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Recent workl1 2 has shown that equilibrium sedimentation in a density gradient
will separate solutes whose effective densities3 differ very slightly and will provide
information from which molecular weights can be computed. This is of particular
interest in the study of deoxyribonucleic acid (DNA), as Meselson, Stahl and
Vinograd' have shown, not only because one can study the replication of DNA2
but also because there is disagreement between the molecular weights measured for
DNA samples by other methods.4 Since the method is known to be sensitive to
small differences in effective density (0), one would like to know the effects of a con-
tinuous distribution in 0. On the one hand it would be useful to measure such
distributions, and on the other hand it is important to know how a distribution of (
affects the calculation of molecular weights.
For a single solute, the shape of the curve of concentration versus distance (the

"band") is Gaussian,1 to a first approximation, and the band width is inversely
proportional to the square root of the molecular weight, M. Thus a linear plot of
log c versus (r - ro)2 (where c is concentration, r is distance from the center of rota-
tion, and ro marks the center of the band) has been usedl1 2 to test for homogeneity,
and M has been found from the slope of this graph. It will be shown below that
if the material has a Gaussian distribution of effective densities the band will still be
Gaussian in shape and the width of the band will be markedly increased by narrow
distributions of 0. Thus a Gaussian shape for the band is a necessary but not
sufficient condition for homogeneity in 0, and the presence of a Gaussian distribution
of 0 will cause M to be seriously underestimated.
When the material being studied contains several fractions, we may express the

total concentration C as the sum of the individual concentrations (which are given
on a weight per volume scale)

C = (1)

and denote the weight fraction of each by

Wi = ci /C0 (2)

where cj0 is the initial concentration of species i. Combination of equations (1)
and (2) gives

Cr = C E Wi(ci/c )r (3)

If the material has a continuous distribution, 9(0) of species each with an effective
density 0 the following equation takes the place of equation (3).
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Cr = CJfo 9g(O) (c/c')7,o dO (4)
It has been shown by Meselson et al.' that under certain conditions discussed in the
following section, c is given by

In (c/c,.) = - ro)2/2U2 + (0) (r - ro)8 (5)

- / ,-21dp1(ar2=RTIMvc02ro (d (5a)

0 Pro = l/v (5b)
where (0) (r - ro)3 means that (minor) terms of order higher than (r - ro)2 are
omitted. Here R is the gas constant, T the absolute temperature, p the density
of the solution, w the angular velocity of the rotor, and v the partial specific volume
(cc/gm) of the solute. In the next section it will be shown that equation (5) retains
this form, but that a different significance must be given to o,2 and 0, when the
effects of preferential interaction are considered. The relation of cr, to the initial
concentration c" depends on the type of cell used. In general

fab Ac dr = co fb A dr (6)
where A is the cross-sectional area of the cell and the limits b, a mark the ends of
the column of solution. For a rectangular cell, use of equation (6) gives

Cr7 = c"(b - a)/a v/i;;i (7a)
and for a sector-shaped cell the result is

Cro = c"(b2 - a2)/2rou VI. (7b)

When the distribution of effective densities is Gaussian

(0) = yBr e-(9 - Om)2/2 -y2 (8)

equation (4) can be integrated readily by completing the square, provided that a
is treated as a constant and p is expressed by6

P = Pm + ( drm (r -rm) + (0) (r - rm)2 (9)

In equation (8), Om is the mean of the distribution of 0 and y is the standard devia-
tion in equation (9), rm is the value of r at which p = Om. For a rectangular cell the
result of integration is

C! b - a)e-(r - rm)/2^0' (10)

(dp\2
02 = 2 + /dr) (lOa)

Thus a material with a Gaussian g(G) will form a Gaussian band. As equation
(1oa) shows, the width of the band will be markedly increased by small values of
Fy. For example, a value for Sy of 0.003 gm cm-3 would double p2 for each of the
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DNA bands shown in Figure 2 of the article by Meselson and Stahl2 and causeM
to be underestimated by a factor of 2. Since 0m = 1.7 gm cm-3 for this case, such a
value for y would represent a standard deviation equal only to 0.2 per cent of the
mean. Narrow distributions of 0 such as this could arise both from chemical and
from configurational differences among the molecules. Heating DNA was found2
to change Om by 5 times this amount (AOm = 0.016 gm cm-'). Differences in base
composition produce sufficient variation in 0 that DNA samples from different
organisms actually produce separate bands in a cesium chloride gradient.6 It
would not be surprising if differences in base composition among the DNA molecules
of one organism were sufficient to cause broadening of this band.

There is a close analogy between the equations given above and the ones which
describe boundary spreading in electrophoresis for a material with a distribution of
mobilities. In the latter case, the concentration gradient curve is Gaussian for a
single solute and also for a material with a Gaussian distribution of mobilities,7
provided the diffusion coefficient is the same for all species and the field strength
and mobilities can be assumed constant. One can measure g(O) when the band is
not Gaussian in shape by the equation of Brown and Cann.8 Their equation,
which gives the distribution of mobilities in terms of moments of the experimental
curve, can be adapted to the sedimentation case simply by changing the notation.
However, one must have an independent estimate of a2 (equations 5a, 17a). One
would like to measure g(O) without knowing u2 and, by analogy with the measure-
ment of mobility distributions by an extrapolation to infinite time,9' 10 one might
hope to do this by varying co. However this is not possible, as equations 5a and 10a

show: the relative contributions to (2 of a2 and (y/ - do not vary with a,
k dri

since dp/dr is proportional to Co2.
Alternatively one might hope that, when the material is examined both in a rec-

tangular cell and in a sector cell, the band shapes would be sufficiently different to
detect the heterogeneity in effective density.'1 The result of integrating equation
(4) for the case of a sector-shaped cell is

C GC(b2 - a2) e-(r-rm)2/2 w2 21+en+2 + *
2r. fp O\2r r.

(11)

F (dpl(Ia= 1/rm [1+ (a dr"a)J] (hla)

The additional terms of equation (11) are only slightly larger than the ones omitted
from equation (5), and both are outside present experimental error when light-
absorption optics are used. Consequently, examining a material in these two types
of cells offers little promise of detecting heterogeneity in 0.
A method of detecting heterogeneity in 0 which does appear promising (Meselson

et al.,' footnote 1) is the use of a partition cell to isolate material on either side of
the band center, followed by rebanding of the isolated materials. The new bands
should differ from that of the starting material both in shape and position. One
might be able to detect differences in position by using schlieren optics to find the
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positions of the bands, and by examining both materials simultaneously in a twin
cell experiment.
At this point we will consider certain of the assumptions made in deriving equa-

tion (5), in order to see what factors might cause the band for a single solute with
the properties of DNA to deviate from Gaussian shape. First, there is the question
of the interaction of the solute with itself: equation (5) applies to the limiting case
in which the concentration of solute approaches zero. Since one can study DNA
at very low concentrations (ca. 0.001 gm/100 ml) with light absorption optics, the
assumption seems reasonable. Secondly, there is the question of charge effects,
caused by dissociation of the polyelectrolyte into ions. These have been con-
sidered by Meselson et al.1 and by Yeandle,'2 and the conclusion has been reached
that the shape of the band remains Gaussian. Thirdly, there is the question of
preferential interaction of the solute with one of the components of the mixed
solvent, a situation which is known to affect markedly the light scattering behavior
of such a system."3 An equation has already been given for the effect of this on
the position of the center of the band.14

Consider a system of three nonionizing components: a mixed solvent whose
components are labeled 0, 1, and a macromolecular solute labeled 2. In order to
obtain a simple equation which applies rigorously to compressible systems, it is
convenient to use a molal, or weight per weight, concentration scale. Equation
(43) of Williams et al.14 provides a convenient and rigorous starting equation.

li 1 dW2 W2rM2(1- V2P) r1+ Itl-l (12))
W20fW2 dr RT (1- 2P)

= - (m3,,2M1/M2)/(1 + mAll) (12a)

a( )InyJ)P (12b)
a Mk T, P,m

Here W is the number of grams and m is the number of moles per 1000 gm of com-
ponent 0, and ys is the activity coefficient of component i on the molal scale. If we
again define ro to be the position of the maximum concentration

dr O r= ro (13a)dr

and define 0, as before by the value of p at which r = ro, we have'4

0_Pro 0+ r 1] (13b)

When the variables on the right-hand side-of equation (12) are expressed in series
form as functions of (r - ro)

r = ro + (r -o)] (14a)

v\_v1{drlr, _> 1ens
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ur (dX -[(bX dmi + (abX) dP1 (14c)
w,-'o0dr r, LAbmip dr '\bP~mi dr Jr

where X = either p, 02, 01, or IF, and then these expressions are substituted into
e(luation (12), the result is

1 dW2 _ (r - ro)
wm-oW dru2 + (0) (r - ro)2 (5W2 -)" W2 dr (Tw

TW2 = RT/(M2w2ro) 02 d-+ P d2 d(1 -fJP) + r dp + pdf)\
dr dr dr - ij+ dr d-r fro

(15a)

Integration with respect to (r - ro) gives, as before, a Gaussian curve.

lim In [W2/(W2)r=_ (r - ro)t2+ (0) (r - ro)3 (16)
W20 2aW2

In order to obtain an equation on the c scale, for comparison with equation (5);
we consider the case in which d-ii/dr and dD2/dr are negligible and X', the quantity
corresponding to rF, is a function only of the concentrations. Then, following the
same procedure outlined in equations 12-16, one obtains the result

lim in [C2/(c2)ro] = - 2 o2 + (0) (r - ro)3 (17)

2 RT/(M2W2ro)KP+X'X)dp - l) (b \ dcl (17a)a RTI (IDL2 - (1V1)P) kbc1 /p dr 1

lc1=(M1) ( acl )P/[l + Cl i "1 (17b)
= M2 b1k Oc1 Ip

0@ O [ 1 + X](17c)

If the partial volumes v2 and ik are known, one can find X' by measuring 0 and using
equation (17c). Then one can find M2 from u2, by means of equation (17a), if
(bX'/bcj) is approximated by (X'/cl). This procedure will probably be accurate
enough for measurements made with light absorption optics. More rigorous
procedures could be devised by using equations (15) and (16).

In summary, if the macromolecular material examined by this method has a
Gaussian distribution of effective densities it will form a Gaussian band and
thus appear to be homogeneous. However, the band width will be increased and
the apparent molecular weight will be less than the true molecular weight, often
by a large amount. When the effects of preferential interaction of the solute with
one component of the solvent are considered, one finds that the band for a single
solute is still Gaussian but that its position and width are altered. One can take
account of this, at least approximately, if the partial volumes are known.
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Acridine orange (AO) is one of a number of dyestuffs which aggregate in aqueous
solution. It is thought that these flat, aromatic dye molecules aggregate by stack-
ing on top of one another, and are held together by London dispersion forces be-
tween their 7r-electron systems. The argument for aggregation in the case of AO
rests upon a quantitative analysis by Zankerl of the variation in the dye spectrum
with concentration and temperature. As the dye concentration is increased, the
absorption band (at 492 my) of the monomer falls and is replaced by a new band
(at 464 m~i) due to dimers. With further increases in concentration this band
shifts further toward shorter wave lengths, corresponding to the formation of
higher aggregates. Zanker showed that these changes could be quantitatively
expressed in terms of an association equilibrium constant, corresponding to a free
energy decrease in forming a dimer of 5.7 kcal/mole.
Wien AO is used to stain certain polyanionic tissue elements or is mixed with


