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Introduction.-In the last few years, the mathematical theory of control processes
has attracted a great deal of attention.'-7 Problems of stability and optimization
have been posed and resolved for deterministic and stochastic processes. Along
with this intensive analytic effort has come a more searching examination of the rele-
vance of existing mathematical models of the underlying physical processes.8' 9 It
is now recognized that questions of engineering feedback and industrial process
control, design of automata, control of man-machine combinations, data-processing
on a large scale, and many other activities as well, contain elements of uncertainty
of various unconventional types which escape classical formulation and classical
treatment. The processes that occur are "learning"'0-'2 or "adaptive" processes
in which it is required to act and learn simultaneously. Although some preliminary
work has been done from the statistical side'3-" the foundations for a general theory
have not as yet been laid.
The purpose of this note is to indicate how a general mathematical framework can

be constructed using the techniques of the theory of dynamic programming.'6
More detailed accounts of particular applications will appear in subsequent publi-
cations;"7 18 see also Bellman and Kalaba,'9 and Bellman.20

Formulation. In a deterministic process, the state of the system is specified by a
point in phase space, p, and the transformations, T(p, q), resulting from decisions q,
yield points of the same nature. In stochastic processes, the state of the system is
specified by coordinates of this type, and in addition, by probability distributions,
"points" in a "phase space" of more general type. At a sufficient level of abstruc-
tion, these are projections of a general multi-stage decision process.

Introducing a further level of abstraction, we shall show how the same conceptual
and analytic techniques, and computational methods as well, can be applied to the
study of adaptive control processes.

Let the state of the system S be specified, as usual, by a point p in phase space,
and, what is new, by an information pattern, P. This information pattern repre-
sents the information about the process that we wish to retain in order to guide our
further actions. As a consequence of a decision, q, p is transformed into a new
point pi, given a priori by the transformation pi = TI(p, P; q, r), and P is trans-
formed into a new information pattern, given a priori by the transformation P1 =

T2(p, P; q, r). Here r is a random vector variable, specified by an a priori proba-
bility distribution dG(p, P; q, r), itself a part of the information pattern P.

After the decision has been made, pi may or may not be completely determined.
Let us assume here, for the sake of simplicity, that these are known after the de-
cision has been made. We shall suppose also that the transformations T, and T2 are
known, although in many adaptive processes, the determination of these functions,
and even of the state and information patterns themselves, is an essential part of
the problem.
With this format, let it be required to determine a sequence of decisions, [qi, q2,
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. . ., qq], which will minimize the expected value of a preassigned function of the
terminal state, (PN, PN). The expected value is taken with respect to the set of
a priori probability distributions.

Functional Equations.-Following the usual approach of dynamic programming,
we introduce the sequence of functions

fN(p, P) = Min Exp k(PN, PN) (1)

Then the principle of optimality yields the functional equation

fN(p, P) = Min [f fN-i(Tl(p, P; q, r), T2(p, P; q, r))dG(p, P; q, r)] (2)
q,

forN = 2,3, ...,with

fi(p, P) = Min [fO4(Tj(p, P; q, r), T2(p, P; q, r))dG(p, P; q, r) (3)
q

These relations can be used to establish the existence of optimal policies, and to
obtain various structural characteristics, as in Bellman. 16

Sufficient Statistics.-For analytic and computational purposes, it is desirable to
replace the sequence fN(p, P), which may be a sequence of functionals due to the
dependence upon P, by a sequence of functions. A number of devices, familiar in
modern mathematical statistics, and collected under the heading of "sufficient
statistics," permit this very important reduction. See3' 21, 22 for applications of
this method, and for further discussion of particular problems.
Discussion.-In view of the very uncertainty that exists as to how to treat un-

certainty, there can be no pretense of ever erecting a definitive theory of adaptive
processes. The erection of such a theory is itself a sequential learning process.
What we wish to construct is a theory which is plausible, feasible and flexible, and
which can be shown, under certain favorable circumstances, to converge over time,
with probability one in any particular process, to the theory which we possess for
treating deterministic and stochastic control processes. Matters of this nature
will be discussed in detail in subsequent publications.
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Let r represent a positive integer. A (complex-valued) arithmetical function
f7(n) is called even (mod r) if f,(n) = fT((n, r)) for all integers n, where (n, r) denotes
the greatest common divisor of n and r. Since the integers (mod r) form an addi-
tive cyclic group, one may rephrase this definition as follows. Let C, be a cyclic
group of order r with elements a. A function fr(a) defined in CT will be termed
even if f7(a) is invariant under all automorphisms of C,.
The notion of even function (mod r) has been extended to functions of several

variables in a paper as yet unpublished. In that paper a function fj(n,, ..., nk) of
k integral variables is defined to be (relatively) even (mod r) if f7(ni, ..., nk) =
f,((nj, r), . . ., (nk, r)) for all no; if, moreover, there exists an even function F,(n)
such that f7(n, . .., nk) = F,((ni, ..., nk)) for all nf, thenf7(n..nk) is defined to
be totally even (mod r).

In the present note we restate in group-theoretical terminology some of the con-
cepts and results of the above cited paper. In particular, one may reformulate
the preceding definitions as follows. Let G,(k) denote an (additive) abelian group,
decomposable into a direct sum of k cyclic groups, CT('), each of order r,

Gr(k) = Cr(l) (D ( Cr(k). (1)

Let f,(a) be a complex-valued function defined in G7(k. We shall say that f7(a) is
relatively even, or more precisely, even relative to the decomposition (1), if fr(a) is
invariant under all automorphisms of G,(k) which induce automorphisms in C,(f),
i = 1, ... , k. The function fr(a) will be termed totally even if it is invariant under
the totality of automorphisms of G/(k) The equivalence of the latter definition
with the definition of totally even function (mod r) stated above is a consequence of
the fact that, in the homogeneous group Gr(k), each cyclic subgroup of order r is a
direct summand.'


