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Summary Thymidylate synthase (TS) expression has been characterized for a panel of eight human colorectal carcinoma and five human
leukaemia cell lines, to relate differences in intrinsic TS activity, protein and mRNA levels to growth inhibition caused by continuous exposure
to THYMITAQ™, a specific non-classical antifolate TS inhibitor. Although a 20-fold variation in sensitivity to THYMITAQ™ was found within
the colorectal cell line panel (IC,, 0.12-2.7 um), sensitivity was not related to TS activity, TS protein or TS mRNA levels. For the leukaemic cell
lines, only a twofold range in sensitivity to THYMITAQ™ was observed (IC,, 0.87-2.3 um), and this did not correlate with TS activity, TS
protein or TS mRNA levels. Across all of the cell lines, TS activity was linearly related to TS protein levels (r2 = 0.87, P < 0.0001). However,
for both the colorectal and leukaemia cell line panels, no relationship was found between TS mRNA/18S rRNA ratios and either TS activity or
TS protein, consistent with the importance of post-transcriptional mechanisms in regulating TS activity. Two of the colorectal cell lines (BE and
HCT116) and one of the human leukaemic cell lines (HL60), were intrinsically resistant to THYMITAQ™ (IC,, > 2 um) in the absence of TS
overexpression, suggesting that, subsequent to TS inhibition, events such as DNA repair and tolerance to apoptotic stimuli are also important

determinants of sensitivity to THYMITAQ™.
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Thymidylate synthase (TS; EC 2.1.1.45) is an important enzyme in
pyrimidine biosynthesis catalysing the rate-limiting step of de
novo thymidylate synthesis. Thymidylate is used exclusively in
DNA replication and TS therefore constitutes an attractive target
for antiproliferative chemotherapy. TS catalyses the conversion of
deoxyuridine monophosphate ({UMP) to thymidylate (dTMP),
using 5,10-methylene tetrahydrofolate (5,10-CH,FH,) as the
methyl-donating co-substrate.

TS can be inhibited by pyrimidine (Pinedo and Peters, 1988) or
folate substrate antagonists (Jackman and Calvert, 1995), and anti-
tumour efficacy has been found with both classes of drug
(Touroutoglou and Pazdur, 1996). The activity of TS inhibitors can
be influenced by a number of parameters, including cellular uptake,
anabolism, catabolism, TS levels and activity, and the response of
the cell to thymidylate deprivation. Among these parameters, TS
expression has been shown to be an important determinant of
acquired resistance to TS inhibitors in vitro (O’Connor et al, 1992;
Jackman et al, 1995). However, the importance of TS expression has
generally been investigated in cell lines that have been made resis-
tant by exposure to increasing concentrations of TS inhibitors, such
as S-fluorouracil (Peters et al, 1986) or folate-based antagonists
(O’Connor et al, 1992; Jackman et al, 1995). In the clinical setting,
TS protein and TS gene transcript levels have also been found to
relate to the responsiveness of patients with colorectal and gastric
carcinoma to 5-FU-based chemotherapy (Johnston et al, 1995).
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In relating measures of TS expression to cellular sensitivity to
fluorinated pyrimidines and classical antifolates, a number of
factors need to be considered. For example, as well as causing
inhibition of TS, metabolites of 5-fluorouracil (5FU) and
fluorodeoxyuridine (FdUrd) are also incorporated into RNA and
DNA, which may also produce a cytotoxic effect (Pinedo and
Peters, 1988). Similarly, classical antifolate TS inhibitors require
specialized membrane proteins to mediate uptake (Jansen et al,
1990) and are substrates for intracellular polyglutamation by the
enzyme folylpolyglutamyl synthetase (FPGS), which markedly
enhances their intracellular retention and potency (Jackman and
Calvert, 1995; Touroutoglou and Pazdur, 1996). Furthermore,
antifolate polyglutamates are substrates for hydrolysis and the
activity of the hydrolase responsible can also influence sensitivity
to antifolates (Rhee et al, 1993).

The studies reported here were performed to investigate the
relationship between TS expression in human leukaemia and
colorectal carcinoma cell lines and growth inhibition caused by the
novel TS inhibitor THYMITAQ™. THYMITAQ™ is a non-clas-
sical antifolate TS inhibitor that has been designed to overcome
some of the potential mechanisms of resistance to classical antifo-
lates (Webber et al, 1993). THYMITAQ™ acts solely as a TS
inhibitor, does not require specialized transport proteins for
cellular uptake and is not a substrate for polyglutamation (Webber
et al, 1996). The relationhip between TS expression and the sensi-
tivity of cell lines to THYMITAQ™ should, therefore, be more
direct than in the case of classical antifolates or fluoropyrimidine-
based TS inhibitors. Colorectal and leukaemic cell lines were
chosen as being representative of solid and haematological malig-
nancies in which TS inhibitors or antifolates have an established
clinical role.
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MATERIALS AND METHODS

Several methods for measuring TS expression have been
described. TS activity may be measured directly as the rate of
release of SH,O from [*H]JdUMP, either using [*H]uridine in a
whole-cell in situ assay (e.g. Taylor et al, 1988) or by using a cell-
free extract (e.g. Calvert et al, 1980). TS protein levels can be
assessed using immunohistochemistry (Van der Wilt et al, 1993),
Western blot analysis (Freemantle et al, 1995) and by an enzyme-
linked immunosorbent assay (Jackman, 1995) using either
polyclonal (Freemantle et al, 1995) or monoclonal antibodies
(Johnston et al, 1993). TS protein content can also be measured
using the FAUMP binding assay (Peters et al, 1991). With regard
to TS gene expression, the use of Northern blot hybridization
(O’Connor et al, 1992) and reverse transcriptase PCR (Freemantle
et al, 1995; Johnston et al, 1995) to measure TS mRNA has been
described. In the present study, TS activity was measured in cell-
free extracts using a >H,O release assay, TS protein by quantitative
Western blotting and TS mRNA by Northern blot hybridization.

Tissue culture of human leukaemia and human
colorectal cell lines

The human leukaemia cell lines Molt4, Jurkat and CCRF-CEM (T-
cell), HL60 (promyelocytic) and K562 (erythroleukaemic) were
maintained as cell suspensions, and the human colorectal carci-
noma cell lines Colo205, SW48, SW480, SW620, HT29,
HCT116, BE and LoVo were grown as adherent monolayers. All
cell lines were grown in RPMI-1640 tissue culture medium
(Gibco/BRL, Paisley, UK), supplemented with charcoal-dialysed,
i.e. thymidine-depleted, 10% (v/v) fetal calf serum (Globepharm,
Esher, Surrey, UK), 2 mM L-glutamine (Gibco/BRL) and 7.5%
(w/v) sodium bicarbonate solution (Gibco/BRL). The cell lines
were routinely subcultured twice weekly to maintain cell counts in
the range of 4x10° ml-' to 1 X 106 ml-! and were grown at 37°C in
a humidified atmosphere containing 5% carbon dioxide. All cell
lines were obtained from the European Collection of Animal
Tissue Cultures, with the exception of BE cells, which were kindly

provided by Dr J Plumb (Beatson Institute, Glasgow UK) and
were regularly tested to exclude mycoplasma infection.

Determination of IC_, values

THYMITAQ™ was provided by Agouron Pharmaceuticals (San
Diego, CA, USA). THYMITAQ™ was dissolved in distilled, de-
ionized water to produce a stock 1 mg ml! solution. IC, measure-
ments were performed using exponentially growing cell lines.
Cells were exposed to THYMITAQ™ continuously for approxi-
mately four cell-doubling times (96 h for all cell lines except
HL60 for which 120h was used). Continuous exposure was
chosen as a 5-day continuous intravenous infusion schedule,
which is the THYMITAQ™ protocol most extensively studied in
clinical trials. For the human leukaemia cell lines, 0.1-ml volumes
were seeded into each well of a Nunclon round-bottomed 96-well
plate at 4 x 10° ml-! (1 x 105 ml-' for HL60 cell line). After 24 h,
THYMITAQ™ at varying concentrations was added to the six
replicate wells. The cells were exposed to the cytotoxic agent for
96 h (120 h for the HL60 cell line). For the colorectal carcinoma
cell lines, 2 ml of a freshly prepared cell suspension of 5 x 10* ml-!
was seeded into each well of a six-well plate and, after 24 h, tripli-
cate wells were exposed to varying concentrations of
THYMITAQ™ for a 72-h period.

At the end of the exposure period, cells were counted electroni-
cally and the numbers of cells in the treated cultures expressed
as a percentage of control. The IC,, value, i.e. the concentration
required to inhibit cell growth by 50%, was calculated by the
fitting of a survival curve to the data, using a non-linear least
squares regression analysis.

TS activity and TS protein

TS activity in exponentially growing human leukaemia and
colorectal cell lines was measured in cell extracts by 3H release
from 5-[*H]dUMP (Amersham, Slough, UK). Briefly, exponen-
tially growing leukaemic cells at around 1x 10° ml! were
harvested by centrifugation at 400 g to give 0.5-1 x 107 cells. The

Table 1 THYMITAQ™ IC,, TS activity, TS protein levels and TS mRNA/18S rRNA ratios in human colorectal and human leukaemic cell lines

Cell line AG337IC,, TS activity TS protein TS mRNA/18S rRNA
(um) (nmol dUMP 10-¢ celis h-') (pg ng total protein) ratio
Colorectal
Colo205 0.12+0.07 0.066 + 0.015 15+ 6 0.81
SW48 0.57 £ 0.04 0.024 +0.01 25+10 1.16
Swa480 0.36 £ 0.2 0.133+0.03 37+15 1.15
SW620 0.20 £ 0.02 0.043 £ 0.02 307 1.15
HT29 0.60+0.2 0.325 £ 0.05 31+7 0.86
HCT116 2.210.05 0.67 +0.21 55+ 29 1.15
BE 27103 0.203 + 0.36 55+ 44 1.3
LoVo 0.28£0.1 - 60 + 44 0.60
Leukaemia
Jurkat 1.3+0.05 2.61+0.41 140+ 10 2.49
HL60 2.3+0.21 1.35+0.46 - -
CCRF-CEM 1.0+0.16 1.86+0.72 140 + 20 3.0
K562 1.1+£0.30 4.22+1.12 190 + 90 1.76
Molt4 0.87 £ 0.36 2.73+0.80 220 + 90 2.03

All results are expressed as the mean + standard deviation of at least three separate experiments, except for the TS mRNA/18S rRNA ratios, which represent a

single determination.
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supernatant was removed by suction and the remaining cell pellet
was resuspended in 4 ml of ice-cold TS assay buffer (15 mM cyti-
dine monophosphate; 100 mM sodium fluoride; 46 um 5’-dUMP;
644 uM formaldehyde and S mM dithiothreitol in 10 mm Tris
pH 7.4; all reagents were supplied by Sigma, Poole, Dorset, UK).
Exponentially growing colorectal tumour cell lines were harvested
by trypsinization, centrifuged as above and resuspended in 4 ml of
ice-cold TS assay buffer. The cell suspensions were kept on ice
and sonicated (Soniprep, Sanyo-Gallenkamp, Leicester, UK) at
7.5 microns for three separate 10-s intervals. TS activity was
measured in the resulting crude cell sonicates using the method of
Calvert et al (1981), and the TS activity in each cell line was
expressed as nmol dUMP utilized per 10° cells h-!.

Quantitative Western blotting for TS protein was based on the
method described by Freemantle et al (1995). Exponentially
growing cell lines were harvested as described above and resus-
pended in the TS activity buffer. Crude cell sonicates were then
denatured with double-strength sample buffer (DSSB) by adding
one part DSSB [4% (w/v) sodium dodecyl sulphate; 20% (v/v)
glycerol, 1.5% (w/v) Tris-base, 0.0025% (w/v) bromophenol blue
and 5% (v/v) B-mercaptoethanol] to 3 parts supernatant and
boiling at 100°C for 4 min. Twenty-five microlitre aliquots of the
denatured protein samples (18.5 pug of total protein per track for
leukaemic cell lines; 25-37 pug of total protein per track for
colorectal cell lines) were loaded onto 12% (v/v) SDS—polyacryl-
amide gels. For each gel, five lanes were loaded with 1, 2, 5, 7.5
and 10 ng of human recombinant TS (rhTS; kindly provided by
Dr S Webber, Agouron Pharmaceuticals, San Diego, CA, USA),
which was denatured as described above. The proteins were sepa-
rated by elecrophoresis, followed by transfer by overnight electro-
blotting onto a sheet of Hybond-C nitrocellulose membrane
(Amersham). The membranes were blocked with Tris-buffered
saline (TBS) containing 0.0005% (v/v) Tween-20 and 5% (w/v)
fat-free milk powder for 1 h. Subsequent 1-h hybridization steps
and washes were also carried out in TBS-Tween. The primary anti-
body used was a 1 in 1000 dilution of a rabbit polyclonal anti-
human TS antibody, kindly provided by Dr W Aherne, Institute of
Cancer Research, Sutton, UK (Freemantle et al, 1991). A 1 in 500
dilution of an '*I-labelled anti-rabbit IgG (donkey, F(ab),frag-
ment; Amersham) was used for secondary detection. The radio-
activity present on the membrane was quantified using
PhosphorImager analysis (Molecular Dynamics, Sunnyville, CA,
USA), and the bands present were referenced to the position on the
membrane occupied by the components of the molecular weight
markers and the TS standards. For each gel, a linear regression
analysis of the signals from the TS standards was performed, and
the regression equation was used to quantify the signal obtained
for each cell line. Parallel Coomassie blue-stained gels were
performed to monitor the quality and relative amounts of total
protein per track.

Northern blot hybridization

Exponentially growing cell lines were harvested as described for
the TS activity assay and were washed in phosphate-buffered
saline; total RNA was isolated from cell pellets using RNAzol B
(Cinna/Biotex Laboratories International, Frienswood, TX, USA;
Chomczynski and Sacchi, 1987). The RNA was dissolved in 80 pl
of RNAase-free water, and the RNA was quantified by measure-
ment of the optical density (OD) at 260 nm. The OD,/OD,,, was
used to estimate the purity of the nucleic acids and was always in
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the range of 1.8-2.0. For each cell line, a volume containing 20 pug
of total RNA was denatured by glyoxylation, and the RNA was
fractionated by electrophoresis on a 1.2% (w/v) agarose gel. RNA
was then transferred to an exact-sized Hybond-N nitrocellulose
membrane (Amersham) by overnight blotting. After deglyoxyla-
tion in boiling water, the membranes were then hybridized under
standard conditions at 65°C to a gel-purified 0.7-kb fragment of
mouse cDNA cleaved from the pMTS plasmid (Geyer et al, 1984)
with HindlIII and Ps?I and were labelled with 32P by random primer
extension (Feinberg and Vogelstein, 1983). After overnight
hybridization, the membrane was then washed twice with 2 x stan-
dard saline citrate (SSC)/0.2% (v/v) SDS to remove any probe that
had not specifically bound to TS mRNA, and the TS mRNA signal
for each cell line was detected and quantified using the
PhosphorImager system.

The same membranes were re-probed for 18S ribosomal RNA
to check the relative loading and transfer efficiency of the RNA
samples. The membrane was stripped by boiling in 0.2%
SDS/0.1xSSC. The membrane was reprobed as above using a
cDNA probe against 18S ribosomal RNA as a surrogate measure
of total RNA. The 18S rRNA probe was synthesized from the
DNA product generated by polymerase chain reaction (PCR)
amplification of a bladder cDNA sample using the 18S specific
primers (SN: ATGCTCTTAGCTGAGTGTCC, ASN: AACTAC-
GACGGTATCTGATC). The 18S ribosomal RNA signal for each
cell line was detected and quantified using the PhosphorImager
system, and the TS mRNA: 18S rRNA ratio was calculated.

Statistics

With the exception of TS mRNA, linear regression analysis was
used to investigate the relationship between measures of TS
expression and THYMITAQ™ IC,,. In addition, the Kendall Rank
correlation test was used to test for significant rank correlations
between TS mRNA and TS protein levels, TS activity levels and
THYMITAQ™ IC, . The two-sided -test was used to investigate
the difference between TS activity and TS protein levels between
the leukaemic and colorectal cell line panels.

RESULTS
Growth-inhibitory activity of THYMITAQ™

The concentrations of THYMITAQ™ required to inhibit the
growth of exponentially growing human leukaemia and colorectal
carcinoma cell lines by 50% of control (IC, ) are given in Table 1.
A 20-fold range in sensitivity to THYMITAQ™ was found within
the group of colorectal cell lines, whereas only a 2.5-fold variation
in THYMITAQ™ sensitivity was seen between the leukaemic cell
lines. In general, the colorectal cell lines were 2-3 times more
sensitive to THYMITAQ™ than the leukaemia cell lines, although
the BE and HCT116 cell lines had IC,, values that were equivalent
to the HL60 cell line, which was the least sensitive leukaemic cell
line.

TS activity

A three-fold variation in TS activity was seen within the leukaemic
cell line group, with the K562 cell line having the highest TS
activity (Table 1). The colorectal cell lines demonstrated a wider
range of TS activity, with a 25-fold difference in TS activity being
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Figure 1 Western blot analysis of TS protein levels in colorectal (A and B) and leukaemic (C) celi lines. (A and B) Lanes 1-5 contained 1, 2, 5, 7.5 and
10 ng of human recombinant TS respectively. (C) Lanes 1—4 contained 2, 5, 7.5 and 10 ng of human recombinant TS (rhTS) respectively. Lane 10 in B
represents a cross-reaction of the primary detecting antibody with a component of the molecular weight markers

found between the SW48 and the HCT116 cell lines. Overall,
significantly higher TS activity was observed with the leukaemic
cell lines than with the colorectal cell lines (P = 0.0002, two-
sided t-test), with mean (+ standard deviation) TS activities of

2.5 1.08 nmol dUMP 10-6 cells h-! vs 0.21 + 0.22 nmol dUMP/ ’

10-¢ cells h-' respectively. TS activity could not be accurately
measured in the LoVo cell line because of very high intrinsic
phosphatase activity.

TS protein

Representative Western blots for the colorectal cell line panel are
shown in Figure 1A and B, and the levels of TS protein measured
are presented in Table 1. A threefold variation in TS protein content
was found within the colorectal panel, with the HCT116, BE and
LoVo cell lines having the highest levels. A representative Western
blot for the leukaemic cell line panel is shown in Figure 1C. Less
variation in TS protein content was observed within the leukaemic
panel, i.e. less than a 1.5-fold difference in TS protein level was seen
between the cell lines. Overall, significantly higher TS protein levels
were found for the leukaemic panel than for the colorectal cell lines
(P < 0.0001; two-sided #-test), with approximately fivefold higher
TS protein contents of 170 * 40 pg pg! total protein vs 35 + 10 pg
pug! total protein respectively (mean t+ standard deviation). TS
protein could not be detected in the HL60 cell line, possibly as a
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result of excessive protein degradation (as indicated by the lack of
protein bands on Coomassie blue-stained gels; data not shown).

Linear regression analysis of the rhTS standard curve on each gel
always gave a highly significant positive correlation, with 72 values
above 0.94 in each of the nine gels analysed (mean + standard devi-
ation of 0.97 + 0.02). To determine the inter-assay variation of this
method, TS protein was measured for a single-cell sonicate from
each of the human leukaemia cell lines on three separate occasions.
The following results were obtained (pg g™ total protein): K562 =
180 * 40; Molt4 = 130 £ 60; Jurkat = 160 + 60; CCRF-CEM =
130 £ 20 (expressed as mean + standard deviation).

TS mRNA

A threefold variation in the TS mRNA/18S rRNA ratio was
found between the human leukaemia cell lines (Figure 2A). The
highest expression of TS mRNA relative to 18s rRNA was
found in the CCRF-CEM cell line, and the lowest in the HL-60
cell line. However, RNA extracted from the HL-60 cell line was
consistently found to be degraded (Figure 2A). Similarly, for
the colorectal carcinoma cell lines, a twofold variation in TS
mRNA/18 s rRNA was found, with the highest TS mRNA
levels being found in the SW48, SW480, SW620 and HCT116 cell
lines, and the lowest expression found in LoVo and Colo205 cells
(Figure 2B).

© Cancer Research Campaign 1997
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Figure 2 Northern blot hybridization of TS mRNA for the human leukaemia
(A) and human colorectal (B) cell lines. Each lane contained 20 pg of total
RNA for the hybridization reaction to the 0.7-kb fragment of the pMTS-3
plasmid. The HL60 cell line consistently showed partial degradation of TS
mRNA
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Figure 3 Relationship between TS activity and TS protein for the human
leukaemia and human colorectal cell lines. (J, Colorectal cell lines; @,
leukaemic cell lines

Relationships between TS activity, protein and mRNA
and the growth-inhibitory activity of THYMITAQ™

When the measurements for the colorectal and leukaemic cell line
panels were combined, a highly significant positive linear correla-
tion (2 =0.87, P = 0.00002) was found between TS protein and TS
activity (Figure 3). For the colorectal cell lines alone, a positive
linear correlation was also found between TS protein and TS
activity (r> = 0.48, P = 0.08), but this did not reach statistical
significance at the 5% level. Neither TS activity or TS protein was
found to relate to TS mRNA/18s rRNA ratios as determined using
the Kendall Rank correlation test, with either separate or pooled
data for the colorectal and human leukaemia cell lines.

When analysed separately, there was no significant linear
relationship between TS activity and THYMITAQ™ IC, for either
colorectal (=04, P=0.13) or human leukaemia (2=0.29,
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Figure 4 Relationship between the mean THYMITAQ™ IC,; values and
mean TS activity for the human colorectal and human leukaemic cell lines.
[, Colorectal cell lines; ®, leukaemic cell lines

P =0.34) cell lines. In the case of the colorectal cell lines, a signifi-
cant linear relationship is prevented by the relatively high TS
protein level found in the LoVo cell line, which was relatively
sensitive to THYMITAQ™. Similarly, when the data for the two
cell line panels were combined, TS activity did not correlate with
THYMITAQ™ IC, (r*=0.01, P =0.69). The lack of a relationship
is due to the presence of two colorectal cell lines (BE and HCT 116)
and one human leukaemic cell line (HL60) that were insensitive to
THYMITAQ™ (IC,, > 2 uMm), despite having relatively low levels
of TS activity (Figure 4). When the results for these
three THYMITAQ™-insensitive cell lines were excluded from
the analysis, a significant relationship was found between
THYMITAQ™ IC, and TS activity (r? = 0.72, P = 0.005) when the
two cell line panels were combined.

There_was no significant linear relationship between TS protein
and THYMITAQ™ IC, for either the colorectal cell line panel
(rr=0.36, P =0.11) or the leukaemic cell line panel (72 = 0.38,
P =0.37). Similarly, there was no correlation between TS mRNA
expression and THYMITAQ™ IC,, (P>0.5) for either the
colorectal or leukaemic cell lines. Investigation of potential rela-
tionships using a non-parametric method (Kendall Rank correla-
tion analysis) produced similar conclusions to the statlstlcal
analysis using the above parametric tests.

DISCUSSION

The aim of this study was to characterize intrinsic TS expression in
a panel of human colorectal and leukaemia cell lines to investigate
the relationship between TS activity, protein levels and mRNA,
and the growth-inhibitory activity of THYMITAQ™, a specific
non-classical antifolate TS inhibitor.

Previous studies using both colorectal and lymphoblastic cell
lines with acquired resistance to TS inhibitors have demonstrated
an associated overexpression of TS. Copur et al (1995) described
the development of 5-FU resistance within the H630 cell line, in
which tenfold resistance to 5-FU was associated with a 23-fold
increase in TS activity and TS protein levels, and an 18-fold
increase in TS mRNA/B-actin RNA ratio. Similarly, the develop-
ment of acquired resistance to Tomudex has been characterized in
a variety of cell lines, including the lymphoblastic cell line W1-L2
and the human ovarian carcinoma cell line CH1 (Freemantle et al,
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1995; Jackman et al, 1995). For the W1-L2 cell line, resistance to
Tomudex was associated with a 514-fold increase in TS activity, a
180-fold increase in TS protein levels and a 128-fold increase in
the TS mRNA/18S rRNA ratio. TS overexpression was less
pronounced in the CHI cell line, in which a fourfold increase in
TS activity, twofold increase in TS protein and, possibly, a twofold
increase in TS mRNA levels was demonstrated. In both cell lines,
defects in polyglutamation were also observed, emphasizing the
potential importance of the latter as a mechanism of resistance to
classical antifolate TS inhibitors.

The finding in the studies reported here, i.e. that, across all of the
cell lines studied, there was a highly significant correlation between
TS activity and TS protein as measured by quantitative Western
blotting, is in keeping with the relationships reported by Jackman
et al (1995). Moreover, the finding of higher TS activity and TS
protein levels in the leukaemic cell lines is consistent with another
report comparing the TS activities of haematological and colorectal
cell lines, in which the human lymphoblastoid cell line W1-L2 was
found to have a 10- to 20-fold higher TS activity than a panel of
human colorectal carcinoma cell lines (Van der Wilt et al, 1993).

In the studies reported here, sensitivity to THYMITAQ™
within the panel of colorectal cell lines did not correlate with
cellular TS protein content, for which the 20-fold range in
THYMITAQ™ IC, values was related only to a fourfold variation
in TS protein levels. This lack of a statistically significant correla-
tion may have resulted both from the relative lack of sensitivity of
the methodology used in the present study for determining small
differences in TS protein expression, and from the finding of a
relatively high TS protein content for the THYMITAQ™-sensitive
LoVo cell line. A similar lack of a relationship between TS protein
expression and sensitivity to TS inhibition by 5-fluorouracil has
also been reported for human colorectal carcinoma cell lines
(Berger and Berges, 1988).

Although in the present study the correlation between TS
activity and THYMITAQ™ IC,, did not reach statistical signifi-
cance, this was largely because of the BE cell line. In BE cells,
there was only moderate TS activity, which would not have been
expected on the basis of the relatively high TS protein levels, and
yet lack of sensitivity to THYMITAQ™. Also, in contrast to the
results from one clinical study with 5-FU (Johnston et al, 1995),
there was no correlation between sensitivity to THYMITAQ™ and
TS mRNA expression in the colorectal cell lines. For the human
leukaemia cell lines, a smaller range of TS expression was seen,
and again no significant correlations were found between TS
mRNA levels and sensitivity to THYMITAQ™.

In the present study, two of the colorectal adenocarcinoma cell
lines (HCT116 and BE) and the promyelocytic HL60 cell line
were found to display reduced sensitivity to THYMITAQ™,
which would not have been predicted solely on the basis of their
TS expression. When these cell lines were excluded from the
analyses, a significant relationship between both TS activity and
TS protein levels and the sensitivity to THYMITAQ™-mediated
growth inhibition was found when the results of the colorectal and
leukaemic cell line panels were combined. This finding suggests
that factors other than TS expression can play an important role
in determining the sensitivity of cell lines to THYMITAQ™. As
THYMITAQ™ does not require active or facilitated transport and
is not a substrate for polyglutamation, other factors must underline
the differential sensitivity of the cell lines. Specifically, these
factors may include cellular biochemical events ‘downstream’ of
TS inhibition. For example, an increased capacity to repair DNA
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damage (Canman et al, 1992) and bcl-2-mediated tolerance to
apoptotic stimuli (Fisher et al, 1993) have been reported to cause
variations in the sensitivity of colorectal cell lines to both 5-fluo-
rouracil and antifolate TS inhibition. These factors may also have
contributed to the lack of a significant correlation between
measures of TS expression found in the colorectal cell line panel
in the present study and of sensitivity to THYMITAQ™.

Resistance to TS inhibition resulting from mutation of the target
enzyme has also been reported, with Berger et al (1988) finding
reduced sensitivity to 5-FU in a HCT116 cell line, which resulted
from a novel, more basic charge form of TS. Specifically, the
mutation was found to result from a tyrosine to histidine replace-
ment at residue 33 of TS (Barbour et al, 1992). It is not currently
known whether or not this or a similar mutation is present in the
HCT116 cells used in the present study; and, if the mutation is
present, the impact of this mutation on THYMITAQ™ sensitivity
is also not known.

Neither TS protein nor TS activity were found to correlate
with the TS mRNA/18S rRNA ratio in either the colorectal adeno-
carcinoma or leukaemic cell line panels. The lack of a relationship
may possibly be explained by the finding that TS protein can
regulate its own transcription (Chu et al, 1991), with protein
levels not being a simple function of transcript concentration.
Variation in this feedback mechanism may exist between
different cell lines. Therefore, measurement of TSmRNA in a
heterogenous population of cell lines may be a poor predictor
of sensitivity to TS inhibition.

In summary, neither the colorectal or the leukaemia cell line
panels demonstrated a significant correlation between measures of
TS expression and sensitivity to THYMITAQ™-mediated growth
inhibition. THYMITAQ™ resistance, which would not have been
predicted solely on the basis of TS expression, was demonstrated
in two of the colorectal and one of the leukaemia cell lines,
suggesting that events downstream of TS inhibition can be
important determinants of the growth-inhibitory activity of
THYMITAQ™. There were no correlations between TS activity
or TS protein and TS mRNA/18s rRNA ratios in either of the cell
line panels, suggesting that TS expression as measured by TS
mRNA alone may not be predictive of sensitivity to
THYMITAQ™. Future studies will examine the prognostic signif-
icance of TS expression for response to THYMITAQ™ in adult
patients with colorectal carcinoma and in children with acute
lymphoblastic leukaemia at both presentation and relapse.
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