-center" cat 
retinal ganglion cells. For weak stimuli at low adaptation levels the number  
of extra action potentials elicited is proportional to the number  of quanta in 
the stimulus (Barlow and Levick, 1969 a). In addition, the variability of the 
maintained discharge, expressed as the mean spike count in a fixed period 
divided by the variance, decreases with increasing adaptation level (Barlow 
and Levick, 1969 b). This is what would be expected of a quantum fluctua- 
tion limited system although it is certainly explainable in other ways (see 
Results below). 

Fain's recent evidence (Fain, 1975), however, suggests that at low light 
levels toad retinal receptors are functionally dependent. Perhaps the purpose 
of this mechanism is to smooth over the variability due to quantum fluctua- 
tions. This weighs against the possibility of finding manifestations of quantum 
fluctuations later in the system. 

The strongest direct evidence that quantum fluctuations explain threshold 
visual performance comes from experiments on invertebrates. The presence 
of quantum bumps (Yeandle, 1958; Ratliff et al., 1968) is suggestive and the 
experiments of Reichardt and colleagues (1966) which showed that measured 
variability matched the variability expected due to the rate at which photons 
were incident, leave little room for alternative explanations. 

A few psychophysical experiments provide indirect evidence that favors the 
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quantum fluctuation hypothesis. For example, it is presumed that the Poisson 
variability of a stimulus a t  absolute threshold is manifest in frequency-of- 
seeing curves (Hecht  et al., 1942) and in stimulus rating (Sakitt, 1972). Also, 
recent psychophysical studies, based on predictions similar to those tested in 
the present paper, suggest that under carefully selected conditions the size of 
the foveal increment threshold is determined by quantum fluctuations 
(Cohn, 1974, 19751). 

Several features of the problem of investigating quantum fluctuation effects 
make new investigations difficult. First, fluctuations mean noisiness of meas- 
urement  so that large experiments are essential to discover the effect of the 
Poisson features of the stimulus. Second, since the nervous system is not nec- 
essarily linear one cannot expect to find a Poisson process at the level of the 
ganglion cell. 

Wha t  is also needed is a way to assay nerve messages that sacrifices neither 
objectivity nor reliability in the face of randomicity. The procedure cannot 
be influenced by unknown nonlinearities of the system under study and it 
must be embedded in a theoretical framework that provides a richer set of 
predictions than the laws relating sensitivity to background (deVries-Rose), 
to area (Piper), and to duration (Pi~ron). Classical procedures of nerve 
message analysis do not satisfy these objectives. R O C  analysis as applied to 
physiological measurements (Cohn, 1969) is a method of analyzing nerve 
messages which, when used in conjunction with the theory of signal detect- 
ability, allows tests of new predictions of the quantum fluctuation theory. The 
purpose of this paper is to describe such tests on class IV  (dimming detector) 
optic nerve fibers of Rana pipiens. 

Terminology 

In this paper, some terms will be used that have been defined in the Appen- 
dix. These include: detectability, signal, noise, stimulus, measured distribu- 
tion, underlying distribution, R O C  curve, hit rate, false alarm rate, efficiency, 
and quantum efficiency. Often their colloquial use of misleading in the 
present context, so definitions should be consulted by the reader unfamiliar 
with them. 

Predictions 

In the Appendix (section D) the ideal detectability of a luminance signal 
obscured by additive gaussian noise is formulated in the framework of the 
theory of signal detectability, de, the index of detectability of a signal, is 
derived to be proportional to signal luminance change, E, and inversely pro- 
portional to the square root of the noise variance. If  quantum fluctuations, 
not added gaussian noise, obscure the luminance signal then Poisson distri- 

1 Cohn, T. E. 1975. Quantum fluctuation limit in foveal vision. Vis. Res. In press. 
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butions, not gaussian distributions, describe the problem. However, the cases 
are so similar that the latter may be used as an approximation for the former 
(Tanner and Clark-Jones, 1960). Suppose that the total number, N, of pho- 
tons received from a background, B, for a duration, T, and over an area, A, is 
distributed as Poisson with mean B A T  if no signal is sent and mean 
(B - E)A T if a decrement signal is sent. Since Poisson distributions may be 
approximated as gaussian, and since the standard deviations of the two dis- 
tributions (%/BAT and ~J'(B - E)AT) can be considered approximately 
equal, the decision problem is represented by two nearly gaussian distribu- 
tions with nearly equal standard deviation, (BA T)i/2 and difference of means, 
EAT. As described in the Appendix, detectability, d'e, in the gaussian equal- 
variance case is the separation of means divided by the common standard 
deviation. Therefore, in the Poisson case one has the following approxima- 
tion : 

d 'e -  EAT ( 2 )  
(BAT) 112 

Eq. 2 expresses the predicted ideal performance for this stimulus situation. 
Eq. 2 involves an approximation which tends to underestimate dre. For 

decrements less than 75% of the background the maximum error in die is 
26% for backgrounds as low as four photons per integrating time per area. 
A more complete description of errors may be found in Table II  in the 
Appendix. 

For an observer that is ideal except that it catches only a fraction, F, of the 
incident quanta, 

d'~= FEAT ( 3 )  
(FBA T) t/2" 

The deVries-Rose law, relating luminance change, E, for a fixed level of per- 
formance (dPe = constant) to background luminance, B, may be seen to be 
a special case of the formulation presented in Eq. 3. So too are Piper's law 
relating E to area, A, and Pidron's law relating E to duration, T. 

M E T H O D S  

Fig. 1 shows a schema of the experimental apparatus. Most of the experiments were 
performed on unanesthetized frogs. Frogs were cooled in crushed ice before and 
during surgery (Kaplan, 1967). The cooled frog was restrained and the sciatic and 
Vth cranial nerves were sectioned bilaterally. 

The right optic tectum of the frog was exposed for microelectrode penetration. A 
small hole in the bone over the left tectum was made for the Ag-AgC1 indifferent 
electrode. The microelectrodes used (Gesteland et al., 1959) were Indium-Wood's 
Metal filled glass micropipettes with 5-10 #m gold balls at the tips, plated with pla- 
tinum black. 
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FIGURE 1. Schematic diagram of the experiment. Light from the signal generator, SIG, 
can be attenuated by neutral density filters, nd, and shines on diffusing plate, m, imme- 
diatelyin front of the frog's left eye, e. In a given run, the luminance of the diffusing plate 
is maintained at a fixed level except for occasions on which a signal occurs. The optic 
nerve from the left eye crosses completely at the chiasm, c, and projects to a layer near the 
surface of the right optic tectum, t. The head stage amplifier, AMP, monitors the poten- 
tial difference between the microelectrode ( q- input) in the dimming cell layer, and the 
indifferent electrode ( -  input) positioned over the left tectum. The output of this am- 
plifier is displayed, and the display apparatus controls a spike-counting and count- 
printing operation. The identity of the signal used on a given trial is also recorded by the 
printer. Inset shows intensity versus time for a pulse decrement signal. Amplitude (A), 
duration (T), and background (B) were variable. 

An hydraul ic  system was used to advance and retract the electrode. The  electrode 
potentials were led to an FET- inpu t  differential amplifier (KM-47C,  K and M 
Electronics, Northvale,  N.J. ; and see Cohn, 1969, p. 11 for circuit details) with 10~2-$2 
input  impedance and adjustable negative capacity compensation. The  two outputs 
of the F E T  head-stage were led to the differential vertical amplifier of a dual beam, 
dual time base oscilloscope. The  lower beam of the oscilloscope was  used to monitor  
individual action potentials so as to minimize the likelihood of multicell recording. 
Each action potential detected by the lever trigger circuitry of the oscilloscope ini- 
tiated a s tandard square pulse of fixed ampli tude and duration. Such pulses were 
used to produce dot  pat tern displays (Wall, 1959) on a storage oscilloscope and were 
also counted as described below. A diffuser was placed immediately in front of the 
frog's left eye so as to produce uniform retinal illumination. The  preparat ion was 
shielded from all other sources of light. A current-feedback-controlled (Green, 1969) 
6-W fluorescent lamp (F6T5-CW) was used as background and signal source. The  
correlated color temperature of the lamp was approximately 3,800 °. A l-era ~ area 
of the lamp was imaged on the diffuser using a 2.3-cm diameter lens placed 30 cm 
from the lamp. No other light could reach the diffuser. The  luminance at the diffuser 
was set to a steady level which was controlled by electronic means as well as by 
neutral density filters placed between the lamp and the diffuser. Luminance measure- 
ments were made at the diffuser with an SEI  photometer  (Salford Instruments,  
England) calibrated using the certified standard source of a McBeth I l luminometer  
(Leeds & Nor thrup  Co., Nor th  Wales, Pa.). The  signals used were pulse decrements 
of the fixed adapt ing level with durat ion variable from 4 to 50 ms and amplitude 
modulat ion variable from 0 to 90 %. (The frequency characteristic of the light con- 
troller was nearly flat [-4-3 dB] from DC to 3,000 Hz, so that  rise and fall times for 
pulse decrements were less than 1 ms.) In  addition, lamp intensity was monitored 
using an R C A  type 934 vacuum phototube (RCA Electronic Components,  Harrison, 
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N.J.), was found to be linear for sinusoidal modulation depths ranging to 92 %. The 
fundamental experiment involved the presentation to the light-adapted frog of either 
a dimming signal or no signal on each of many trials. 

Action potentials were counted during 0.7 s after the stimulus presentation. Pulse 
number  distributions were generated from the recorded spike counts, processed to 
yield R O C  curves as described in the Appendix, and then dr, was computed, also as 
described in the Appendix. 

R E S U L T S  

T w o  types of  exper imen t s  were  per formed.  In  the first, dr e was es t imated  
f r o m  spike coun t  dis t r ibut ions for var ious  size l u m i n a n c e  dec remen t s  a t  a 
g iven background .  T h e  d e c r e m e n t  ene rgy  was var ied  b y  va ry ing  du ra t i on  
f rom 1 to 45 ms. In  the second type  of exper iment ,  b a c k g r o u n d  was va r i ed  
b y  the in t roduc t ion  of neu t ra l  densi ty  filters be tween  the l a m p  a n d  the dif- 
fusing plate.  A neu t ra l  densi ty  filter a t t enua tes  signal l u m i n a n c e  a n d  back-  
g round  l u m i n a n c e  in the same way,  because  bo th  signal and  b a c k g r o u n d  are  
p r o d u c e d  b y  the  same  l amp .  

Detectability and Luminance Change 

I n  o rder  to test the  hypothesis  t ha t  dPe is p ropor t iona l  to the size of  a lumi -  
n a n c e  change  w h e n  du ra t i on  is var ied  it is i m p o r t a n t  first to show tha t  
s t imulus  du ra t i on  is less t han  the in teg ra t ing  t ime  of the gangl ion  cell. Fig. 2 
shows dis t r ibut ion  of spike coun t  for a 25O-/o d e c r e m e n t  of  the b a c k g r o u n d  

last ing 100 ms a n d  for a 5 0 %  d e c r e m e n t  last ing 50 ms. 800 trials were  t aken  
for each  s t imulus over  a per iod of 8 h. Both st imuli  p roduce  responses well 
above  the  spontaneous  r a t e  of a b o u t  two spikes per  coun t ing  interval .  T h e  
dis t r ibut ions are  s imilar  bo th  in m e a n  and  var iance .  T h e  X ~ test reveals  no  
significant  differences (X 2 = 11.7, df  = 12). These  d a t a  are  consistent  wi th  
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F I G U R E  9. Distributions of spike count in 0.7-s interval after presentation of 100-ms 
decrement of 45% modulation and 50-ms decrement of 90% modulation. Ordinate: 
Relative frequency. Abscissa: Number of spikes counted. The maintained discharge for 
this cell was about 2 spikes/0.7 s. The response distributions appear to be nearly identical. 
X 2 = 11.7 (df = 12) is not significant. These data allow the conclusion that this cell ha~ 
an integrating time of at least 100 ms. Backgrounds at 0.34 cd/m ~. Unit: II-68-b. 



COHN, GREEN, AND TANNER Quantum Fluctuation Effects in Frog Optic Nerve 589 

the assertion of ten Doesschate (1958) that the frog dimming cell has an 
integrating time of at least 60 ms. The larger value reported here is probably 
due to the lower adaptation levels used in these experiments. 

The above test was performed at the highest adaptation level that was 
used in subsequent experiments so it was presumed that stimuli of lower dura- 
tion (45 ms and less) would satisfy the assumption of perfect temporal inte- 
gration at all adaptation levels. R O C  curves were measured for fixed modu- 
lation, variable duration decrements in most experiments. 

Fig. 3 shows R O C  curves for two decrement  stimuli. They  are fit with 
Gaussian R O C  curves for which the values of dre stand in the same ratio as 
the durations of the two stimuli. This result is consistent with the prediction 
of Eq. 2. 

Fig. 4 a plots d'e versus signal energy for this cell and for two others. Lines 
passing through the origin are fit by eye to the data points. Four other 
cells, tested in experiments with fewer trials showed consistent results. These 
results extend the finding of Fitzhugh (1957) who showed that d'e for incre- 
ments is nearly linear with the size of the increment, and they are consistent 
with psychophysical findings in humans (Cohn et al., 1974). 

In Fig. 4 b, the mean response (additional spikes above maintained level in 
700 ms) is plotted versus signal energy for the three cells whose data are 
shown in Fig. 4 a. Two of these stimulus-response functions depart  from 
linearity in a consistent way. They  show that the response for small signals, 
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FIOURE 3. R O C  curves for two different durat ion d imming  signals, l inear  paper. Upper 
curve for 38.5 ms, 4 0 %  d imming  of 0.034 c d / m  ~ background. Lower curve for 27.7-ms 
signal, dPe is 0.63 and  0.44, respectively. 300 trials per  distr ibution for each curve. U n i t  

IV-36-a. 
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FIGURE 4. (a) Detectability, dte, of dimming signal versus energy. Ordinate: d'e. 
Abscissa: Signal energy, equal to product of dimming modulation times duration. (Dura- 
tion varying up to 40 ms.) Three different cells represented. Upper two curves for back- 
ground of 0.34 cd/m ~. Lower curve for background of 0.034 cd/m 2. Units: IV-55-a, 
IV-70-a, and IV-36-a. (b) Ordinate: Average number of spikes exceeding maintained 
rate counted in 0.7 s interval after signal. Arbitrary units arranged so that point for 
highest signal plotted at same ordinate as in 4 a. Abscissa: Same as in 4 a. 4- 2 SE bars 
plotted. Two of the cells clearly show an accelerating function. No conclusion can be 
drawn from the third. 

measured  as an inc rement  of spikes upon the main ta ined  rate,  is an acceler- 
at ing funct ion of signal energy, not  a l inear  one. No conclusion can be d rawn 
for the third cell. For  large signals we find as did Barlow and Levick (1969 a) 
tha t  the response mechan ism saturates. But d'e remains l inear ly  re la ted to 
signal energy (an example  appears  in Fig. 5 below). Both results illustrate 
an impor t an t  feature  of R O C  analysis; even though the funct ion relat ing the 
input  to the ou tpu t  of the system under  s tudy is nonlinear ,  detectabi l i ty  
(d'e) m a y  be l inear with signal energy. I f  so, it means  (Birdsall, 1966) tha t  
the variabi l i ty  in the nerve  message originates distal to the nonlineari ty.  

I f  there had been a l inear relat ion between stimulus and  response, as Barlow 
and Levick (1969 a) showed for a range  of signals in on-center  cat  ret inal  
ganglion cells, and if the var iance of pulse n u m b e r  distributions did not  
depend  upon  the size of the luminance  change signal, as F i tzhugh  (1957) 
suggested, then dre would be l inear with average response and it would suffice 
to measure  the latter. Using R O C  analysis to define a sensitivity measure  
would be superfluous under  those conditions. 

In  the u re thane  anesthetized frog, spontaneous activity is so low tha t  the 
spike count  distr ibution for no signal is statistically trivial (Cohn, 1969). 
T h e n  R O C  curves for all detectable  stimuli produce  d'e = ~o because signal 
and  no-signal distributions have little or no overlap. Therefore ,  the hypothesis 
of a l inear  dr~ versus E function cannot  be tested. However ,  the hypothesis  
can be modified for test in the anesthet ized animal  as follows. Suppose that  
spike count  distributions are compared  for two different  signals instead of for 
signal and for no signal. T h e  predict ion becomes d r -- CAE where  b E  is the 
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difference of energy between the two signals. In other words, discrimination 
between stimuli is also predicted to be linear with energy. Fig. 5 shows d', 
versus AE for an experiment in which decrement amplitude, not duration, 
was varied. This finding, that d'e is linear with difference energy in a dis- 
crimination situation, was confirmed in seven other ceils. It is implicit in the 
findings of Fig. 4. 

15 
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FICURE 5. Detectability for discrimination between signals, Ordinate: dte estimated 
from pairs of spike count distributions for different size energy difference, using bootstrap 
procedure (details in appendix). Abscissa: Difference of energy between signals. 
Energy adjusted by varying duration. Line is fit by eye to pass through origin. It repre- 
sents the prediction that detectability is linear with difference energy. Inset: Estra spikes 
(ordinate) as a function of energy of dimming signal (abscissa). Smooth curve drawn to 
illustrate saturation-type function. Urethan anesthetized preparation. No spontaneous 
activity. Background at 0.34 cd/m 2. Unit: IV-92-a. 

Detectability and Background 

The second fundamental  prediction of the quantum fluctuation hypothesis 
is that detectability (d'e) should vary inversely with the square root of back- 
ground. It  is instructive to contrast this prediction with Weber's law, that a 
fixed percentage decrement produces a constant response independent of 
background (e.g., that  d'e varies inversely with background for E fixed, or 
d'e is a constant for E/B fixed). Fig. 6 shows dot pattern displays in which 
each dot represents a spike. The horizontal axis is time, and the vertical axis 
is changed slightly by a trial counter so that each trial produces a separate 
dot pattern. 

In each of the four displays, the upper half is for 40 trials with a small 
decrement (about 10% of background) and the lower half is for 40 trials with 
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FIGURE 6. Dot pattern displays (Wall, 1959) at different adaptation levels. Each hori- 
zontal trace is for a different trial and each dot shows the occurrence of a spike. Total 
horizontal trace represents 0.5 s after signal. There are 40 traces for a small signal (upper 
half of each panel) and 40 traces for a large signal (lower half), which were alternated in 
the experiment. In panels a through d, the ratio of decrement to background is fixed• 
Background lowered by the introduction of neutral density filters as follows: (a) 0.34 
cd/m 2, (b) 0.034 cd/m 2, (c) 0.0034 cd/m 2, (d) 0.00034 cd/m 2. As background is de- 
creased, responses show longer latency, fewer spikes, and more variability. Weber's law 
clearly does not hold because it would predict identical responses at each background 
since the ratio of decrement to background is fixed. Unit I I 1-92-1. 

a la rge  d e c r e m e n t  ( a b o u t  3 0 %  of  the  b a c k g r o u n d ) .  T h e  two s t imul i  were  
a l t e rna ted .  T h e  displays  f r o m  a t h r o u g h  d r ep resen t  expe r imen t s  at  back-  
g r o u n d s  o f  4, 3, 2, a n d  1 log units,  respect ive ly  (4 co r re sponds  to 0 .34 cd /m2) .  

First ly,  s p o n t a n e o u s  ac t iv i ty  (wh ich  can  be assessed a t  the  far  r i gh t  o f  e a c h  
t race,  a r o u n d  }~ s af ter  the  s t imulus  p re sen ta t i on  a n d  after  the  response)  is 

r o u g h l y  the  same  a t  all b ackg rounds .  T h e  response  is mos t  v igo rous  in a 
showi ng  a p r i m a r y  response  o f  h igh  pulse f r e q u e n c y  a b o u t  0.1 s af ter  the  
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st imulus onset, followed by a second frequency increase perhaps 0.2 s later  
for the larger stimulus. In  b, the secondary response is almost  completely 
obscured by spontaneous activity, and  the pr imary  response has increased 
la tency  and  dura t ion  bu t  decreased spike count. This progression continues 
th rough  c to d. Therefore,  a stimulus tha t  is a fixed percentage decrement  of 
the background does not  produce the same response at  all backgrounds so 
tha t  Weber ' s  law clearly fails to hold. In fact, detectabil i ty of a fixed per- 
centage decrement  increases for increasing background which matches  quali-  
ta t ively the q u a n t u m  f luctuat ion predict ion (it must  be remembered  tha t  E, 
the numera to r  of Eq. 1, increases l inearly with B because of the stimulus 
source configurat ion so tha t  E / B  11~ goes up with background).  Over  this 
range  of adap ta t ion  levels, frog pupil  size as measured with an infrared closed- 
circuit  television pupil lometer,  (Green and  Maaseidvaag,  1967) did not  
change. 

O n  the basis of studies by L iebman  and  Ent ine  (1968) showing tha t  over 
90% of the frog retinal  photop igment  is rhodopsin and  by Donner  and  Reute r  
(1968) showing tha t  cones do not  respond at  backgrounds below 101~ q u a n t a  
(615 nm) s-Zmm -~ (the backgrounds  here are at  most  10 z~ quan ta  (507 nm) 
s-~rdm -2, see Discussion) it is likely tha t  these responses moni tored are from 
the scotopic system of the frog. 

Quan t i t a t ive  tests of the q u a n t u m  fluctuat ion hypothesis employing more 
trials were performed on 10 other  cells. Fig. 7 shows log d',s verus log B for 
2 of the 10 cells. The  straight line fitted to measured points has a slope of 

ql••,,• • I00  Trials/Distribution 

Z~ 200  Trials~Distribution 

0.4 A 

0.3 

0.2 

O.I 2 4 5 I0 0 30 0 5 0  I1~)0 3 200 0 
Bockcjtound (B) 

FtGUR~ 7. d'e versus background, B, for two cells, log-log paper. In these experiments, 
background is varied with neutral density filters. At several values of background, E was 
also varied so as to keep measured d~e near 1.0. The value of the ordinate is extrapolated 
to the d'e that would have been achieved if E had been held fixed, on the assumption of a 
linear d~, versus E function. Ordinate: d'~. Abscissa: Background in arbitrary units. 
B = 240 corresponds to 0.34 cd/m 2 on diffusing plate. Lines of slope --0.5 are fitted by 
eye. They correspond to the deVries-Rose law, d'~ = KB -11~. Weber's law would be rep- 
resented by a line of slope - 1.0. 
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- } ~  which is the prediction of the quantum fluctuation hypothesis. Data  
from six others were consistent with these results. In the remaining two cells, 
tested at high background, the influence of background was stronger than 
shown above indicating that Weber 's  law (a line of slope equal to - 1) may 
hold under conditions of still higher adaptation level. 

An Alternative Model 

Suppose that an internal noise source, (not quantum fluctuation noise) say at 
the level of the ganglion cells, obscured the dimming signal by adding a fixed 
variance to the membrane potential. If the noise were gaussian and if the 
incoming light signals were attenuated by a gain control mechanism whose 
attenuation varied as the square root of background then Eq. 2 describes the 
predicted variation of d'c with E and B. So, while the data described above 
are consistent with the quantum fluctuation hypothesis they are consistent 
with at least one other idea that has nothing to do with quantum fluctuations. 
In order to separate these two hypotheses it is necessary to return to R O C  
analysis to find further predictions and an appropriate test. 

If, instead of employing the gaussian approximation that leads to Eq. 2, 
one estimates d'e for R O C  curves plotted from Poisson distributions, Eq. 2 
remains largely unchanged. However, the Poisson R O C  curves are notably 
different from gaussian R O C  curves for two reasons. Poisson R O C  points are 
of the following parametric form: 

P ( H I T )  = ~ [ e x p ( - B  4- E)(B - E )  ~] + x! 
x ~ O  

P(FA) = ~ [exp ( - B ) B  x] + x! 
X ~ 0  

(3) 

Each integer value of c produces a different R O C  point. When plotted on 
probability paper (Keuffel & Esser Co., Morristown, N . J . ,  type 47 8062, 
see Fig. 5 b of the Appendix) these points fall on a straight line of slope greater 
than 1.0. Greater than unity slope reflects greater variance in the noise dis- 
tribution than in the signal distribution. But it is not legitimate to connect 
these points by a straight line on probability paper. To assess an entire R O C  
curve from a set of achievable R O C  points one connects those R O C  points 
by straight line segments on linear paper. This is because an observer can, 
without any other information, randomize his use of the decision criteria 
leading to each obtained point and so operate somewhere on the line segment 
between them (see Birdall, 1966 for proof). Since single photons are indivisible 
the ideal observer cannot perform any better than is indicated by the inter- 
polated line segment on linear paper. The interpolated line segment plots as 
a concave-upwards cusp on probability paper. Such cusps can occur only if 
(a) underlying distributions are discrete, and (b) measured distributions are 
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more fine grained (e.g., more than one extra action potential per extra 
photon). Therefore, points may, but need not, fall on cusps in the Poisson 
case. However, if underlying distributions are continuous as is the case in 
the alternative model described above, R O C  points plotted from measured 
distributions (which may or may not be discrete) cannot fall on cusps. Fig. 8 
illustrates R O C  curve cusps. 

95 
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F i o u i ~  8. Theoretical Poisson R O C  curves on probability paper. These curves are for 
Poisson distributions of  means 0.5 and 2 (lower) and 5 and 10 (upper). Dashed curves 
are straight lines passing through R O C  points. Slopes of these lines are greater +ban 1.0. 
Solid curves (cusps) show points interpolated by connecting adjacent R O C  points plotted 
on linear paper with straight lines (Birdsall, 1966, p. 9). For the lower curve, the dashed 
line is terminated at the point (.605, .135) because that is the point that would be ob- 
tained if one or fewer photons were the criterion cutoff. The only lower cutoff leads to an 
ROC point at (0.0, 0.0). It is apparent that one would not expect to measure R O C  cusps 
unless the quantum catch for the cell in question were close to one or two photons. Be- 
cause of the inherent variability of R O C  points, a measured ROC cusp should not lead 
to the inference of a low quantum catch without independent confirmatory evidence. 

Figs. 9 and 10 display R O C  curves from frog dimming cells to enable a 
test of these alternative hypotheses. Several of these curves are notable for the 
large number of trials used in obtaining them. With enough trials, a single 
R O C  curve is sufficient to reject the internal added noise model. The curve 
of Fig. 10 is the best example of this. However, not all R O C  curves were 
measured with this precision. In total, 36 of 58 curves had slopes greater than 
unity; 22 had slopes less than or equal to 1.0. The occurrence of R O C  
slope less than 1.0 is due not just to sampling error in the determination of 
pulse number distributions, but also to the fact that when a cell is held for 
only a short time the factors that cause it to be lost probably add variance to 
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FXGURE 9. (a) ROC curves at low adaptation levels (probability paper). Ordinate: Hit 
rate. Abscissa: False alarm rate. Upper curve: Background at 0.017 cd/m 2, 150 trials per 
distribution. Lower curve: 0.0034 cd/m 2, 200 trials per distribution. These curves have 
slope greater than 1.0, and a cusp at the high spike count (e.g., low photon number) end 
of the curve. Unit IV-91-c. (b) ROC curve showing cusps. Ordinate: Hit rate. Abscissa: 
False alarm rate. Open circles are measured ROC points for Unit IV-77-a. 
Background = 0.0017 cd/m 2. Closed circles are for Poisson distributions with means 
0.75 and 2.8 quanta, respectively. They were chosen so that ROC point for lowest possi- 
ble cutoff (one spike) would match the measured point indicated by the arrow. Small 
filled circles are interpolated (using the rule that Poisson points may be connected by 
straight lines on linear paper) between theoretical points near the other measured points. 
This fitting procedure is intended as a guide; it is not justifiable to assert that the Poisson 
ROC curve is the only one that would fit the measured curve. 

the  m e a s u r e m e n t .  T h a t  m o s t  cells exhib i t  R O C  slope g rea t e r  t h a n  u n i t y  is 

cons is tent  w i th  the  f ind ing  of  Ba r low  a n d  C o h n  (1971) on  b o t h  " o n " -  a n d  
" o f f " - c e n t e r  c a t  re t ina l  g a n g l i o n  cells. T h e y  showed  R O C  curves  wi th  s lope 

g r e a t e r  t h a n  1.0 for  d e c r e m e n t s  a n d  less t h a n  1.0 for  inc rements .  
W i t h  r e g a r d  to cusps on  R O C  curves,  the  ev idence  is h a r d e r  to ob ta in .  

W h i l e  the  curves  de r ived  f r o m  the  larges t  n u m b e r  o f  trials a n d  p a r t i c u l a r l y  
those  a t  low b a c k g r o u n d s  all showed  cusps, ind ica t ive  of  b o t h  a d iscre te  i n p u t  

to the  sys tem a n d  of  a q u a n t u m  to spike ra t io  less t h a n  1.0 (see Figs. 9, 10), 
m a n y  R O C  curves  c o n t a i n e d  on ly  th ree  to five R O C  points  so t h a t  cusps 

w o u l d  n o t  be  expec t ed  t6 appea r .  W e  k n o w  of  no  a d e q u a t e  stat ist ical  test to  

c o n f i r m  the  o c c u r r e n c e  o f  cusps so the i r  a p p a r e n t  o c c u r r e n c e  m u s t  be  con-  
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FIOURE 10. ROC curves on probability paper. Background, 0.0034 cd/m ~. 550 trials 
per distribution. Ellipses around experimental points represent 95 % confidence limits on 
the assumption of binomiaI variance. Green and Swets (1966, p. 403) have pointed out 
that the binomial variance overestimates error due to the interdependence of the points. 
A theoretical Poisson ROC curve for distributions with means of 2.1 and 3.5 has been 
included for purposes of illustration (open squares, solid curve is cusp for interpolated 
points, slope of dotted portion is 1.1). Lower solid curve is chance line (slope = 1.0). 
Unit: IV-91-b. 

sidered provisional.  However ,  the inference of a q u a n t u m  to spike rat io  less 
than  un i ty  is consistent with a f inding of  Barlow et  al. (1971) in the cat. 

Ev idence  consistent with four predict ions of the q u a n t u m  f luc tuat ion  hy-  
pothesis has been presented:  (a) d'e is propor t iona l  to signal energy  in a 
detec t ion task and to the difference of signal energies in a discr iminat ion task; 
(b) for a range  of low backgrounds  d'e is inversely propor t iona l  to the square  
roo t  of background ;  (c) on the average,  R O C  slope is greater  than  1.0, and 
(d) R O C  cusps occur,  especially at  low backgrounds,  due  to the discrete 
na tu r e  of the pho ton  input.  An internal  noise model  is described tha t  explains 
the first two findings bu t  no t  the last two. 

D I S C U S S I O N  

W e  have  conc luded  tha t  the q u a n t u m  f luctuat ion hypothesis,  as fo rmula ted  
for tests using R O C  analysis, predicts cer ta in  aspects of the behav ior  of frog 
re t inal  ganglion cells when  luminance  decrements  are to be detected.  F o u r  
separa te  predict ions of the hypothesis  were tested and  confirmed.  T h e  first is 
a genera l iza t ion of the deVries-Rose law tha t  for fixed detectabi l i ty ,  a decre-  
m e n t  mus t  be increased as the square  root  of background.  T h e  second pre-  
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diction was that detectability should be proportional to the size of the decre- 
ment. The third was that the R O C  curve should exhibit greater than unity 
slope on probability paper. Finally, the R O C  curve for a discrete valued 
input, such as would occur due to the corpuscular nature of light, should 
exhibit convex-downwards cusps. Except for a narrow version of the first, 
none of these predictions could have been formulated and tested with classical 
procedures of nerve message analysis. 

The power of R O C  analysis in making these deductions is illustrated with 
the following numerical analysis. Consider first the critical evidence that 
favors the view that quantum fluctuations are responsible for the observed 
variability. This evidence involves the slope of the R O C  curve. A slope meas- 
ured to be greater than 1.0 implies that variability of the underlying distri- 
bution when the signal was presented is less than that when the background 
alone was presented. But, the same pulse number  (spike count) distributions 
show the opposite relation. Invariably the variance of the measured signal 
distribution is greater than that for the no-signal measured distribution. 

For example, the slope of the R O C  curve of Fig. 10 suggests that the vari- 
ance of signal and no-signal events is about  ~s~/~r2N = 1/(1.1) 2 = 0.83 
while the variances of the measured pulse number  distributions stand in a 
ratio of 3.8/2.3 = 1.65. That  is, the variance of the underlying signal distri- 
bution is less than that of the underlying noise distribution, just as Poisson 
statistics would predict. However, the variance of the measured (pulse 
number) signal distribution is larger than that of the measured noise distri- 
bution. This confirms the observation illustrated in Fig. 4 b of a nonlinear 
relation between photon count and pulse number. It shows how response 
size, which depends on an arbitrary choice of response scale (pulse number  
in this case) can lead to misleading inferences as to the statistical nature of 
underlying events. But R O C  curves are independent of scale (to within a 
monotone transformation), so that inferences based upon R O C  analysis are 
uninfluenced by both arbitrary choice of response scale and by nonlinearities. 
In this case, conventional statistical analysis procedures like computations of 
average response and response variance, would have failed to disclose that 
the data conform to the predictions of the quantum fluctuation hypothesis. 

Spontaneous Activity 

The nature and origin of spontaneous neural activity has been a question of 
great importance to neurophysiologists ever since it was discovered by Adrian 
and Matthews (1928). Jacobs (1972) has reviewed work in this area. Granit 
(1955) for example, has proposed that the purpose of spontaneous activity is 
to provide a means by which information may be signaled as positive or 
negative changes in firing rate. Our  data are consistent with this idea, es- 
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pecially insofar as luminance increments tend to arrest the activity of the 
dimming cell. But why is the spontaneous activity variable? 

Ratliff et al. (1968) recognized that the variability in the maintained dis- 
charge must limit the capacity of the nerve to carry information regarding 
external events. Barlow and Levick concur in this view (1969 a, b). Certainly, 
thermally caused membrane potential fluctuations present an irreducible 
minimum variability of spike discharges (Verveen and Dirksen, 1965). Ratliff 
et al. (1968) were led to the view, however, that the largest component of 
variability in Limulus eccentric cell discharge was initiated in the photo- 
excitatory process because the variability changed in response to various 
adapting conditions. This is consistent with our evidence that the variability 
of frog dimming cell discharge is due to quantum fluctuations. We have 
shown that the variability at a given adaptation level depends upon the 
signal used, the bigger the dimming signal the less variable the underlying 
distribution of events in the event that the signal had occurred. Thus, in our 
view, spontaneous activity is a coding of on-going photoisomerizations due 
to the background, its variability arising from the inherent fluctuations due 
to the corpuscular nature of light. Quantum fluctuations may not be respon- 
sible for variability at levels of adaptation higher than those we measured 
because eventually the relative variability due to quantum fluctuations (which 
decreases as Bl/0 would be expected to become less than thermally induced 
membrane potential fluctuations. 

Quantum Effciency 

If it is true, as suggested by the data, that quantum fluctuations limit the 
detectability of luminance decrements, it should be possible to calculate the 
quantum efficiency, F, of dimming cells. F is defined as the fraction of avail- 
able photons that give rise to the nerve signals that are monitored. There are 
two ways to make this computation, and they must be reconciled with the 
physical estimate of the number of photons available in the receptive field 
of the cells under test. The first method makes use of the relative size of decre- 
ment and background and the detectability measured. In the experiment the 
results of which appear in Fig. 10, for example, the decrement was a 40% 
modulation of the background and the detectability, d'e, of this stimulus was 
about 0.8. Knowing the number of photons available to the frog one can 
use these data to calculate F. 

The number of quanta available to the frog in this experiment can be 
approximated as follows: it is accepted that rods of Rana pipiens which contain 
rhodopsin (Crestitelli, 1958; Liebman and Entine, 1967) mediate responses 
at these adaptation levels, and it is assumed that a calculation applicable in 
the human (LeGrand, 1968) suffices in frog with changes appropriate to the dif- 
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ferences in size for the  two eyes. Assuming  (a) 7 - m m  2 pupil ,  (b) the re t ina  
lies 4 m m  f rom the pr inc ipa l  point ,  (c) 10% of q u a n t a  passing pupi l  are  
abso rbed  in pho t op i gm en t ,  2 and  (d) h u m a n  scotopic sensitivity;  approx i -  
m a t e l y  4 × l0 S q u a n t a  are  absorbed  a t  the re t ina  in a 1 - m m  2 recept ive  field. 

Whi le  there  is cons iderable  unce r t a in ty  a t t ached  to this n u m b e r  owing to 

the  assumpt ions  involved,  its impl ica t ions  are  wor th  pursuing.  F r o m  Eq. 3 
re la t ing  detectabi l i ty ,  d' , ,  to n u m b e r  of  photons  dec remen ted ,  EA T, f rom a 

s teady level, BA T 

d' (.FEAT) 
(FBA T) 1/2' 

where  B A T  is 4 X 103 q u a n t a  and  E A T  = 1.6 X 103 quan ta ,  F is calcu-  

la ted  to b e 2  X 10 -3 • 
Th is  is a lower  l imit  on q u a n t u m  efficiency. I t  assumes tha t  the eye receiver  

in tegrates  for no more  t han  the signal dura t ion .  However ,  the spike coun te r  
counts  for 0.7 s which  leads to an  u p p e r  l imit  for B A T  of 6.6 × 104 quan ta .  
E A T  r emains  1.6 × 103. Then ,  using Eq. 4 aga in  F = 1.65 X 10 -~, which  
is an  u p p e r  limit. I t  mus t  be  po in ted  out  tha t  F is in te rp re ted  as the f ract ion 

of  photons  ava i lab le  at the retina which  are  used in the task. T h e  overal l  
q u a n t u m  efficiency has been  assumed (above)  to be  lower  by  a factor  of  10 

due  to losses in the ocular  m e d i a  and  to inefficient q u a n t u m  ca tch ing  in the 

ret ina.  
Ano t he r  way  to es t imate  q u a n t u m  efficiency is by  fi t t ing the slope of  a 

measu red  R O C  curve  wi th  tha t  of  an  R O C  curve  c o m p u t e d  f rom Poisson 

distr ibutions.  T h e  Poisson dis t r ibut ions mus t  satisfy cer ta in  constraints.  First, 
the  m e a n  of the signal d is t r ibut ion can  be  no m o r e  t h a n  70% less t han  tha t  
of  the no-signal  d is t r ibut ion since tha t  is the pe rcen t  m o d u l a t i o n  of the decre-  

m e n t  du r i ng  its 42.5-ms dura t ion .  T h e  R O C  curve  which  ma tches  d'e = 0.8 
and  has the same  slope as the measu red  curve  is for Poisson dis t r ibut ions of  
means  2.1 and  3.5, respect ively  (see Fig. 10). Thus ,  3.5 is a lower  l imit  for 
F B A T ;  wi th  B A T  -- 4 × 103 , F  = 0.9 × 10 -3 . T h e  u p p e r  l imit  of  F B A T  

is found by  observing  tha t  the  in tegra t ing  t ime  of the ent i re  sys tem could be  

no m o r e  t han  the  coun t ing  period,  which  was 700 ms. 
I f  so, the m o d u l a t i o n  of the  b a c k g r o u n d ,  expressed as a pe rcen t  of  the  

2 The figure of 10% for human vision is probably a lower limit for the case of Ranapipiens: Kennedy 
and Milkman (1956) showed virtually no lens absorption above 440 nm. 92.8% of photoreceptors in 
R. pipiens are red rods (Liebman and Entine, 1968) containing rhodopsin (Crescitelli, 1958; Liebman 
and Entine, 1967) of optical density 0.7-0.8 (Liebman and Entine, 1968). From the estimate of 
Denton and Wyllie (1955) that red rods occupy 59% of the surface area of the retina of R. temporia 
vnd presuming corneal reflection to be negligible, it follows that about 50% of photons incident at the 
cornea are absorbed in photopigment. The corresponding figure from Hecht et al. (1942) for humans 
is 10%. Denton and Pirenne (1954) assumed a lower limit of 10% and an upper limit of 100% for 
Xenopus laevis. 
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total quan tum catch, could be as little as, but no less than 4.2%. In this 
case, the Poisson R O C  curve which has the same d', as that  of the measured 
curve is for distributions with means of 362 for the signal and 377 for the 
background. T h e n  B A T  = (700 ms/42.5 ms) X 4 × 103 = 6.6 × 104 and 
so F =  F B A T / B A T  ~ 377/6.6 × 104 -- 5.7 × 10 -3. 

However, the fit of the curve for distributions of 377 and 362 quanta  is 
much  worse than that for curves of lower Poisson mean because the slope of 
this curve is 1.02, significantly less than that of the measured curve. Thus, 
the quan tum efficiency calculated by the second method is between 5.7 X 
10 .3 and 0.9 × 10-~ with greater reliability supposed for the lower estimate. 

In summary, two independent  methods of computing quantum efficiency 
suggest that between 0. 1 and 1.6% of the photons received at the retina in the 
receptive field of the cell are used in the task. These low values do not neces- 
sarily imply an inefficient phototransduction process. Possibly the dimming 
ganglion cell receives input from only 1% of the receptors in its very large 
receptive field. This anatomical suggestion is plausible since dimming cells 
code no detail information (Maturana et al., 1960). 

SUMMARY 

(a) We have measured pulse number  distributions from recorded activity of 
dimming ganglion cells of Rana pipiens for decrement  stimuli of various sizes 
on several fixed adapting levels. The quantum fluctuation hypothesis of 
luminance change detection was formulated in a framework called R O C  
analysis in order to test its several predictions. (b) R O C  curves were calcu- 
lated from pulse number  distributions obtained by measuring single cell 
activity with and without dimming signals. (c) Signal detectability, d'e, was 
estimated from R O C  curves. (d) Detectability, d'~, is linear with decrement  
amplitude times duration. (e) Values of d'e decrease in proportion to the 
square root of background luminance. (f) The slope of R O C  curves on prob- 
ability paper is usually greater than 1.0. (g) R O C  curves often exhibit "cusps" 
indicative of both discrete value inputs (e.g., individual photons) to the 
system under  study and of a quantum to spike ratio of less than 1.0. (h) All 
of these results (d, e, f, and g) are consistent with the predictions of the quan- 
tum fluctuation hypothesis. Two, f and g, are inconsistent with an added- 
internal-noise model. Except for e, a special case of the deVries-Rose law, 
they could not have been tested by classical data analysis methods because 
of a nonlinear relation between spikes measured and energy of decrement. 
(i) It  is concluded that spontaneous activity codes irreducible changes of 
background light level, the variability of spontaneous activity reflecting the 
Poisson variability of the incident light. (j) The quantum efficiency of one 
cell, typical of the others, was calculated to lie between 1 X 10 -3 and 1.6 
X 10 -3. One way to explain this low value, which represents the fraction 
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of  absorbed photons  tha t  are used, is to postulate tha t  the gangl ion cell receives 
input  f rom only a small percen tage  of the receptors  in its recept ive  field. 

A P P E N D I X  

ROC Analysis of Sensory Nerve Messages 

Introduction 

The study of sensory systems often involves experiments where the system under study 
is evaluated at the limits of its information-handling capabilities. Physiological re- 
sponses measured in these experiments are difficult to evaluate owing to variability 
and to ongoing activity in the absence of stimuli. Useful innovations including averag- 
ing, histograms, and correlation techniques, have been introduced to cope with the 
statistical nature of responses (for a review see Moore et al., 1966). A major problem 
stems from the necessity for a subjective interpretation of the record by the experi- 
menter when a sensitivity measure is desired. The latter difficulty has been cited fre- 
quently (Fitzhugh, 1957; Rosenblith, 1962; Barlow, 1965; Barlow and Levick, 
1969 a) and is inextricably related to the statistical nature of physiological responses 
and to the existence and variability of ongoing activity. 

Two particular attempts to alleviate the subjectivity problem are precursors to the 
method to be described here. Fitzhugh (1957) applied the theory of signal detectability 
to the problem of analyzing noisy nerve messages in cat retinal ganglion cells. He 
defined an objective sensitivity measure, d, in terms of the separation of the means of 
spike count frequency distributions measured both with and without a stimulus. 
Fitzhugh's d did not take account of the variance of the spike count distributions. 
Barlow and Levick (1969 a) argued that the variability of the maintained discharge 
should be expected to affect sensitivity and so devised an extension of Fitzhugh's 
analysis procedure which took that variability into account. Each of these methods is a 
specialized form of a general analysis procedure that was introduced as a combination 
of statistical decision theory and signal detection theory ~Peterson et al., 1954). 

The purpose of this Appendix is to describe ROC analysis for nerve messages 
(Cohn, 1969), a general method of analyzing measured nervous activity based upon 
the receiver operating characteristic (ROC curve) of the theory of signal detectability 
(Peterson et al., 1954). ROC analysis includes as special cases the data analysis proce- 
dures of Fitzhugh (1957) and of Barlow and Levick (1969 a). ROC analysis provides 
a procedure for defining an objective sensitivity measure but with fewer restrictive 
assumptions than the methods cited above. Coupled with the theory of ideal observers, 
ROC analysis provides the experimenter with means of testing new types of hypoth- 
eses concerning measured nervous activity. This Appendix discusses the manner in 
which ROC curves and the associated sensitivity measure, d~e, are derived from fre- 
quency distributions of measured nervous activity. 

Synopsis 

First, the general experimental scheme for which this method is relevant will be 
described. Terminology is then defined in section B. Section C includes a method of 
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generat ing R O C  curves f rom raw data,  general properties of R O C  curves, extracting 
measures of sensitivity and threshold, and statistical aspects of R O C  curves and R O C  
curve parameter  estimation. Finally, section D describes the use of the concept  of the 
ideal observer in generating predictions for certain experimental situations. 

Principle Underlying ROC Analysis 

R O C  analysis considers the experiment in terms of' a communica t ion  channel analogy. 
Fig. 11 shows a block d iagram of an experiment considered in this way. In  the general 
case there are four components.  A transmitter provides signals to the system under  
study, a measurement  device monitors activity, and a receiver interprets the activity. 
I n  the examples to be used here, the transmitter provides decrement  light signals to 
the frog on half of the trials of the experiment. (No signal occurs on the remaining 
trials.) The  measurement  device records extracellular aetivity of the frog d imming 
ganglion cell axon in the optic tectum. The  receiver is a device that  counts spikes for 
0.7 s after the start of a triak The  frog is considered to be a eommunicat ion channel 
through which information pertaining to the presence or absence of the decrement  
signal may  flow. R O C  analysis is based on the principle (Cohn, 1969) that  the more 
accurately the receiver can draw inferences about  the presence or absence of the signal 
the better must  be the information-handling capability of the frog. R O C  analysis 
assesses the decisions that  the receiver could have made concerning the presence or 
absence of the signal based upon the information available in the measurement.  

Assumptions 

I f  certain assumptions are accepted, then it can be shown that  the sensitivity measure, 
d'~, derived f rom R O C  analysis, is directly related to the Shannor-Weiner  measure of 
information applicable to this communica t ion  channel (Cohn, 1969). Correspondence 
between sensitivity and the information measure (a) makes the R O C  analysis proce- 
dure objective, (b) enables the investigator to make use of theories of optimal per- 
formance for comparison with measured performance,  and (c) allows the investigator 
to gauge the influence of the part icular  choice of a receiver on his conclusions. Na-  
turally, if the assumptions are violated, the objectivity, optimal performance com- 
parisons, and ideas of receiver influence cannot  be relied on. Accordingly, the assump- 
tions implicit in the use of R O C  analysis are outl ined: (a) When  a signal has been 
presented measured events are variable, and can be confused with events when no 

I T ANS TTERI 'STUOYI  ]MEASORE ENT JRECEVE  I 
FIGURE 1 1. Communication channel analogy for the experiment. Signals, initiated by the 
experimenter, are transmitted to the system under study. Usually the measured effects 
due to a signal are compared to those due to no-signal transmission. If, using only the 
measurement, the receiver can correctly decide whether or not a signal has been pre- 
sented, then the information-processing capability of the system under study can be 
quantified. ROC analysis assesses correlation between physical events at the transmitter 
and measured physiological events at the receiver. 
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signal has been presented. (This is what is meant by "threshold" conditions.) (b) The 
measurement on any trial is completely independent of the measurement on any other 
trial, and the system under study remains unchanged for all trials of an experiment. 
(c) The receiver that is used in a particular experiment has been designed so that its 
efficiency is not likely to be altered by changes in stimulus parameters, and so that 
neither it nor the measurement device contributes significantly to the variability in the 
measurements. (d) The "goodness" of hypothetical receiver decision-making involves 
preference for correct decisions over incorrect decisions. (e) The experiment can be 
represented as in Fig. 11 with one and only one pathway for information flow from 
transmitter, via the system under study, to the receiver. 

(B) Terminology 

The theory of signal detectability provides the means to assess the receiver as decision 
maker and subsequently to assess the system under study as information processor. 
The terminology of that theory as applied to the problem of analyzing sensory nerve 
messages is presented below. The following terms are defined: signal, stimulus, re- 
ceiver, decision variable, criterion, hit rate, false alarm rate, likelihood ratio, detect- 
ability, efficiency, quantum efficiency. 

SmNAL The signal is the physical event produced at the transmitter. The word 
signal is not used interchangeably with the word stimulus. 

STImrLUS The word stimulus is reserved for general use as in "stimulus condi- 
tions." It  refers to all physical events influencing the system under study. 

NOISE Noise is any process uncorrelated with the signal that contributes vari- 
ance to the measured distributions. External noise is that which originates outside and 
internal noise that which originates inside the system under study. 

m~CEIWR A device that computes a unidimensional parameter of the measure- 
ment on each trial called the decision variable. (The extension of this technique to multi- 
dimensional decision variables will not be covered in this communication.) 

DECISION VARIABLE The random variable computed by the receiver on each 
trial. Fox (cited in Tanner, 1961) has shown that the optimal decision variable for any 
situation where hits are preferred to false alarms is the likelihood ratio. In addition, 
Birdsall (1966) has shown that decisions based upon any monotone function of likeli- 
hood ratio are indistinguishable from those based upon likelihood ratio so any quantity 
monotone with likelihood ratio is an optimal decision variable. 

CRITERION The set of values of the decision variable that would lead the re- 
ceiver to decide in favor of the presence of the signal. 

HIT RATe The percentage of signal trials on which the receiver would accept 
the hypothesis that the signal was transmitted (e.g., those trials for which the decision 
variable falls in the criterion set). 

FALSE ALARM RAre The percentage of no-signal trials on which the receiver 
would accept the hypothesis that the signal was transmitted. 
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RECEIVER OPERATING CHARACTERISTIC (ROC CURVE) The graphical display of 
hit rate on the ordinate versus false alarm rate on the abscissa that the receiver would 
achieve if it made a decision on each trial based upon the decision variable, as to 
whether or not the signal had been transmitted. The ROC curve depends strongly 
upon the nature of the receiver, upon the system under study, and upon the conditions 
of stimulation including parameters of the signal. 

MEASURED DISTRIBUTIONS The two frequency distributions of the decision vari- 
able as recorded on many repetitions of signal and no-signal trials. 

UNDERLYING DISTRIBUTIONS Hypothesized distributions of physiological or 
physical parameters located in or before the sensory system and distal to the measure- 
ment. Underlying distributions are most usefully defined at the site where the domi- 
nant noise in the experiment originates. These distributions are precursors of the 
measured distributions. Often, the purpose of an experiment is to test hypotheses 
concerning possible underlying distributions. 

LIKELIHOOD RATIO A statistic that is defined as the quotient of the probabilities 
of a particular event under two alternative distributions. The likelihood ratio of a 
particular value of spike count is obtained from the measured distributions of spike 
count. The likelihood ratio of a physical variable like the number of photons absorbed 
in the retina would be computed from the physical distributions of that variable. 

DETECTABILITY A unidimensional parameter abstracted from a measured R O C  
curve that quantifies the ability of the signal to lead to detection, detectability, d ' , ,  is 
the sensitivity measure of ROC analysis, d',  is defined as the separation of means of 
two unit variance gaussian distributions whose ROC curve intersects a measured 
R O C  curve on the negative diagonal (locus of points for which hit rate plus false 
alarm rate = 1.0). d', is zero for a signal that leads to chance performance, just less 
than 1.5 for a signal detected with 25 % error, and rises to infinity for a signal detected 
without error. 

EFFICIENCY If an external noise exists and is known (cf. Tanner  and Clark- 
Jones, 1960), a maximal detectability, d' , ,  for a hypothetical ideal observer can be 
computed from parameters of the signal and of the noise that obscures it. The theory of 
signal detectability is the formal theory that leads to such a computation. Effciency is a 
measure varying from 0.0 to 1.0 that describes the ratio of the energy required to yield 
the measured detectability for the ideal observer divided by the energy actually re- 
quired (el. Tanner and Birdsall, 1958). Computed in this way, efficiency is measured 
for the combination of system-under-study measurement device, and receiver. Since 
information passes serially from one to the next, each can exert an effect on overall 
efficiency. Thus to measure the efficiency of the system-under-study one needs to know 
the efficiencies of the other two, as well as the overal efficiency. 

QUANTUM EFFICIENCY An efficiency measure for the case where the ideal ob- 
server is an ideal photodetector (cf. Rose, 1948). It  can be thought of as the trans- 
missivity of a filter which, when placed in front of the ideal photodetector, would 
constrain its performance to the same level as that of a real detector. As defined by 
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Rose (1948), q u a n t u m  efficiency is the square  of the  Tanner-Birdsa l l  efficiency meas-  
ure. 

(C) Construction of the ROC Curve 

The  procedures  involved in R O C  analysis will be i l lus t ra ted for an exper iment  con- 
sisting of 184 signal tr ials and  180 no-signal  trials. The  presence or absence of a signal 
was de t e rmined  at  the t ransmi t te r  by  a r a n d o m  n u m b e r  genera tor  adjus ted  so tha t  
the  signal a p p e a r e d  on roughly  half  of the trials. The  n u m b e r  of spikes occurr ing  in 
the  0.7 s af ter  the s tar t  of a t r ia l  never  exceeded six in this exper iment .  Thus,  the raw 
d a t a  can be d isp layed  in a 2 x 7 tab le  as shown in T a b l e  I. This  tab le  shows, for exam-  
ple, tha t  a spike count  of 3 was observed on 37 of the 184 signal trials. This  f requency  

T A B L E  I 

FREQUENCIES 

Count 

0 1 2 3 4 5 6 Tota l  trims 

Frequencies of joint events 
No signal 56 54 34 20 9 5 2 180 
Signal 7 18 37 39 35 39 9 184 

Normalized frequencies of joint events 
56 54 34 20 9 5 2 

No signal 180 180 180 180 180 180" 180 
7 18 37 39 35 39 9 

Signal 
184 184 184 184 184 184 184 

Cumulative normalized frequencies 
No signal 1.00 0.69 0.39 0.20 0.09 0.04 0.01 
Signal 1.00 0.96 0.86 0.66 0.45 0.26 0.05 

tab le  is conver ted  to a relat ive f requency table  in a fami l ia r  way : each ent ry  is d iv ided  
by  its row total  with a result  as shown. One  in terpre ts  the  entries in this new table  as 
est imates of condi t iona l  probabi l i t ies ,  e.g., given tha t  the signal was presented,  the  
es t imate  of the p robab i l i ty  of ob ta in ing  a spike count  of 3 is 37/184. This  table  con- 
tains two separa te  condi t iona l  p robab i l i t y  dis tr ibut ions,  the measured  distr ibut ions.  
They  are  shown graphica l ly  in Fig. 12. 

T h e  task of the receiver  as decision maker  can be unders tood  by examining  the 
d is t r ibut ions  of Fig. 12. Clear ly  a given measured  va lue  of spike count  provides only 
equivocal  evidence as to the presence or  absence of the signal. But on the average  i t  
appears  tha t  the  larger  the spike count  the more  l ikely it is tha t  a d imming  signal was 
presented.  Assume tha t  the receiver  uses spike count  as its decision var iable .  T h e  
fol lowing procedures  re la t ing  to the der iva t ion  of sensitivity measures rest on the 
assumpt ion  tha t  the decision var iab le  is monotone  wi th  its l ikel ihood ratio.  Accord ing  
to Fox (see Peterson, et  al., 1954), the receiver  should use the l ikel ihood rat io  of the 
measured  p a r a m e t e r  (or, equivalent ly ,  a monotone  funct ion of l ikel ihood rat io,  ac-  
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FIGURE 12. Distributions of spike count for signal and no signal. Ordinate: Conditional 
probability, estimated from relative frequencies of Table I. Abscissa: Spike count. The 
distributions of response show large variability and considerable overlap. A receiver 
attempting to decide, based upon spike count, whether or not the signal had been trans- 
mitted is constrained to make errors regardless of the decision rule it uses. 

cording to Birdsall, 1966) in order to optimize its decisions as to the presence or ab-  
sence of the signal. In  this example, likelihood ratio is the quotient  of the two relative 
f requency entries in a given count  column (see Table  I). For example, the likelihood 
ratio for a count  of 3 is 37/184 -- 20/180 = 1.91. Baye's theorem can be used to show 
that  this decision variable, likelihood ratio, equals the posterior odds in favor of the 
presence of a signal since the prior odds are 1 : 1. 

To  verify that  spike count  is an appropria te  decision variable one must determine if 
spike count  is monotone  with its likelihood ratio. In  the example, likelihood ratio 
increases in monotone  fashion f rom left to right in the table except for a reversal in the 
last two entries. All entries in the table are subject to sampling error (see below) and 
the data  f rom subsequent experiments on this preparat ion confirm that  the likelihood 
ratio rises monotonical ly  with count,  even for those large values of  count. 

I f  the receiver were required to make decisions based upon spike count,  c it would 
adopt  some realization of  the decision rule: if 

C > C o  

decide signal present, otherwise, decide signal absent, because the higher is c, 
the better the odds in favor of the signal having been sent. This type of 
decision rule (see below for a derivation) can be realized in different ways 
depending upon the choice of the criterion cutoff, co. The hit rate that  the receiver 
could achieve can be computed  as the probabili ty under  the measured distribution for 
signal trials to the right of the cutoff given by co • Similarly, the false a larm rate would 
be the probabil i ty under  the no-signal distribution to the right of Co. In  Table  I the 
last set of figures shows the relative frequencies of the measured distributions cumu-  
lated f rom the right. As a consequence that  table shows in each column a realizable 
pair  of hit rate and false a la rm rate. Fig. 13 shows the R O C  curve, the plot of possible 
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FIOURE 13. ROC curve on linear paper. Ordinate: Hit rate estimated from cumulated 
relative frequencies given signal. Abscissa: False alarm rate, from cumulated relative 
frequencies of count given no signal. Each point achieved by adopting a different realiza- 
tion of the decision rule: Say "signal" if count exceeds Co. With reference to Fig. 12, hit 
rate and false alarm rate are areas under distributions to the right of Co. 

hit and false a larm rates for various values of co. A smooth curve has been drawn 
through these points. An R O C  curve is monotone increasing with monotone decreas- 
ing slope for the case of a decision variable monotone with its likelihood ratio. This 
curve satisfies that  ideal except for a slight deviation near the origin, where the slope 
fails to increase monotonically. 

Measure of Sensitivity 

The measure of sensitivity used in this paper assesses the extent to which the measured 
distributions do not overlap. Tha t  measure is called detectability and is denoted d ' , .  
I t  is defined as the separation of the means of two unit-variance gaussian distributions 
whose R O C  curve intersects the obtained R O C  curve at the negative diagonal (line 
for which hit rate plus false a larm rate = 1.0). d'e is a measure that  rises in monotone 
fashion with the number  of correct decisions. Fig. 14 a shows (dashed) two gaussian 
R O C  curves (curves obtained by computa t ion f rom pairs of equal variance gaussian 
distributions). The  value of the separation of the means of the gaussian distributions 
in each case is shown as the parameter  for each curve. Thus, the sensitivity measure, 
d'~, for the measured curve between them is approximately 1.3. The  computa t ion of 
dr~ can be made to any desired precision through the use of tables of the normal  deviate 
(Green and Swets, 1966). 

A convenient way to assess detectability is to plot the R O C  curve on normal-normal  
probabil i ty paper (Codex 42,453 [Codex Corp., Newton,  Mass.] or Keuffel and Esser 
47,8062) where the axes are stretched so that  equal distances represent the probabili ty 
increment  associated with equal fractions of s tandard deviation of the normal  deviate 
(z scores). O n  this paper gaussian R O C  curves are straight lines of unit  slope. For 
gaussian distributions of equal variance ~ ,  and difference of means, A/z, d'e = A/~/a. 



COHN, GREEN, AND TANNER Quantum Fluctuation Effects in Frog Optic Nerve 6o 9 

Unequa l  va r i ance  gaussian d is t r ibu t ions  p roduc e  s t ra ight  l ine R O C  curves on p r o b -  
ab i l i ty  p a p e r  also, and  the  slope is equa l  to the ra t io  of the s t a n d a r d  dev ia t ion  in the  
event  no signal  is p resented  to tha t  in the event  s ignal  is p resented  (Green  and  Swets, 
1966). 

Fig. 14 b shows the R O C  curve of Fig. 14 a rep lo t ted  on n o r m a l - n o r m a l  p robab i l i t y  
p a p e r  wi th  z-score coordina tes  also shown, d'~ is r ead  as the ver t ica l  axis z score less the  
hor izon ta l  axis z score. Clear ly  this z-score difference varies  over  the length  of  an  R O C  
curve except  in the  case of an  equal  va r iance  gaussian R O C  curve where  i t  is a con-  
stant.  For  this reason we have  adop ted  the convent ion of r ead ing  the de tec tab i l i ty  at  
the  negat ive  d iagona l .  

Bootstrap Procedures for Measuring d', of Large Signals 

Since high de tec tab i l i ty  is subject  to d i spropor t iona te ly  high sampl ing  er ror  (see 
below),  it  is wor th  descr ib ing  an a l t e rna t ive  technique  tha t  more  accura te ly  quantif ies  
de tec tabi l i ty .  Boots t rap  procedures  were in t roduced  in psychophysics  (Cree lman,  
1963; Nachmias  and  Kocher ,  1970). T h e  boots t rap  p rocedure  involves exper iments  on 
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FmURE 14. (a) ROC curve of Fig. 4 plotted with gaussian ROC curves for d ~ = 1.5 
(upper) and d I = 1.0 (lower). die for empirical ROC curve can be estimated by eye (at 
the negative diagonal) at about 1.3. die can be measured to any degree of precision using 
the hit and false alarm rates at the negative diagonal, and tables of the normal deviate. 
The area under a gaussian distribution to the right of a cutoff which is -0 .65  standard 
deviations from the mean would correspond to the hit rate, 0.74. Likewise, the area to the 
right of -t-0.65 standard deviations is 0.26. Thus, d'e is equal to -t-0.65 - ( -0 .65)  = 1.3, 
the separation of two unit variance gaussian distributions whose ROC curve intersects 
the measured ROC curve at the negative diagonal. (b) Same ROC curve on probability 
paper (Codex 42453). The intersection of the empirical curve with the negative diagonal 
has z-score coordinates of 0.65 and -0.65.  Their difference is die. So dr, = 0.65 -- 
( -0 .65)  = 1.3. Most ROC curves appear to be fit well by straight lines on probability 
paper. The slope of the line fitted (by eye) to the curve is 1.19. Therefore, the underlying 
distribution for signal is presumed to have less variance than that for no signal. 
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one (or more) additional signal chosen so as to produce effects less than those of the 
high detectability signal but greater than those due to no signal. Then using the rela- 
tion 

I 8 * d el. = d.l~. ~ + d.l ,~ (1 a) 

where s > si and where ~ is read "(d',) to be evaluated for distributions due to signal 
conditions i and j ,"  d', for the large signal is calculated as the sum of that for the small 
signal plus the d',  for discrimination between the two. The validity of Eq. 1 a has not 
been proven except for the case of gaussian equal variance distributions where the 
proof is trivial, since d',  is just the normalized separation of means between two distri- 
butions. Our computations for Poisson distributions show errors of no more than 1/2 % 
for Eq. 1 a. 

Relation of d', to the Sensitivity Measures of Other Authors 

Two other detectability measures appear in the literature which can be derived from 
d'~ with additional assumptions. They are compared with dr, in order to illustrate their 
limitations. The first has already been mentioned and is due to Fitzhugh (1957). His 
detectability measure, d, is simply the difference of means of the signal and no-signal 
spike count distributions. On the assumption that both measured distributions are 
gaussian with equal variance, and that variance is independent of stimulus conditions, 
d and dre are the same. To understand the limitations of d, consider the analogy of the 
communication channel. In that analogy, the system under study is considered more 
sensitive in relation to how well the receiver performs in the task of detecting the pres- 
ence or absence of a signal. The receiver's performance would increase if the spike 
count variability decreased. In the limit of zero variance, the performance of the re- 
ceiver would be perfect, d takes no account of the effects of variance on sensitivity. 

Barlow and Levick (1969 a) modified Fitzhugh's approach by including the effect 
of no-signal distribution variance in their definition of threshold. First, the mean and 
standard deviation of the spontaneous activity were measured and then the mean 
response for a near-threshold signal was measured. Threshold was defined as the 
signal energy that moved the mean response a fixed number of standard deviations 
from the no-signal mean. Two assumptions are implicit here: (a) that mean response 
is linear with signal energy and (b) that the variance of the signal distribution equals 
that of the no-signal distribution. Nakayama (1971) extended their approach to define 
a detectability, d r, as the difference in spike count means divided by the standard 
deviation of the no-signal distribution. Thus, Nakayama's d r is the same as d'~ pro- 
viding these distributions are gaussian with equal variance. Nakayama's d r does not 
take account of the effect which nonlinearities in the system under study can have on 
the variance of the signal distribution nor does it take account of signal-dependent 
variance. Both of these factors will affect the decisions that a receiver can make and 
that influence is reflected only in dr,. 

Statistical Considerations 

Since ROC points are obtained from relative frequency estimates of probabilities, they 
have inherent variance due to sampling error. There are a number of treatments in the 
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mathematical  psychology literature that are relevant to the problems of estimation of 
parameters of physiological R O C  curves (Gourevitch and Galanter, 1967; Dorfman 
and Alf, 1968; 1969; Ogilvie and Creelman, 1968; and Dorfman et al., 1973). Of  
special interest are programs that find maximum likelihood estimates of d~, and R O C  
slope (cf. Dorfman et al., 1973). An estimate derived f rom the work of Ogilvie and 
Creelman (1968) is a useful approximation for the standard error to be expected in 
d~, estimated in an experiment of N trials divided equally between signal and no- 
signal conditions. The estimate is based on the assumption that underlying distribu- 
tions can be approximated as logistic distributions. Then, SE (d') -- 2 .13IN xl2 pro- 
viding d' ,  < 2.0, otherwise standard error rises as a power ofd~e. 

(D) The Concept of the Ideal Observer 

The ideal observer (Peterson, 1954) is a mathematical  construct that enables the cal- 
culation of theoretically optimal performance. I t  can be used to assess whether or not 
receiver design is good (Cohn, 1969), and it can be used to compare measured per- 
formance to the best possible detection performance for the physical signals in ques- 
tion. I f  measured performance matches ideal performance then, considering the block 
diagram of Fig. 2, the system under study, the measurement, and the receiver each 
must process information relevant to the presence or absence of the signal as efficiently 
as is possible. In this case, the range of physiological explanations for the performance 
of the system under study is considerably constrained. I f  measured pertormance fails 
to match ideal performance then the way in which it has failed may provide clues as 
to the function of the system under study. The difference between ideal and mea- 
sured performance is quantified by the concept of efficiency (see Terminology).  The  
experimenter must be careful not to mistake inefficiency in the measurement and /or  
the receiver for inefficiency in the system under study. 

Receiver inefficiency, and its possible dependence upon stimulus conditions, are 
topics that have not yet received a thorough analysis. Fitzhugh (1957) and Barlow 
and Levick (1969 a) showed that the design of the receiver can exert a strong in- 
fluence on the conclusions one draws from an experiment. Therefore the experimenter 
must be cautious in the choice of a receiver. This caution is no less important  in studies 
not utilizing R O C  analysis. 

Example 1: Gaussian Noise Limit (Tanner and Clark-Jones, 1960) 

The performance of the ideal observer is defined in terms of the signal at the trans- 
mitter and the noise there that obscures it. The case for gaussian noise is useful to 
review because it is applicable in many situations and because it is a good approxima- 
tion in the Poisson case which is of interest in the present paper. Consider the example 
of a signal that is a decrement of a fixed luminance target of area A and duration, T, 
where T is less than the integrating time of the eye being studied. Let the amplitude of 
the decrement be E and the background luminance be B. Suppose that the back- 
ground luminance fluctuates randomly (but not necessarily due to quantum effects) 
with a distribution that is gaussian with zero mean, and with variance N ~. Then the 
input, x, to an observer is a gaussian random variable. When a signal is sent, the mean 
is (B -- E) and the variance is N ~. When no signal is sent, the mean is B and variance 
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is N ~. Let f,(s) be the probabili ty distribution of the input  when a signal is sent - n d  
fN(x) he the distribution when no signal is sent. These are the underlying distribu- 
tions in this example. 

The  optimal performance in any noise-limited situation may be calculated as fol- 
lows (specific assumptions about  the distribution of the noise are introduced only after 
Eq. 4). The  ideal observer is defined as the observer that  maximizes the quanti ty,  M :  

M = Pr ( H I T )  -- w Pr (FA), (2 a) 

where w is a constant that  specifies the relative importance of hits and false alarms. 
Eq. (2 a) embodies assumption d on p. 604 above. 

Hit  and false a la rm rates are defined by 

Pr ( H I T )  = f J, (x) dx, (3 a) 
Pr (FA) = fof. (x) dx, 

where c is the set of all x such that  the decision of the observer is that  the signal was 
sent. 

The  decision problem then becomes one of maximizing 

M = fo (f .  (x) --wf. (x)) dx, 

which occurs when c is the set of all values of x such that  f,(x) --  wf.(x) > 0 because 
then every x contributes a positive increment to the integral. 

Thus  

L(x) > w (4 a) 
/.(~) - 

defines the criterion, c. The  quant i ty  f,(x)/f~r(x) is the likelihood ratio. I f  the likelihood 
ratio of a given input, x, exceeds w, the ideal observer decides in favor of the signal. 
I n  the present ease the noise has been assumed to be gaussian. I t  can be shown (Green 
and Swets, 1966) that  the gaussian r andom variable, x, is monotone with its likelihood 
ratio so x is also an optimal decision variable and the decision rule becomes : say yes if 

where 

x > Xo,  (5 a) 

L(xo) 
- -  W .  

f,,(x0) 

Thus, this decision problem is represented by two gaussian distributions with sep- 
aration E and s tandard deviation, N. Then  for the ideal observer d' ,  is 

d',  - A means _ E (6 a) 
SD N '  
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and gaussian R O C  curves are predicted. Eq. 6 a is applicable if and only if gaussian 
distributions of equal variance define the decision problem. 

Quantum Effciency 

The way in which measured performance fails to achieve ideal performance can 
provide clues as to the underlying physiology. Suppose, for example, that the frog 
retina behaved in an ideal manner except that it failed to catch a fraction, 1 -- F, of 
the incident photons. Then, to match the performance of the system under study, the 
formulation of the ideal observer can be degraded by assuming the existence of a filter 
of transmissivity, F, placed in front of the ideal observer. Eq. 3 is repeated 

d', - FEAT  
(FBAT)~/,, (7 a) 

and F is the quantum efficiency of the degraded ideal observer. 
Q u a n t u m  efficiency can be measured directly, if E, B, A, and T, are known, by 

calculating E' ,  the energy of the signal delivered to an ideal observer so as to satisfy the 
requirement that the performance of the ideal observer equals the performance of the 
real observer. 
Thus, 

F E A T  E'A T 
(FBAT)lt ~ (BAT)it 2' (8 a) 

o r  

I t  should be noted that Eq. 8 a involves an approximation which, in the ease of decre- 
ment  signals, underestimates attainable d'e,  Therefore, calculations of F tend to be 
slight overestimates, but can never be wrong by more than a factor of 2.0 Table  I I  
shows how large the error can be for selected values of B A T  and d'e. 

T A B L E  I I  

PERCENT BY WHICH d', CALCULATED FROM EQ. 8a 
UNDERESTIMATED DUE TO GAUSSIAN APPROXIMATION 

IS 

B A T  

d'e 4 12 36 

% % % 

1.0  15 13 5 
2.0 26 18 10 
3.0 26 14 
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