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Manumycin and gliotoxin derivative KT7595 block Ras
farnesylation and cell growth but do not disturb lamin
farnesylation and localization in human tumour cells

T Nagasel, S Kawatal, S Tamura', Y Matsuda', Y Inuil, E Yamasakil, H Ishigurol, T Ito', J Miyagawal, H Mitsui',
K Yamamoto', M Kinoshita2 and Y Matsuzawa'

'Second Department of Internal Medicine, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565, Japan; 2Diagnostic Research Institute,
Diagnostics Division, Otsuka Pharmaceutical, Kawauchicho, Tokushima, 771-01

Summary Recently, many inhibitors of farnesyl protein transferase (FPTase) have been identified. Some of them interrupt cell growth in
addition to Ras and nuclear lamin processing of Ras-transformed cells. We have tested the effect of the FPTase inhibitors manumycin, an
analogue of farnesyl diphosphate, and KT7595, a gliotoxin derivative, on Ras farnesylation, DNA synthesis and the anchorage-dependent
and -independent growth of human colon carcinoma (LoVo), hepatoma (Mahlavu and PLC/PRF/5) and gastric carcinoma (KATO 111). Both
drugs severely inhibited DNA synthesis, cellular proliferation and Ras farnesylation in LoVo and moderately reduced them in Mahlavu and
PLC/PRF/5 but not in KATO 111. Complete sequencing of ras genes, however, revealed that LoVo and KATO Ill have activated Ki-ras and
activated N-ras, respectively, whereas Mahlavu and PLC/PRF/5 have no activated ras. We next checked whether the inhibition of the cellular
proliferation is due to the blocking of nuclear lamin function. Neither drug disturbed lamin farnesylation and localization, as demonstrated
using metabolic labelling, immunoblotting and indirect immunofluorescence. These results indicate that manumycin and KT7595 can inhibit
Ras farnesylation and cell growth without disturbing the farnesylation and localization of the lamins on human tumour cell lines.
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Activation of Ras protein is found to be among the most common
genetic abnormalities in human cancers (Barbacid, 1987). For
example, more than 50% of human colon cancers and more than
90% of pancreatic cancers produce mutant Ras proteins (Barbacid,
1987). These observations emphasize that pharmacological inter-
vention against Ras is crucial for cancer chemotherapy.

Ras proteins belong to a group of small GTP-binding proteins
that play a role in mitogenic signal transduction, proliferation and
malignant transformation (Boguski and McCormick, 1993; Lowy
and Willumsen, 1993). Ras must be associated with the plasma
membrane for its transforming activity (Hancock et al., 1989; Der
and Cox, 1991). This membrane localization requires a series
of post-translational modifications (Der and Cox, 1991; Gibbs,
1991). The first and obligatory step is farnesylation of the cystein
residue located at the COOH-terminal CAAX (C, cysteine; A,
aliphatic; X, another amino acid) tetrapeptides, which are
catalysed by farnesyl protein transferase (FPTase) (Maltese, 1990;
Manne et al, 1990; Reiss et al, 1990; Schaber et al, 1990). After
famesylation, the Ras CAAX undergoes proteolytic digestion of
AAX and carboxylmethylation of the newly formed farnesyl-
cysteine residue (Cox and Der, 1992). In particular, farnesylation
is the critical modification for Ras membrane association and
cell-transforming activities (Cox and Der, 1992).

In addition to Ras proteins, nuclear lamins A and B have been
reported to be famesylated (Cox and Der, 1992). Farnesylation is
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essential for the association of nuclear lamins with the nuclear
envelope (Krohne et al, 1989; Hennekes and Nigg, 1994). It
has been demonstrated that the lamina, which consists primarily
of lamins, stabilizes cell cycle-dependent chromatin structure
(Gasser and Laemmli, 1986) and that lamins are required for the
post-mitotic reassembly of the nuclear envelope (Burke and
Gerace, 1986). Thus, nuclear lamins play a key role in mitosis.
A number of studies have examined the FPTase inhibitors that

may serve as effective antagonists of oncogenic Ras function in
human cancers. These compounds can be divided into three
groups: analogues of famesyl diphosphate (FPP) (Gibbs et al,
1993; Hara et al, 1993), CAAX analogues (Goldstein et al, 1991;
Brown et al, 1992; Garcia et al, 1993; Kohl et at, 1993; James et al,
1993) and inhibitors with structures not resembling either FPP or
the CAAX motif (Van Der Pyl et al, 1992; Omura et al, 1993). In
particular, many of the compounds that have been demonstrated as
being potent and selective inhibitors of FPTase activity in vitro and
in vivo are CAAX analogues (Garcia et al, 1993; Kohl et al, 1993;
James et al, 1993; Nagasu et al, 1995; Sepp-Lorenzino et al, 1995).
Although two enzymes responsible for prenylation, in addition to
FPTase, have been isolated and characterized, i.e. geranylgeranyl
protein transferase (GGPTase) I and II, these analogues show
strong and preferential inhibition of FPTase. However, as nuclear
lamins A and B are also farnesylated (Cox and Der, 1992), FPTase
inhibitors block farnesylation of nuclear lamins as well as that of
Ras proteins (Garcia et al, 1993; James et al, 1993) and may
perturb their function (Cox and Der, 1992).
We wished to investigate whether manumycin, an analogue of

FPP, and KT7595, a gliotoxin derivative, inhibit the cellular
proliferation of human tumour cells that harbour multiple genetic

1001



1002 T Nagase et al

abnormalities, whether the suppression is dependent on that of Ras
farnesylation but not that of the function of nuclear lamins and
whether the presence of activating mutations of Ras in human
tumours is predictive of sensitivity to manumycin and KT7595. To
address this question, we have used human colon carcinoma cells
(LoVo), hepatoma cells (Mahlavu and PLC/PRF/5) and gastric
carcinoma cells (KATO III). In this report, we have demonstrated
that inhibition of Ras farnesylation, but not of lamin function,
leads to the inhibition ofDNA synthesis and the anchorage-depen-
dent and -independent growth of human tumour cell lines and that
the presence of oncogenic Ras in human tumours is not predictive
of sensitivity to manumycin and KT7595. These results led us to
conclude that manumycin and KT7595 are effective inhibitors of
Ras function and cellular proliferation, without disturbing lamin
function in some human tumour cell lines.

MATERIALS AND METHODS

Materials

Manumycin and gliotoxin derivative KT 7595 were provided by
Kyowa Hakko Kogyo. Simvastatin (open acid) was supplied by
Merck Sharp & Dohme Research Laboratories. An anti-v-Ha-ras
(Ab-1) antibody (clone Y13-259)-protein A-agarose bead complex
and a mouse monoclonal antibody to lamin B were from Oncogene
Science and Oncogene Research Products respectively. RS-[2-'4C]-
Mevalonolactone (1.48-2.22 GBq mmol-') was from New England
Nuclear. [5'-3H]Thymidine (185-740GBq mmol-') and Amplify
were purchased from Amersham. Electrophoresis reagents were
from Bio-Rad. All other chemicals were obtained from Sigma.

Preparation of manumycin and KT7595

Manumycin was dissolved to concentrations of 5, 10 and 15 mM in
100% dimethyl sulphoxide (DMSO). KT7595 was prepared at
concentrations of 0.1 and 0.2 mm in 100% DMSO. They were
stored unfiltered at -200C.

Cell culture

Mahlavu and PLC/PRF/5 were purchased from the American Type
Culture Collection. LoVo and KATO III were provided by the
Japanese Cancer Research Resources Bank. Mahlavu and
PLC/PRF/5 were grown in minimal essential medium (MEM)
containing 10% fetal calf serum (FCS). LoVo and KATO III were
grown in Ham's F- 12 and a 1:1 mixture of MEM and RPMI-1640
supplemented with 10% FCS respectively. In each assay,
Dulbecco's modified Eagle medium (DMEM) supplemented with
10% FCS was used in all cell lines. The cell lines were maintained
in 100-mm dishes at 370C in a humidified atmosphere (5% carbon
dioxide, 95% air).

Measurement of DNA synthesis

The effect of manumycin and KT7595 on DNA synthesis was eval-
uated by [3H]thymidine incorporation. Mahlavu, PLC/PRF/5 and
LoVo cells were placed at 3 x 103 per well on 96-well microplates
(Coming). The medium was replaced with the fresh media
containing various concentrations (5, 10 and 15 gM manumycin or
0.1 and 0.2,UM KT7595) and 0.1% DMSO 24 h after seeding.
KATO III was also seeded at 1 x I04 per well (100,l) with the

medium containing various concentrations (5, 10 and 15 gM
manumycin or 0.1 and 0.2 gM KT7595) and 0.1% DMSO.
[3H]Thymidine (1 gCi per well) was added to the culture media
43 h after incubation (46 h after incubation for KATO III). The cells
were harvested on glass filters using a semiautomatic cell harvester
(1205 Betaplate) 48 h after incubation. The radioactivity of each cell
sample was determined using a liquid scintillation counter.

Anchorage-dependent growth assays

Mahlavu, PLC/PRF/5 and LoVo cells were placed at 1.5 x 105 per
60-mm dish. One day after seeding, cultures were treated with
increasing concentrations of manumycin or KT7595. KATO III
was seeded at 1.5 x 105 per 60-mm dish with increasing concentra-
tions of the drugs. After cells were treated for 24 h and 72 h with
the drugs, cell counts were taken on triplicate dishes using a
Coulter counter. Viability was assessed via trypan blue exclusion.

Anchorage-independent growth assays

For soft agar growth, 10 000 cells were seeded on a 35-mm dish in
a 0.3% top agar layer over a 0.6% bottom agar layer. Drugs were
included in both agar layers. Cultures were fed and treated with the
drugs or vehicle twice weekly. Colonies more than 0.1 mm in
diameter were scored manually from duplicate dishes after 12 days
in culture.

DNA sequencing of H-, Ki-, and N-ras

Fragments encompassing the region between codons 8 and 31 and
the region between codons 54 and 75 were amplified using the
polymerase chain reaction (PCR) technique in the N-ras gene.
The primers used in the PCR were: N 1 2F (5'-GACTGAG-
TACAAACTGGTGG-3') and N12R (5'-CTCTATGGTGGGAT-
CATATT-3'), for amplifying the fragment of codons 8-31; and
N61F (5'-GGTGAAACCTGTTTGTTGGA-3') and N61R (5'-
ATACACAGAGGAAGCCTTCG-3'), for codons 54-75. The
amplified fragments for sequencing analysis in the K-ras gene
encompassed the region between codons 1 and 37 and the region
between codons 45 and 74. The primers used to amplify the frag-
ments were: K12F (5'-GTACTGGTGGAGTATTTGAT-3'), and
K12R (5'-ACTCATGAAAATGGTCAGAG-3'), for codons 1-37;
and K61F (5'-TTCCTACAGGAAGCAAGTAG-3') and K61R
(5'-ACACAAAGAAAGCCCTCCCCA-3'), for codons 45-74. For
the analysis of the H-ras gene, the amplified fragments encom-
passed the region between codons 8 and 15 and the region between
56 and 66. The primers for amplifying the fragments were:
H12F (5'-GACGGAATATAAGCTGGTGG-3') and H12R (5'-TGG-
ATGGTCAGCGCACTCTr-3'), for codons 8-15; and H61F
(5'-AGACGTGCCTGTTGGACATC-3') and H61R (5'-CGCAT-
GTACTGGTCCCGCAT-3') for codons 56-66. PCR was performed
with 1 ,UM of each primer, using a Gene Amp kit (Perkin Elmer) with
a 'Robocycler 40' PCR machine (Stratagene). Each PCR reaction
cycle included denaturation at 94°C for 60 s, primer annealing at
56°C for 90 s and primer extension at 72°C for 90 s. PCR products
were cloned in a TA cloning site of pT7-T Blue vector (Novagen)
using T4 DNA ligase (Takara Syuzo). The sequence analysis of these
PCR-amplified fragments in the cloning vector was performed
using an ALFII automatic sequence analyser (Pharmacia) with
M13 primers.
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Ras farnesylation assay

On day 0, Mahlavu and PLC/PRF/5 were seeded at a density of
8 x 105 per 100-mm dish. LoVo was seeded at 1.7 x 106 per
100-mm dish. On day 3, fresh media were changed. On day 4, the
cells were re-fed with the medium supplemented with 10 M
simvastatin. KATO III was seeded at a density of 3.5 x 106 per
60-mm dish in 3.5 ml of the medium supplemented with 10 ,UM
simvastatin. After a 24-h incubation, the cells were then incubated
for 4 h in fresh medium containing 15 ,uCi ml RS-[2-'4C]meval-
onolactone (1.48-2.22 GBq mmol-') and 10 gM simvastatin in the
absence or presence of 5, 10 and 15 ,UM manumycin or 0.1 and
0.2 ,UM KT7595. These cells were lysed with a buffer containing
10 mm sodium phosphate, dibasic, 154 mm sodium chloride,
12 mm sodium deoxycholate, 1 mm sodium fluoride, 0.1% sodium
dodecyl sulphate (SDS), 31 mm sodium azide, 1% (v/v) Triton X-
100, 1 mm phenylmethylsulfonyl fluoride, 0.15 ,u ml- aprotinin
and 10 gg ml-1 leupeptin at 4°C for 10 min. After the cell extract
was centrifuged for 10 min at 12 000 r.p.m., the supernatant was
transferred to a new tube. Protein content was measured by the
method of Lowry et al (1951). Ras protein was immunoprecipi-
tated from the cell extract with 10,l of an anti-v-Ha-ras (Ab-1)
antibody (clone Y13-259)-protein A-agarose bead complex. The
immunoprecipitated material was then analysed by SDS-PAGE
using 5-20% acrylamide gels. Radiolabelled Ras protein was visu-
alized by fluorography after intensification with Amplify fluoro-
graphic reagent (Amersham). The radioactivity was determined by
a BAS-2000 Image Analyzer (Fuji Film, Tokyo, Japan).

Nuclear lamin farnesylation assay

Farnesylation of nuclear lamins was measured in cell lines by a
modification of the method of James et al (1993). On day 0,
Mahlavu and PLC/PRF/5 were seeded at a density of 3 x 105 per
60-mm dish. LoVo was seeded at 5 x 105 per 60-mm dish. On day
2, the cells were re-fed with the medium supplemented with 10 gM
simvastatin. KATO III was seeded at a density of 2 x 106 per 35-
mm dish in 2 ml of the medium supplemented with 10 gM simvas-
tatin. After a 24-h incubation, the cells were then incubated for 4 h
in fresh medium containing 15 gCi ml-1 RS-[2-14C]mevalono-
lactone (1.48-2.22 GBq mmol-') and 10,M simvastatin in the
absence or presence of 5, 10 and 15 gM manumycin or 0.1 and
0.2 ,UM KT7595. The cells were disrupted in lysis buffer, after
which a detergent-insoluble fraction (pellet) was prepared as
described by James et al (1993). The fraction was subjected to
SDS-PAGE using 5-20% acrylamide gel. Radiolabelled proteins
were visualized by fluorography after intensification with Amplify
fluorographic reagent (Amersham).

Immunoblotting of lamin B

Cultures were treated with either vehicle, manumycin, KT7595 or
10 ,UM simvastatin for 20 h. Nuclear envelope fraction was isolated
as described previously (Stick and Krohne, 1982; James et al,
1993). The fraction was subjected to SDS-PAGE using 5-20%
acrylamide gel. After transfer to Immobilon P membrane
(Millipore), the blots were probed with mouse monoclonal anti-
body to lamin B (Oncogene Research Products). The Western blots
were developed using enhanced chemiluminescence reagents
(Amersham).

HO '

Figure 1 Structure of a gliotoxin derivative KT7595

Indirect immunofluorescence

Cells (2 x 104) were plated on sterile chamber slides. After expo-
sure to 15 gM manumycin, 0.2 gM KT7595, vehicle or 10 gM
simvastatin, cells were washed with phosphate-buffered saline
(PBS) and fixed with 4% paraformaldehyde in PBS for 10 min at
40C. The cells were then washed with PBS and permeabilized
with 0.1% Triton X-100 in PBS for 5 min at 25°C. Indirect
immunofluorescence was performed with mouse monoclonal
antibody to lamin B (Oncogene Research Products) (1:200). The
secondary antibody was FITC-conjugated goat anti-mouse IgG
(Organon Teknika).

RESULTS

We have previously shown that manumycin inhibits the growth of
the human hepatome cell line Hep G2 via the suppression of Ras
famesylation (Nagase et al, 1996) and that it retards human
pancreatic cancer growth in nude mice (Ito et al, 1996). On the
other hand, gliotoxin, which was isolated from the fermentation
broth of a fungus, has been reported to inhibit FPTase in vitro (Van
Der Pyl et al, 1992). KT7595 is a gliotoxin derivative (Figure 1),
an inhibitor of FPTase that has an IC50 value of 7 ,UM in vitro
(unpublished data).

EFFECT OF MANUMYCIN AND KT7595 ON DNA
SYNTHESIS

The effect of manumycin and KT7595 on DNA synthesis of
different cell lines is shown in Figure 2. The cell lines were incu-
bated in 10% FCS-containing DMEM in the presence or absence
of different concentrations of manumycin or KT7595. The cell line
LoVo was markedly sensitive to both drugs. These agents inhibited
the DNA synthesis of LoVo colon cancer cell lines in a dose-
dependent manner. Treatment of LoVo with 15 gM manumycin
and 0.2 gM KT7595 resulted in approximately 85% inhibition
after 48 h as measured by [3H]thymidine incorporation. These
compounds moderately decelerated the DNA synthesis of
PLC/PRF/5 and Mahlavu at concentrations that markedly
suppressed the DNA synthesis of LoVo. The DNA synthesis of
PLC/PRF/5 and Mahlavu was inhibited by 53% and 32%, respec-
tively, for 15 gM manumycin. On the other hand, for 0.2 gM
KT7595, the DNA synthesis of PLC/PRF/5 and Mahlavu was
inhibited by 45% and 28% respectively. KATO III was the most
resistant of the cell lines tested, and the DNA synthesis was not
affected by manumycin and KT7595.
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Anchorage-independent growth assays

We tested whether the effects of these FPTase inhibitors on the
ability of these four cell lines to form colonies in soft agar were the
same pattern as those on the DNA synthesis and the anchorage-
dependent growth. As expected, LoVo was extremely sensitive to

manumycin and KT7595 on clonogenicity in soft agar (Figure 4).

In the presence of 15 gM manumycin or 0.2 gM KT7595, LoVo did
not form the multiple, large colonies that grew in the presence of

vehicle. The inhibition by manumycin and KT7595 was in a dose-

dependent manner (Figure 4). PLC/PRF/5 and Mahlavu were

more resistant than LoVo, although their clonogenicity was

also inhibited dose-dependently (Figure 4). In contrast, 15 gM
manumycin or 0.2 gM KT7595 had no effect on the anchorage-

LoVo PLC/PRF/5 Mahlavu KATO lII independent growth of KATO III (Figure 4). This result indicates
that manumycin and KT7595 were capable of suppressing the
transformation of human tumour cell lines that harbour multiple

KT7595 genetic abnormalities.

Nucleotide sequence analysis

FPTase inhibitors have been reported to reduce the growth rate of
cells transformed with the oncogenic mutant form of Ras but not
of non-transformed cells (James et al, 1993). To investigate

whether this is also the case in human tumour cells, the complete
nucleotide sequence of all three ras genes in four cell lines were

analysed (Table 1). any gene in

PLC/PRF/5. Mahlavu contained Ki-ras codon 29, which was a
_ 1 _..1 _ME Il- GTG-*GTA (no amino acid substitution, valine) transition. In

LoVo, three simultaneous point mutations were present at codons
LoVo PLC/PRF/5 Mahlavu KATO lil 12, 51 and 61, which were GGC->GAC (amino acid substitution

from glycine to aspartic acid), TGT-4TGC (no amino acid substi-
of manumycin and KT7595 on DNA synthesis. LoVo, tution, cysteine) and CAA-CGA (amino acid substitution from
lavu and KATO IlIl cells were grown in 10% FCS-containing glutamine to arginine) respectively. Thus, LoVo contained an acti-
trations ranging from 0 to 15 gM (0 gM (O), 5 gm ()),

g(U) manumycin) or from 0 to 0.2 ,UM (0 gM (O), 0.1 gM (), vated Ki-ras oncogene. KATO III also had an activated ras gene.
i95) for 48 h. The results are expressed as percentage of the Mutation at codon 12 of the N-ras gene was identified in the cell
tion measured in the presence of DMSO, that is, in the line as a single nucleotide substitution GGT-*AGT (amino acid
mycin and KT7595. The amount (± s.d.) of [3H]thymidine
ntreated LoVo, PLC/PRF/5, Mahlavu and KATO IlIl cells was substitution from glycine to serine). To exclude the possibility that
6 ± 2.3, 21.0 ± 1.9 and 506.7 ± 45.3 (c.p.m. x 102 per well) these mutations are artifacts of PCR amplification, we checked

several clones.

Anchorage-dependent growth assays

We next tested whether manumycin and KT7595 could inhibit
anchorage-dependent growth of the cell lines. We observed a

pattern of sensitivity that was similar to the effect of the DNA
synthesis. After a 72-h treatment, the growth of LoVo cells was

inhibited by approximately 50% for 5 gM manumycin and 0.1 gm
KT7595 and by approximately 90% for 15 gM manumycin and
0.2 gM KT7595 (Figure 3B and D). On the other hand, the growth
of PLC/PRF/5 and Mahlavu cells was also inhibited, although the
degree of the inhibition was less than that of LoVo (Figure 3B and
D). These three cell lines displayed a dose-dependent inhibition
over the concentration range tested. Furthermore, the inhibition at
each concentration was less at 24 h of treatment than at 72 h
(Figure 3A and C). Thus, the cell proliferation of LoVo,
PLC/PRF/5 and Mahlavu was inhibited by both drugs in dose- and
time-dependent manners. The growth of KATO III was not
affected at the tested concentrations of manumycin and KT7595
(Figure 3).

Ras farnesylation assay

To determine whether the inhibition of the cell growth depends on

the inhibition of Ras famesylation, four cell lines labelled with
[2-'4C]mevalonolactone were immunoprecipitated with an anti-
Ras monoclonal antibody Y13-259. Manumycin and KT7595 did
not suppress famesylation of Ras proteins in KATO III (Figure 5).
In Mahlavu, PLC/PRF/5 and LoVo, however, these compounds
inhibited farnesylation in a dose-dependent manner (Figure 5). At
15 gM manumycin or 0.2,M KT7595, Ras famesylation was

inhibited by-approximately 50% in Mahlavu and PLC/PRF/5 and
by approximately 80% in LoVo, as analysed by a BAS-2000
Image Analyzer (Figure 5B). Thus, manumycin and KT7595
markedly decreased the labelling of Ras proteins in LoVo and
moderately reduced it in Mahlavu and PLC/PRF/5.

Nuclear lamins farnesylation assay

To validate that the cell growth inhibition is not a consequence of
blocking the modification of nuclear lamins, we measured the
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Figure 3 Inhibition of anchorage-dependent growth by 24- or 72-h treatment with manumycin or KT7595. In A and B, cells were treated for 24 h and 72 h,
respectively, with manumycin at the concentrations indicated and the numbers of the cells obtained are presented as the percentage of DMSO-treated controls.
Cell counts were taken on duplicate dishes. In C and D, cells were treated for 24 h and 72 h, respectively, with KT7595. The numbers of the cells obtained are
presented as for manumycin

effect of manumycin and KT7595 on farnesylation of nuclear
lamins. The major proteins in the Triton-insoluble pellets are the
nuclear lamins A and B (Figure 6), which have been reported to be
famesylated (Wolda and Glomset, 1988; Beck et al, 1988;
Farnsworth et al, 1989; Lutz et al, 1992; James et al, 1993). In
contrast to Ras famesylation, analysis of the modification of
nuclear lamins showed that famesylation of these proteins was not
affected by manumycin at the concentrations ranging from 5 to 15
,UM in PLC/PRF/5, LoVo (Figure 6) and Mahlavu (data not shown).
The lack of the inhibition of lamin farnesylation in KATO Ill (data
not shown) was expected, because neither Ras famesylation nor the
cell growth was inhibited in the cell line. Famesylation of nuclear
lamins was not suppressed even in LoVo in which Ras farnesylation
was markedly inhibited by approximately 80% at a concentration of
15 gM manumycin, although the intensity of the labelling of the
famesylated lamins was much weaker for LoVo than for the other
three cell lines (Figure 6). KT7595, also, did not suppress famesyl-
ation of nuclear lamins in these four cell lines (data not shown).

Immunoblotting of lamin B

Furthermore, we investigated the effect of these drugs on the
modification of nuclear lamin in greater detail. For this purpose,

we examined the lamin B in the nuclear envelope as farnesylation
of lamin B promotes the association with the nuclear envelope

(Farnsworth et al, 1989; Krohne et al, 1989; Hennekes and Nigg,
1994). Lamin B in the nuclear envelope from LoVo cells treated
with simvastatin, an inhibitor of isoprenoid biosynthesis, was

suppressed compared with that derived from DMSO-treated cells
(Figure 7). However, incubation of LoVo cells with increasing
concentrations of manumycin or KT7595 resulted in the inability
of these drugs to retard lamin B in the nuclear envelope (Figure 7).
In addition, there was no detectable retardation in the other three
cell lines treated with these agents (data not shown).

Indirect immunofluorescence

The inhibition of lamin processing results in a distortion in nuclear
lamina structure (Sinensky et al, 1990). Moreover, the rearrange-

ment of lamina structure is more sensitive than would be expected
from the inhibition of lamin processing (Sinensky et al, 1990).
Therefore, we next examined the alteration in the nuclear lamina
structure. As shown in Figure 8D, the marked disruption in lamina
structure was observed by immunofluorescence in LoVo cells
treated with simvastatin. However, indirect immunofluorescence
of LoVo cells stained with antibody directed against the lamin B
showed no perturbation of the lamina after treatment with 15 gM
manumycin or 0.2 gM KT7595 (Figure 8). There was also no

detectable structural rearrangement in the other three cell lines
treated with these agents (data not shown).
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Figure 4 Inhibition of anchorage-independent growth by manumycin or
KT7595 treatment. Cells were grown at concentrations ranging from 0 to
15 gM (0 gM (L), 5 gM (2), 10 gM (i), 15 gM (U) manumycin) or 0 to 0.2 gM
(0 gM (O), 0.1 gM (EN), 0.2 gM (i) KT7595). The numbers of the colonies
obtained are presented as the percentage of DMSO-treated controls

DISCUSSION

We have tested two members belonging to distinct groups among
FPTase inhibitors on human cancer cell lines. They are
manumycin, an analogue of FPP (Hara et al, 1993; Ito et al, 1996;
Nagase et al, 1996) and KT7595, a gliotoxin derivative. Current
data have demonstrated that these inhibitors can retard DNA
synthesis and the anchorage-dependent and -independent growth
via the suppression of Ras famesylation on human tumour cells
(Figures 2-5). These data imply that even advanced tumours,
which could harbour multiple genetic abnormalities in tumour-
suppressor genes and in protooncogenes, require the function of
Ras for cellular proliferation. However, the inhibition of Ras

famesylation shown in Figure 5 is complicated because it is uncer-
tain which of the three Ras proteins, K-, H- and N-Ras, is being
analysed. Analyses have not been performed to determine whether
manumycin or KT7595 shows an equivalent ability to block the
processing of K-, H- and N-Ras or to determine which of the Ras
proteins each cell line expresses.
We have also shown that the presence of activating mutations of

Ras in human tumours is not predictive of sensitivity to the FPTase
inhibitors manumycin and KT7595. This conclusion is consistent
with a previous study using a CAAX analogue (Sepp-Lorenzino et
al, 1995), although they have done the analysis on a wide spectrum
of human tumours compared with our analysis of four cell lines.
Moreover, Sepp-Lorenzino et al (1995) investigated the basis for
the drug-resistant phenotype and suggested the presence of a ras-
independent pathway for MAP kinase activation or the presence of
alternate ras-related proteins, such as R-Ras2/TC21, in drug-resis-
tant cell lines. It is likely, however, that the mechanism accounting
for the resistance of KATO III for manumycin and KT7595 is
different from the presence of a ras-independent pathway or alter-
nate ras-related proteins. It is possible that manumycin and KT7595
are not capable of entering KATO III cells as both agents could not
perturb Ras farmesylation (Figure 5), lamin famesylation and local-
ization (data not shown), and protein prenylation (data not shown).
The resistance to both compounds may also reflect that the predom-
inant Ras protein expressed is K-Ras, which is very resistant to
common FPTase inhibitors. However, it is interesting to know that
manumycin can potently inhibit K-Ras processing in various
epithelial cells and fibroblasts, including rat 3Y1 fibroblasts trans-
formed with oncogenic (valine 12) K-Ras (K Akasaka et al, manu-
script in preparation). Whether the differential sensitivity to these
compounds is due to the difference in the permeability remains to
be demonstrated using these radiolabelled FPTase inhibitors.

FPTase acts on the diverse substrates in distinct subcellular
locales. In fact, in addition to the Ras proteins, at least eight other
proteins have been reported to be famesylated (Gibbs et al, 1994).
In particular, nuclear lamins are important for cellular prolifera-
tion. For example, a high level of accumulation of prelamin A has
been shown previously to inhibit the cell growth (Sinensky et al,
1994a). It is not clear, therefore, whether the suppression of the
function of nuclear lamins, besides that of Ras proteins, partici-
pates in the inhibition of the cellular growth. On the other hand,
prenylation of nuclear lamins has been demonstrated to be
compartmentalized entirely within the nucleus (Sinensky et al,
1991, 1994b; Lutz et al, 1992). As a consequence, it has been
suggested that an inhibitor of FPTase may have differential activi-
ties on a variety of substrate proteins as a result of the subcellular
locales (Garcia et al, 1993).
The data presented here demonstrate that the inhibitors of

FPTase manumycin and KT7595 could have a chemotherapeutic

Table 1 Summary of H-, Ki- and N-ras gene mutations in LoVo, PLC/PRF/5, Mahlavu and KATO III

N-ras Ki-ras H-ras Cell line

Codon 12, GGC(Gly)-> GAC(Asp)
- Codon 51, TGT(Cys) -* TGC(Cys) - LoVo

Codon 61, CAA(Gln) -* CGA(Arg)
- - - PLC/PRF/5
- Codon 29, GTG(Val) -* GTA(Val) - Mahlavu

Codon 12, GGT(Gly) -* AGT(Ser) - - KATO III
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Figure 5 Effect of manumycin and KT7595 on Ras farnesylation. Each cell was treated with varying concentrations of manumycin or KT7595 and labelled with
[14C]mevalonolactone. (A) The cell extracts were immunoprecipitated with monoclonal antibody to Ras, followed by SDS-PAGE and fluorography as described
in Materials and methods. Molecular size standards (kDa) are indicated on the left. All data were exposed to film for 30-90 days at -800C. (B) The relative
radioactivity of farnesylated Ras proteins in each cell line was determined by a BAS-2000 image analyser. (O), (0), (P) and (U) represent 0 gM, 5 gM, 10 gM
and 15 gM manumycin respectively. (O), (0) and (2) represent 0 gM, 0.1 gM and 0.2 gM KT7595 respectively. The results are expressed as percentage of the
control radioactivity measured in the presence of DMSO, i.e. in the absence of manumycin and KT7595

window through which Ras famesylation and the cell growth can on nuclear lamin famesylation is neither tumour origin nor cell
be perturbed (Figures 2-5) but not famesylation and localization type specific because the PLC/PRF/5 and Mahlavu cell lines are

of nuclear lamins (Figures 6-8). Moreover, these observations lead derived from human hepatocellular carcinoma, while the LoVo cell
us to conclude that the deficit of the inhibitory effect of both agents line is from human colon adenocarcinoma.
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The major prenylated proteins in the Triton-insoluble pellet
were identified as the nuclear lamins A and B (Beck et al, 1988;
Wolda and Glomset, 1988; James et al, 1993). They have been
reported to be famesylated (Farnsworth et al, 1989; Cox and
Der, 1992; Lutz et al, 1992; James et al, 1993), like the modifi-
cation of Ras. It has been suggested therefore that inhibitors of
FPTase block not only farnesylation of Ras but also that of
nuclear lamins and may also interrupt their function. The
nuclear lamina, which is formed primarily by nuclear lamins, is
one of the major structure components of the nuclear envelope
(Gerace and Blobel, 1982; Gerace and Burke, 1988).
Farnesylation plays a critical role in promoting the association
of the lamins with the nuclear envelope (Krohne et al, 1989;
Hennekes and Nigg, 1994). Several experiments have shown
that nuclear lamins are essential for both the nuclear envelope
reformation after mitosis (Burke and Gerace, 1986) and the

post-mitotic reorganization of chromatin and the intranuclear
architecture (Benavente and Krohne, 1986). Thus, farnesylation
of nuclear lamins is crucial for the cell proliferation. Prenylation
of nuclear lamins has been suggested to be compartmentalized
entirely within the nucleus (Sinensky et al, 1991, 1994b; Lutz et
al, 1992). It is possible therefore that manumycin and KT7595
perturb farmesylation of Ras but not that of lamins because, to
inhibit farnesylation of nuclear lamins, this compound needs to
permeate not only the cell membrane but also the nuclear
membrane. However, our results are not consistent with data
showing that BZA-5B, one of the other FPTase inhibitors,
abolishes detectable protein farnesylation but not farnesylation-
dependent biological processes (Dalton et al, 1995). Whether
this difference is inherent to each drug or common to an
analogue of FPP, a gliotoxin derivative or an analogue of CAAX
remains to be investigated.
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A DMSO B Manumycin

c KT7595 D Simvastatin

Figure 8 Manumycin and KT7595 do not perturb assembly of lamin B in LoVo cells. (A) Immunofluorescence of lamin B proteins in DMSO-treated cells for
20 h. (B) Immunofluorescence of lamin B proteins in cells treated with 15 gM manumycin for 20 h. (C) Immunofluorescence of lamin B proteins in cells treated
with 0.2 gM KT7595 for 20 h. (D) Immunofluorescence of lamin B proteins in cells treated with 10 gM simvastatin for 20 h

In summary, our experiments demonstrate that manumycin and
KT7595, inhibitors of FPTase, can inhibit Ras farnesylation and
the cell growth without disturbing farnesylation and localization of
nuclear lamins. The observations made in this study with two
different kinds of non-CAAX analogue inhibitors of FPTase may
be similar to those made previously with other CAAX analogues;
however, we think that it is pivotal to know whether the properties
of the CAAX analogues also hold true for non-CAAX analogues,
which interfere with the function of FPTase in a different fashion.
Furthermore, this work using human-derived cell lines is signifi-
cant because FPTase inhibitors show promise in the treatment of a
diverse range of human malignancies.
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