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A a S T R A C T In o rde r  to characterize synaptic transmission at a unitary facilitating 
synapse in the lobster cardiac ganglion,  a new nonlinear  systems analysis technique 
for discrete-input systems was developed and appl ied.  From the output  of  the 
postsynaptic cell in response to randomly occurr ing presynaptic nerve impulses,  a 
set of  kernels,  analogous to Wiener kernels,  was computed.  The  kernels up to third 
o rder  served to characterize,  with reasonable accuracy, the input-output  propert ies  
of  the synapse. A mathematical  model  of  the synapse was also tested with a random 
impulse train and model  predictions were compared  with exper imenta l  synaptic 
output .  Al though the model  proved to be even more accurate overall than the 
kernel  characterization,  there  were slight but consistent errors  in the model 's  
performance.  These  were also reflected as differences between model and experi-  
mental kernels. It is concluded that a r andom train analysis provides a comprehen-  
sive and objective comparison between model and exper iment  and automatically 
provides an arbitrari ly accurate characterization of  a system's input -output  behav- 
ior,  even in complicated cases where other  approaches  are impractical.  

I N T R O D U C T I O N  

At  a va r i e ty  o f  w e l l - k n o w n  s y n a p s e s  a n d  n e u r o m u s c u l a r  j u n c t i o n s  t he  a m p l i t u d e  
o f  e a c h  i m p u l s e - e v o k e d  PSP o r  EPP  d e p e n d s  on  t h e  p r e c e d i n g  p a t t e r n  o f  
i m p u l s e  act ivi ty  (Bu l lock ,  1943; Del  Cas t i l lo  a n d  Katz ,  1954; D u d e l  a n d  K u f f l e r ,  
1961; H a g i w a r a  a n d  Bu l lock ,  1957; M a l l a r t  a n d  M a r t i n ,  1967; T a k e u c h i  a n d  
T a k e u c h i ,  1962). I n c r e a s e s  in  PSP a m p l i t u d e  a r e  g e n e r a l l y  d e s c r i b e d  as faci l i ta-  
t ion  o r  p o t e n t i a t i o n ,  whi l e  d e c r e a s e s  a r e  r e f e r r e d  to  as d e f a c i l i t a t i o n ,  an t i f ac i l i t a -  
t ion ,  o r  d e p r e s s i o n .  S ince  a s ing le  PSP is in e f f ec t  t he  i m p u l s e  r e s p o n s e  o f  a 
s y n a p s e ,  t r a n s m i s s i o n  is by d e f i n i t i o n  n o n l i n e a r  a t s y n a p s e s  w h e r e  PSP a m p l i -  
t u d e s  va ry .  

N o n l i n e a r  s y n a p t i c  t r a n s m i s s i o n  is o n e  o f  t he  p r i m a r y  m e t h o d s  by  which  
n e u r a l  s igna ls  a r e  m o d i f i e d  a n d  has  b e e n  h y p o t h e s i z e d  to a c c o u n t  fo r  such  
b e h a v i o r a l  p h e n o m e n a  as c o n d i t i o n i n g  a n d  h a b i t u a t i o n  (Ca rew  a n d  K a n d e l ,  
1974; Cas te l lucc i  et  a l . ,  1976). I n  o r d e r  to  assess a c c u r a t e l y  t he  i n f o r m a t i o n  
t r a n s f o r m a t i o n  at  a p a r t i c u l a r  s y n a p s e ,  a q u a n t i t a t i v e  u n d e r s t a n d i n g  o f  a n y  
n o n l i n e a r i t i e s  in t r a n s m i s s i o n  is o f  f u n d a m e n t a l  i m p o r t a n c e .  
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In the s tudy r epo r t ed  here ,  a new technique for  analyzing nonl inear  synaptic 
t ransmission was appl ied to a uni tary facilitating synapse in the lobster  cardiac 
ganglion.  From the results o f  r a n d o m  st imulation o f  the synapse with a Poisson 
train o f  presynapt ic  impulses,  a reasonably accurate  character izat ion o f  the 
nonl inear  inpu t -ou tpu t  p roper t ies  o f  the synapse  is deve loped .  This  "white- 
noise" character izat ion o f  the nonl inear  synaptic t ransfer  funct ion is then  com- 
pa red  with the predict ions of  a model  o f  the synapse (Friesen, 1975). This  test 
applicat ion of  the Poisson impulse  train analysis me thod  was mot iva ted  largely 
by the questions listed below and  answered  as well as possible in the Discussion. 

(a) Will the Poisson train analysis yield an accurate  character izat ion of  the 
nonl inear  synaptic t r ans fe r  proper t ies?  

(b) Does the model  o f  the synapse,  which was const ructed f rom the results o f  
many  condi t ioning volley-test st imulus type exper imen t s  accurately account  for  
the results o f  Poisson st imulat ion o f  the living synapse? How does the accuracy o f  
the model  c o m p a r e  with that o f  the Poisson train analysis? (See a above.)  

(c) Which of  the two approaches ,  "white-noise" or  "by guess and  by golly" 
model ing ,  yields the synaptic t r ans fe r  p roper t ies  in the simplest  and  most  
efficient manne r?  What  are  their  respective advantages  and  disadvantages? 

(d) Could the Friesen model  o f  the synapse have been cons t ruc ted  f rom the 
results o f  Poisson train exper iments?  

(e) Does the Poisson t rain analysis lead to any new insights about  the synapse? 
For example ,  can the model  o f  the synapse be simplified? What  new experi-  
ments  are suggested? 

M A T E R I A L S  A N D  M E T H O D S  

Theory  o f  N o n l i n e a r  System Charac ter i za t ion  through  Poisson  S t i m u l a t i o n  

The Poisson train analysis method applies to systems whose output y(t) can be represented 
by a Volterra series (1) (Volterra, 1959) involving the input x( t )  and a set of  kernels 
k~(~i . . . . .  r~). 

f= f _f; y(t) = ko + kl(T)x(t -- T)dz + kz(T1, l"2)x(t -- TOx(t -- r2)&'ldT2 + . . . .  (1) 

A large class of continuous time-invariant nonlinear systems with finite memory may be 
approximated by a Volterra series. 

Wiener (1958) showed that the Volterra series (1) can be rewritten as a series of 
orthogonal functionals (Wiener series) provided the input x(t) is a Gaussian white-noise 
signal. Lee and Schetzen (1965) suggested that the Wiener kernels, which characterize a 
particular nonlinear system, be computed from input-output cross correlations given a 
white-noise input. Recently, the Wiener technique as modified by Lee and Schetzen has 
been applied to a number of nonlinear biological systems (e.g., Bryant and Segundo, 
1976; Lipson, 1975; Marmarelis and Naka, 1973a,b,c; McCann, 1974; Moore et al., 1975; 
Stark, 1968). 

Since the input to the lobster cardiac ganglion synapse is a sequence of discrete 
presynaptic nerve impulses, each of which may be regarded as a Dirac delta function 
(Gerstein and Kiang, 1960), the system cannot be tested with continuous Gaussian white- 
noise and the Wiener method is not applicable. However, analogous to the Wiener series, 
a new orthogonal series for such point process systems can be derived from (1) given a 
Poisson impulse train input. 
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The simplest way to create such a series is to write a Volterra series, with kernels 
different from those in (1), where integrations along the kernel diagonals (cases where 
two or more of the r 's are equal) are now excluded as denoted below (Brillinger, 1975; 
Krausz, 1975; Krausz and Friesen, 1975) 

Y(O = Go[ho, x(t)] + G,(h,,  x(t)] + . . . .  (2) 

where 

GO ~ ho 

GI = f~® hl('r)x(t - r)dv 

G2 = h2(zl, vz)x(t - rOx(t  - v~)d~'ldv2 

gl ~ T2. 

When the input  to this restricted diagonal Volterra series (2) is the zero mean input  a 

x( t )  = z ( t )  - x ,  (3) 

where z(t) is a Poisson train of Dirac delta functions with mean rate h, it can be shown that 
the functionals, G~, in (2) are mutually orthogonal in the sense of time averages; namely, 

E{G, -  G~} = 0 i ~: j ,  

where E{ } denotes expected value (Krausz, 1975). Furthermore,  because z(t) is a train of 
delta functions, no information about the system (1) is lost by excluding integrations 
along kernel diagonals since these integrations only produce lower-order functionals 
(Krausz, 1975). For an intuitive justification of this mathematical result see Krausz (1976). 

Analogous to the Lee-Schetzen method for computing Wiener kernels, the kernels of 
(2) are found by input-output  cross correlation; 

h,(r l  . . . . .  r ,)  = ~ E{y(t)x(t - % ) . . .  x(t - ~r,)}, (4) 

r~'s distinct. 
By substituting (3) for x(t), the formulas for the first few kernels become 

ho = E{y(t)} 

1 
hi(v) = ~ E{y(t)z(t - r)} - h0 

ha(v,, r2)= ½ [ - ~ E { y ( t ) z ( t - % ) z ( t -  ~'z)}] (5) 

k- -h i (T1)  -- hi(T2) - ho 

T1 :~ T2. 

Once the kernels of a system are known, series (2) allows prediction of the output  in 
response to any impulse train input  z(t), but unless the kernels of all orders are known to 
perfect accuracy, the output of (2) will differ from the actual system output.  However, 
due to orthogonality, when series (2) is truncated after n terms, its output  gives the best 

Note that series (2) expresses the output of a point process system in terms of the signal x(t) even 
though the actual input delivered to the system is represented by the impulse train z(t). Of course (2) 
can be written in terms of z(t) by using substitution (3). 
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n t h  order approximation to the Poisson train response of the actual system in the sense of 
minimum mean square error (MSE). Due to the statistical nature of this error criterion, it 
is impossible to know a priori the error that will result when a truncated series (2) is used 
to predict the response of a system when tested with a specific impulse pattern. Yet the 
fact that (2) minimizes the MSE implies the following trade-off. Series (2) rather accu- 
rately fits the system responses to input  impulse patterns that are likely to be closely 
mimicked by a Poisson train with mean impulse rate ~, but the predicted response to an 
impulse pattern that would rarely occur (for example, two very high frequency bursts 
with a long gap in between) is less likely to be accurate. For a more quantitative discussion 
of this issue see Palm and Poggio (1977). 

When one is at tempting to analyze a point-process input system using Poisson stimula- 
tion, it is sometimes possible to save time and effort by incorporating into the analysis 
procedure any prior knowledge about the behavior of the system. In the present case, the 
fact that every PSP has the same time course allows the analysis to be simplified consider- 
ably. As might be expected, it is possible to use just the peak amplitude of each PSP, 
rather than the entire continuous intracellular potential, when calculating kernels. 

Let g(t) be the shape of a standard PSP and let F(t~) be the ratio between the amplitude 
of the ith PSP and the standard. The intracellular potential in cell 3 (system output) in 
response to a train of presynaptic impulses is then 

y(t) = ~ F(t~)g(t - t~). (6) 
i 

If we now define a continuous function F(t) and consider the values F(t,) to be samples of 
F(t), then F(t) itself can be expanded in a restricted diagonal series (2). In terms of the 
system kernels, h~(rl, . . .  , ri), the kernels of F(t) are (Krausz and Friesen, 1975): 

k~_l(o'~ . . . . .  or~_~) = i!hi(oh + L . . . . .  o'i-1 + L, L) i = 1, 2 . . . .  (7) 
g(L) 

where L is the delay from stimulus pulse to PSP peak. 
Together  with g(t) these kernels (ks's) also serve to characterize transmission at the 

synapse. Thus,  one argument  in each system kernel may be fixed equal to the time delay 
between stimulus pulse and resulting PSP peak, thereby reducing by one the necessary 
dimensions of each kernel. 

E x p e r i m e n t a l  

Experiments were performed on the excised cardiac ganglion of a California spiny 
lobster (Panulirus interruptus). For a description of the dissection see Hartline (1967). The 
axon of cell 6 was stimulated extracellularly by a suction electrode and the intensity of 
stimulation was gradually increased until each stimulus pulse evoked a single EPSP in cell 
3. Cell 3 PSPs were recorded by a microelectrode, amplified, displayed on an oscilloscope, 
and stored on FM magnetic tape. To eliminate spontaneous firing in the ganglion, all 
cells were hyperpolarized by use of a low K + Ringer's solution. This appeared to have 
little effect on the cell 3 PSP train evoked by cell 6 stimulation (Friesen, 1975). For a 
thorough discussion of experimental methods see Friesen (1975). 

Poisson S t imu la t i on  

Pseudorandom numbers  were generated by computer,  one every 0.3 ms. I f  the random 
number  was between 0.9990 and 1.0 a pulse was generated; otherwise no pulse. In this 
manner ,  a binary pseudorandom train of pulses was generated with a mean pulse rate of 
3.3/s. Each pulse then triggered a Grass S-88 stimulator (Grass Ins t rument  Co., Quincy, 
Mass.) which in turn shocked the cell 6 axon, evoking a single nerve impulse. Since the 
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0.3-ms binwidth of the pulse train is very brief compared to the time course of the 
synaptic facilitation and antifacilitation, and also compared to the decay constant of the 
PSPs themselves, the binary p s e u d o r a n d o m  ~,i~;se-train approximated adequately a 
Poisson process. The  choice of mean impulse rate, h, was a subjective one. With ~, = 3.3/s, 
the mixture of short and long intervals in the Poisson train optimally explored the ranges 
of both facilitation and antifacilitation. 

Data Acquisi t ion and Storage 

The continuous intracellular potential from cell 3 and the random pulse stimulus were 
recorded on separate channels of an FM tape. The continuous data were then low-pass 
filtered with a high cutoff of 320 Hz and digitized at a sampling rate of 1 kHz. The input  
impulse train was recorded by specially marking sampled output  data points whenever a 
stimulus pulse occurred dur ing  the 1-ms time bin of the sample. The  binwidth of the 
Poisson input  was thus set equal to the sampling interval. A computer  program measured 
the peak amplitudes of each PSP (the values of F(ti) in [5]) and stored these values along 
with information about the time of occurrence (t~) of the immediately preceding stimulus 
pulse. The  delay L between stimulus pulse and EPSP peak was quite constant as was the 
nearly exponential  shape of each PSP. Therefore,  when the entire continuous cell 3 
output  was needed, it was represented by a train of exponentially decaying pulses as in 
(6). The actual cell 3 EPSP waveform was fit by the function 

{e -"-L''', t -- L 
g(t) = , t < L, 

with ~" = 20 ms. For simplicity, L was normally set to zero. This representation of the 
continuous experimental output  required very little storage space and had the additional 
advantages of lack of stimulus artifacts and base-line drifts. 

Kernel  Computat ion 

Kernels were computed from input-output  cross correlations according to (5), but with a 
slight modification due to the fact that x(t) and y(t) are actually finite length digitized 
signals. To illustrate, consider the expression for the second-order kernel. Since z(t) is a 
train of impulses the expectation becomes 

E{y(t)z(t - r0z(t - r2)} = ~ y(t)z(t - rOz(t - "r2)dt 

1 
h2T i=1 i=1 

N N 

where N = number  of impulses in time T and 

8(0 - [ 1~AT, t = 0, where AT is the binwidth. 
- [ 0 ,  t V: 0 

The final result in (8) denotes the sum of all y values that occur z2 s after the second 
member of each pair of impulses (~'1 - r2) s apart. The sum is formed over all such pairs, 
regardless of intervening impulses, and is then divided by k2TAT. 

Rather than being divided by h2TAT, each sum ofy values was instead divided by the 
number  of impulse pairs contributing to that sum, yielding simply the average output  
that follows all impulse pairs with a given separation. This alternate procedure is 
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preferred for the following reason. In a train of N impulses there will be approximately 
NhAT pairs of any given separation (rl - T2) since, for each of the N impulses in the train, 
the probability of another impulse occurring (~'1 - r2) s later is hAT. But with a mean im- 
pulse rate of h, 

N-~ hT 

N h A T  -~ h2TAT. 

Therefore in the limit as experimental time approaches infinity, both kernel estimation 
procedures converge to the same result. However, for small numbers of input impulses, 
the difference between the actual number of pairs with a given separation and h~TAT 
accounts for an appreciable amount of the statistical fluctuation in a kernel estimate. 

After kernels had been computed by the method above, enough noise remained in the 
higher kernels to warrant a certain amount of smoothing. For two-dimensional kernels, 
first the rows and then the columns of the kernel matrix were smoothed with a "harming" 
window (Blackman and Tukey, 1959). This smoothing operation was repeated as often as 
deemed necessary, taking care to avoid the introduction of significant distortions. The 
entire kernel computation procedure was tested and verified by using a known simulated 
second-order nonlinear system (Krausz, 1976). 

Prediction o f  Output  f rom  Kernels 

Given the system kernels, (2) allows prediction of the output in response to any impulse 
train input. In this study the system kernels were computed according to (5) and (8) with 
one argument in the highest kernel held fixed. Then the resulting kernels ofF(t) from (7) 
were used in (2) to predict values for F(ti). After z(t) - ~ has been substituted for x(t) in (2) 
most of the integrals become summations, so the computation proceeds quite rapidly. 
From the predicted values of F(t~) the continuous system output is easily reconstructed by 
using (6). 

R E S U L T S  

Kernels up to third o rder  describing the effect of  cell 6 stimulation on the 
postsynaptic potential recorded f rom cell 3 were computed  from 18 min of  
experimental  data. As explained under  Materials and Methods (Data Acquisi- 
tion), each PSP was replaced by an exponentially shaped pulse with the same 
ampli tude.  The  first-order kernel (Fig. 1) resembles an exponential  pulse except 
for the slight undershoo t  at about  100 ms. Since the ou tpu t  after every presynap- 
tic impulse is averaged to compute  hi ($) using (5), this undershoo t  reflects the 
fact that PSPs after  the second of  a pair of  impulses 100-ms apart  tend to be 
antifacilitated and contr ibute less than normal  to this average (Krausz, 1975). 

Fig. 2 displays the values o f  the second kernel,  h2 (T1, T2), for all values o f  71 and 
~'2 such that 0 < T2 < 7"~ < 2 S. Since the kernel is symmetric about  the diagonal,  
values of  h2 (T1, T2) for T1 < T2 are r edundan t  and are omitted f rom the figure. 
After  the second kernel had been computed  according to the p rocedure  de- 
scribed in Materials and Methods,  a hann ing  smoothing  window was applied 
twice, alternately, to the rows and columns o f  the kernel matrix. 

The  main features o f  Fig. 2 appear  in the first line of  the plot, where T2 = 0. 
The  values of  h2 (z~, I"2) describe the average facilitation or  antifacilitation of  
response peaks after the second of  a pair of  impulses. When Ta is less than about  
200 ms, the second kernel becomes negative, indicating antifacilitation. For $~ 
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FIGURE 1, Experimental first kernel. This estimate of  the first kernel was com- 
puted from 18 min of  cell 3 response during Poisson stimulation o f  the cell 6 axon. 
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FIGURE 2. Experimental second kernel. Each line in the figure represents values 
of  the second kernel, h2 (r~, z2), for a fixed value oft2. Between successive lines, ~'2 is 
incremented by 32 ms. This kernel was estimated from 18 min of  experimental 
Poisson train response. The figure uses hidden line suppression and perspective. 
Only one diagonal half of  the symmetric kernel is shown. 

values be tween  abou t  200 and  400 ms there  is a very slight facil i tatory peak  in 
h2 (~'1, ~'2)- For  l a rge r  values o f  r l  a n d  ~'2, the second  kerne l  becomes  negligible.  

Fig. 3 shows values o f  the  t h i r d - o r d e r  kerne l ,  h3 (rl, z2, 0), with zs - 0. Due  to 
the  s implif icat ion p r o v i d e d  by (7), o t h e r  values o f  ~'3 n e e d  no t  be c o n s i d e r e d .  
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After  the th i rd-order  kernel  had  been calculated f rom EPSP peaks only, the rows 
and  columns  o f  the resul t ing two-dimensional  matr ix  were smoo thed  four  t imes 
al ternately with a hann ing  window. Again due  to symmet ry ,  only values o f  h3 (T1, 
72, 0) for  71 > T~ are  shown in Fig. 3. Since there  are  fewer  impulse  triplets o f  
each conf igura t ion  in the 18-rain Poisson input  than there  are impulse  pairs,  the 
third kernel  est imate has considerably m o r e  variance than does the est imate of  
the second kernel  in Fig. 2. In  spite o f  this "noise" certain fea tures  o f  the third 
kernel  are  readily appa ren t .  Star t ing at the origin and  moving  a long the diago- 
nal, Fig. 3 shows that  wheneve r  a closely spaced impulse  pair  occurs,  the EPSP 

'-0 

FIGURE 3. Experimental third kernel. Each line in the figure indicates the value 
of h3 (r~, T2, 0) for a fixed value oft2. Between successive lines, r2 changes by 32 ms. 
Values of the third kernel were estimated from 18 rain of experimental PSP peaks. 
Experimental third kernel is much noisier than the second kernel in Fig. 2. The 
figure uses hidden line suppression and perspective. 

a f ter  a third impulse  is la rger ,  on the average ,  than  would be predic ted  f rom 
second and lower kernels  only. T h e  a m o u n t  o f  this t h i rd -o rde r  augmen ta t ion  
following closely spaced pairs decreases as the third impulse  moves f a r the r  away 
f r o m  the pair .  Moving away f r o m  the diagonal ,  there  is also a decline in the third 
kernel  ampl i tude  as the pair  separa t ion ,  rl  - T2, is increased.  This  decline leads 
into a shallow valley o f  decreased  response  ampl i tude  for  ~'2 < 1 s and  T1 < 500 
ms. 

Output Calculated from Kernels 

On the basis o f  the first kernel  only,  series (2) app rox ima te s  the cell 3 ou tpu t  with 
a train o f  identical exponent ia l ly  decaying pulses. With g(t) = exp  (-t/":), the 
constant  pulse ampl i tude  de t e rmined  f rom (7) is k0 = hi (0). T h e  MSE between 
cell 3 postsynaptic potential  ou tpu t  and  f i rs t -order  app rox ima t ion  is 19% of  the 
total power  in the cont inuous  cell 3 signal (Krausz,  1976). 
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When the second-order  functional  in (2) is added  to the approx imat ion ,  
predicted PSPs begin to show some variability. Due to the negative peak in 
h2 (ca, ~'2) (Fig. 2), the predicted PSP ampl i tude  af ter  a pair of  closely spaced im- 
pulses will be antifacilitated. Very little facilitation o f  PSPs is expected  f rom Fig. 
2. From (7), (2), and (6) the second-order  nonlinear approximation to the Poisson 
train response o f  the synapse was calculated for  compar ison with the actual 
response.  Fig. 4 compares  2,000 second kernel  predicted PSPs with the actual 
PSPs result ing f rom Poisson stimulation. Each dot  in the scatter d iagram gives 
predicted vs. actual PSP ampl i tude  for  a single PSP f rom the r an d o m  train, In 
the case o f  a perfect  fit all the points would lie along the diagonal.  

Obviously,  the second-order  predict ion is far f rom perfec t ion ,  but  it is a 
significant improvemen t  over  the first kernel  (linear) approximat ion .  Given only 
the first kernel ,  all points in the scatter d iagram (Fig. 4) would fall along a 
horizontal  line. Instead,  small exper imenta l  PSPs are app rox ima ted  by small 
predicted PSPs a l though the amoun t  o f  antifacilitation predicted by h2 (¢~, 7z) is 
generally insufficient.  In some cases, however ,  too much antifacilitation leads to 
a n u m b e r  o f  negative ampl i tude  predic ted  PSPs in Fig. 4. Even though  no 
informat ion  about  the t empora l  o rde r ing  o f  PSPs appears  in the scatter dia- 
gram,  it is safe to say that negative predicted PSPs arise in cases where  three  
input  impulses are so closely g rouped  that  the su m m ed  antifacilitation contrib- 
uted by each o f  the first two impulses (via the second kernel)  causes the 
ampl i tude  of  the third PSP to be underes t imated .  T h e  positive peak near  the 
origin in the third kernel  (Fig. 3) serves to counterac t  this excess depression.  

Fig. 4 also reveals the lack o f  sufficient facilitation in the second kernel  
approximat ion .  Large exper imenta l  PSPs are consistently underes t imated .  
Overall ,  the MSE between kernel  predicted and  actual PSP ampli tudes is never- 
theless r educed  to 9.5% by the addit ion o f  the second-order  kernel .  

Due to the or thogonal i ty  o f  (2), addit ion o f  the th i rd -order  functional  should 
improve the accuracy of  the predicted ou tpu t .  After  the effect  o f  the third 
kernel (Fig. 3), had been added in the scatter diagram of  Fig. 5 was produced.  
Two observations are immedia te  when Fig. 5 is compared  with Fig. 4. First, the 
points do tend  to distribute more  about  the diagonal.  T h e  kernels  now predict  
an appreciable amoun t  o f  facilitation, improving the fit to large exper imenta l  
PSPs. Second,  there  is a great  deal o f  scatter in the predicted PSP ampli tudes,  
somewhat  more  scatter than is observed in Fig. 4. This increase in scatter must  
be partly at t r ibuted to the noisiness o f  the exper imenta l  third kernel  (Fig. 2). 

On the basis o f  all the kernels up  to third o rder ,  the MSE between predic ted  
and actual PSP trains was again 9.5%. So addit ion o f  the third kernel  contribu- 
tion did not  improve  the fit. This result is not  surprising since there  is no 
guarantee  that  the th i rd -o rde r  functional  computed  f rom a noisy estimate o f  the 
third kernel  will be or thogonal  to the lower-order  functionals.  2 With a data 
sample larger  than 18 min, the input  statistics will more  nearly approx imate  the 
ideal Poisson case, so bet ter  resolution o f  the third kernel  and  improved  predic- 

In their analysis of catfish horizontal cell responses, Marmarelis and Naka (1973 b) actually found a 
considerable increase in the MSE when the effects of a noisy third kernel estimate were added to 
their second-order prediction of output. 
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tion o f  output  should result. This claim is substantiated by the analysis o f  a 
model  o f  the synapse presented in the next section. 

DISCUSSION 
The  results indicate that a Poisson train analysis can yield an accurate characteri- 

I 0 -  

A 
> 
E 

Y. 
( / 3  
Q .  

o 
-o°- .. 1 ~  

. • ".'_:4 

I 
rt 

~ 5- . a i , ~  " 
• • • . .a e 0 ¢ .  

• d P ~ •  ' " "  

e -  • ~  • 

8 / . ' . .  , • - 
• • 4 • 

• . . .  

i ' y  I &  

• .;  . : . ' ; .  • 

• i b • J  o I , • • 
, ,, • 

B 

• i % 

e ~  

° °  

° •  

, • • o ° • . • • , 

o • = ~  ~ '  • • " •  °o  == • ~ .  

• ~t~,t.'e'.¢ " " , . . . .  "-  . • ; : . : . . . . . - . , ,  : ,  -. 

%..----- . . . .  • . 

s i'o 
E x p e r i m e n t a l  P S P s  ( m V )  / 7 . - !  

FIGURE 4. Scatter diagram comparison of experimental PSPs and PSPs predicted 
from experimental kernels up to second order. Both synapse and kernel model 
were tested with same Poisson impulse train input. Each of the 2,000 points in the 
figure indicates kernel predicted and experimental amplitudes for corresponding 
PSPs. If the kernels up to second order characterized the experimental output with 
perfect accuracy, then all points would lie along the diagonal line. 

zation o f  transmission at a nonlinear synapse. So the answer to the first o f  the 
questions raised in the introduction is "yes," although it is apparent from Fig. 5 
that more data would be helpful in the case o f  the lobster cardiac ganglion 
synapse. With a long enough  data sample, the variance o f  the third kernel 
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estimate could be decreased and the scatter o f  points in Fig. 5 would be reduced.  
The  kernel prediction would  improve further in accuracy if a reasonably noise- 
free fourth kernel could also be measured.  

Estimation o f  a fourth kernel,  even when one  argement  is held fixed, requires 
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FIGURE 5. Scatter diagram comparison of experimental PSPs and PSPs predicted 
from experimental kernels up to third order. Both the experimental preparation 
and the kernel model were presented with the same Poisson impulse train input. 
Each of the 2,000 points in the figure indicates kernel predicted and experimentally 
measured amplitudes for corresponding PSPs. 

a t r emendous  sample of  data  and much  computa t ion .  Fortunately,  th i rd -order  
kernels  are sufficient for  many  biological systems, part ly because of  the lineariz- 
ing effects o f  intrinsic noise (Marmarel is ,  1975; Krausz,  1976). Since kernels 
h igher  than third o rde r  are  apparen t ly  requi red  to character ize  t ransmiss ion at 
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the cardiac ganglion synapse, it seems that this is one o f  the more  difficult 
systems to analyze by the Poisson impulse train method.  

T o  illustrate this point  by means o f  a comparison,  consider transmission at the 
magnesium-blocked frog neuromuscu la r  junct ion.  The re ,  facilitation of  end- 
plate potentials (EPPs) has been described as a linear function of  input  compris- 
ing two or perhaps  three  components  (Mallart and Martin,  1967; Magleby, 
1973a). Systems displaying l inear facilitation have only second and lower kernels 
(Krausz and Friesen, 1975). To  account  for  the effects o f  repetit ive stimulation 
on the end-plate  potential,  Magleby (1973a, b) and Magleby and Zengle (1975a, 
b) propose  a multiplicative factor,  "potent ia t ion,"  which will cause the model 
kernels to depend  on the mean rate o f  Poisson stimulation, but  will probably not  
increase the o rde r  o f  the model  much beyond second o rde r  for  any given value 
o f  ~,. 

O the r  authors  (Dodge and Rahamimoff ,  1967; Younkin,  1974) have suggested 
that EPP ampl i tude  is propor t ional  to the third or  four th  power  o f  a linear 
funct ion o f  input  (p resumed  to represent  the accumulat ion o f  residual calcium 
in the axon terminal).  By raising a f i rs t-order  series (2) to the th i rd  or  four th  
power,  it is easy to see that only kernels up  to third or  four th  will result. 

Since these various models have had reasonable success at fitting the end-plate 
potential  ampli tudes after  junct ional  stimulation with various impulse patterns,  
it is likely that a th i rd -o rde r  series (2) would characterize f rog neuromuscu la r  
transmission ra ther  well. Unfor tunate ly ,  no model o f  the neu romuscu la r  junc- 
tion (NMJ) has been tested with a wide variety of  impulse pat terns ,  as occurs 
dur ing  Poisson stimulation, so it is not  known how accurately such models,  with 
their  chosen pa ramete r  values, are able to account  for  the responses to input  
pat terns d i f ferent  f rom those which were used to construct  the models in the 
first place. 

In o rde r  to make a comprehens ive  comparison between this traditional try- 
and-cut  model ing approach  and the Poisson train analysis method ,  a mathemati-  
cal model  o f  the cardiac ganglion synapse (Friesen, 1975) was challenged with the 
same sample o f  Poisson white noise used to characterize the living synapse. 
Before discussing model  predictions it is worthwhile to review briefly the experi-  
ments and assumptions f rom which the model  was derived.  

The Friesen Model 

T o  study nonl inear  transmission at the cell 6-cell 3 synapse, Friesen (1975) 
stimulated the cell 6 axon with closely spaced volleys o f  f rom one to four  shocks 
followed at a variable time interval by a test shock. With facilitation, F, def ined  as 
the ratio between the ampl i tude  of  the EPSP evoked by the test shock and the 
ampli tude o f  the first EPSP dur ing  the condi t ioning volley, Friesen plotted the 
curves in Fig. 6 for  facilitation as a function o f  time interval. Notice that for  any 
value o f  t in Fig. 6, the F vs. t curves for  d i f fe ren t  numbers  o f  condi t ioning 
impulses, N, are nearly equally spaced. Friesen the re fo re  assumed that F is the 
sum of  two components :  a facilitation componen t ,  F +, that is propor t ional  to N; 
and an antifacilitation componen t ,  F - ,  i ndependen t  o f  N. Al together  then 

F(N, t) = F+(N, t) + F-(t),  
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where 

F+(N, t) ~-~,.N. F,.+(t), 

and F~ + is the facilitatory effect o f  each impulse in the conditioning volley. To  
test fur ther  the linear dependence  o f F  on N, Friesen fixed t = 800 ms and varied 
N f rom 1 to 10. In  several exper iments  F rose linearly with N for small values o f  
N (four or  less) and then began to level off. 

From the data in Fig. 6, F~+(t) was de termined  by averaging the differences 
between the curves for different  values o f  N. T h e n  N . F ~  + was subtracted f rom F 
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FXGUI~E 6. Results of Friesen's conditioning volley-test stimulus experiments. The 
time interval between the conditioning volley and the test stimulus is plotted along 
the abscissa in log units. The amplitudes of PSPs evoked by the test impulse are 
expressed as a fraction, F, of the unconditioned PSP amplitude. Each discrete point 
represents data from an experiment with N = 1, 2, 3, or 4 conditioning impulses. 
The four solid lines indicate F values predicted by the Friesen model and the 
dashed line denotes the value of F for an unconditioned PSP. (Reprinted from 
Friesen [1975] with permission of Springer-Verlag.) 

to estimate F - .  Using data f rom four  different  experiments ,  Friesen found  that 
F1 + varied between experiments  while F -  remained quite consistent. The  curves 
for F1 + and F -  were fit closely by the expressions 

F1 + = C e  -tl3"6 (1 - e- t l ° ' °s )  2, 

F-  = 1.0 - 0.26 e -tt°'°2 --  0.74 e -tt4"l,  

where C is a constant  with a different  value for each exper iment  and t is time in 
seconds. 

To  give these expressions a mechanistic interpretat ion,  Friesen p roposed  that 
the a m o u n t  o f  transmitter  released by each presynaptic impulse is the sum of  
contributions f rom two compar tments ,  A and B (Fig. 7). Both compar tments  are 
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empt ied  by the occur rence  o f  an impulse  and  then  begin to refill. C o m p a r t m e n t  
A fills according  to the express ion for  F -  with t equal  to the t ime since the most  
recent  impulse.  T o  account  for  F + and  its l inear  d e p e n d e n c e  on N,  let each 
presynapt ic  impulse  cause a hypothet ical  pool D to be inc remen ted  by a fixed 
a m o u n t  o f  t ransmit ter .  Let the contents  o f  D leak into ano the r  pool C which in 
turn  decays into B and  assume that  B itself is leaky. T h e n  by assigning the 
p r o p e r  rate constant  to each decay process,  Friesen arr ived at the equat ion for  
FI + . 

Tests of the Model 

T h o u g h  des igned to account  for  the results o f  condi t ioning volley test st imulus 
expe r imen t s  (Fig. 6), the Friesen model  is comple te  enough  to allow testing with 
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FXGURE 7. Diagram of Friesen's hypothesized transmitter pools. Pool D is incre- 
mented by a fixed amount immediately after each input impulse. At the same time, 
all of the transmitter in both the A and B pools is released, causing a PSP in cell 3 
whose amplitude is proportional to the amount released. In the modification 
suggested in the discussion pool A is eliminated and instead, pool B undergoes a 
constant filling. The rate of filling is incremented transiently after each impulse. 

any st imulus pa t te rn .  T h e  p r e f e r r e d  stimulus for  c o m p a r i n g  model  p e r f o r m -  
ance with exper imen ta l  results is white noise. White-noise inputs  provide  an 
objective and  comprehens ive  compar i son ,  since they r andomly  present  a wide 
variety o f  test pat terns .  T h e r e f o r e ,  to answer  question (b) in the In t roduc t ion ,  
the model  was c o m p u t e r  s imulated and  presen ted  with the same 3.3/s Poisson 
impulse train that  was used in the expe r imen ta l  analysis o f  the living synapse.  

T h e  model  PSP ampl i tudes  are c o m p a r e d  with exper imen ta l  values in the 
scatter d i ag ram o f  Fig. 8. Model responses  were scaled to minimize the MSE 
between model  and exper imen t .  F rom the f igure  it is obvious that  the model  is 
quite accurate ,  part icularly for  PSPs in the r ange  o f  about  1-5 mV ampl i tude .  
T h e r e  is more  scatter in model  predict ions for  PSPs larger  than 6 mV,  but  the 
points still distr ibute evenly a r o u n d  the diagonal ,  indicat ing that  the  e r rors  in 
model  p e r f o r m a n c e  are not consistently biased toward unders ized  or  oversized 
PSPs. T h e  model  does t end  to underes t ima te  the ampl i tude  o f  expe r imen ta l  
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PSPs in a small amplitude range around 5 mV. For some u n k n o w n  reason, a 
great cluster of  points appears just below the diagonal  (Fig. 8) with model  PSP 
amplitudes all around 4 mV. Near the origin the experimental  PSP values are 
slightly unreliable,  and negative experimental  PSPs are known to be an artifact 
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FIGURE 8. Scatter diagram comparison of Friesen model and experimental data. 
Both model and ganglion were presented with the same Poisson impulse train. The 
coordinates of each of the 2,000 points in the figure indicate model amplitude and 
experimental amplitude for corresponding PSPs. If model predictions were per- 
fectly accurate, all points would lie along the diagonal line. 

o f  the data acquisition procedure (Krausz, 1976). Overall,  the MSE between 
experiment  and model  based on 3,000 randomly occurring PSPs was 4%. There-  
fore,  in answer to question (b) o f  the Introduction,  the model  is significantly 
more accurate than the three-kernel  characterization derived from 18 rain o f  
Poisson stimulation. 

As ment ioned  earlier, the scatter diagram method o f  comparison ignores all 
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informat ion about  PSP timing. T h e  only complete  way to compare  model  
predictions with actual cell 3 ou tpu t ,  o ther  than by directly compar ing  the ent ire  
cont inuous ou tpu t  signals, is to compare  model  kernels with exper imenta l  
kernels. I f  noise is present  in the exper imenta l  ou tpu t ,  a compar ison o f  kernels 
is preferable  to a comparison o f  ou tpu t  signals, since ou tpu t  noise uncorre la ted  
with input  is averaged away du r ing  kernel  computa t ion .  

It would be convenient  if  the model  kernels could be calculated analytically by 
somehow manipula t ing the model  equations into the form of  a restricted diago- 
nal series (2). T h e  kernels would then be known by inspection. Since the F + 
componen t  in the model  depends  linearly on input  impulses,  it would seem that 
a second kernel  would characterize at least the facilitation if not the depression.  
However ,  the hypothesized empty ing  of  both t ransmit ter  pools A and B intro- 
duces a s t rong nonlineari ty.  This reset t ing feature  also makes it impossible to 
write the model  as a closed-form expression giving ou tpu t  as a function o f  input ,  
so analytic calculation o f  the kernels by inspection is ruled out.  

Another  approach  (not as appealing) is to try to calculate kernels analytically 
by using the known statistical proper t ies  of  a Poisson process in conjunct ion with 
the cross-correlation formulas (5). Specifically, the first kernel  is found  f rom the 
expected levels o f  " t ransmit ter"  in pools A and B. T h e  second kernel  involves 
conditional expectations d e p e n d e n t  upon  impulse pairs, and these lead to ra ther  
complicated subcases. Al though this method  has successfully been used to 
calculate the kernels o f  one  resett ing type nonl inear  system (Krausz, unpub-  
lished results), it seems unlikely to work for the Friesen model.  Thus  compute r  
simulation and testing o f  the model  is inescapable. 

T h e  second kernel  o f  the Friesen model  is shown in Fig. 9. It was calculated 
f rom 5.5 h o f  model -genera ted  ou tpu t  in response to a 3.3/s Poisson train input ,  
and has been smoothed twice with a hanning  window. T h e r e  is slightly more  
facilitation in the model  second kernel  than in the cor responding  exper imenta l  
kernel (Fig. 2), reflecting some consistent d i f fe rence  between model  and experi-  
ment.  T h e  th i rd -order  kernel (Fig. 10) shows basically the same features as the 
exper imenta l  third kernel  (Fig. 3), but  is far less noisy. Without  more  experi-  
mental data it is difficult to say whether  or not significant differences exist 
between model  and exper imenta l  third kernels. 

Since model kernels are so similar to exper imenta l  ones, the model  kernels can 
be used to estimate the accuracy that would have resulted f rom a th i rd -order  
characterization o f  the exper imenta l  system given bet ter  resolution o f  the exper-  
imental third kernel .  Fig. 11 is a scatter diagram comparison of  model  ou tpu t  
and model  ou tpu t  predicted f rom model  kernels up  to third order .  As expected,  
Fig. 11 looks very similar to the cor responding  scatter diagram for the experi-  
mental  system (Fig. 5) and the dots are less widely scattered. On the basis o f  3,000 
responses,  the MSE between model  ou tpu t  predicted f rom kernels and known 
model ou tpu t  is 6.5%. Given sufficient resolution o f  exper imenta l  kernels,  the 
MSE between kernel predicted and actual exper imenta l  ou tpu t  woutd the re fo re  
be about  6.5%, ra ther  than the 9.5% de te rmined  f rom 18 min o f  data. A 
summary o f  MSE values for  all the various comparisons between ou tpu t  signals 
appears  in Table  I. 
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White-Noise Analysis or Educated-Guess Modeling 

T o  answer  the th i rd  question in the In t roduc t ion  about  the compara t ive  effi- 
ciency and  respect ive advantages  o f  the white-noise and  mode l ing  app roaches  it 
is necessary to know how much  t ime was involved in devising a model .  I f  fully 
au toma ted ,  the condi t ioning volley test st imulus results in Fig. 5 could have been  
obta ined  in about  4 h, but  these results a lone do not allow predict ion o f  ou tpu t  in 
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FIGURE 9. Model second kernel. Each line in the figure represents values of the 
second kernel, h2 (T1, ~'2), for a fixed value of T2- Between successive lines, T2 is 
incremented by 32 ms. This kernel was estimated from 5.5 h of Friesen model- 
predicted Poisson train response. The figure uses hidden line suppression and 
perspective. Only one diagonal half of the symmetric kernel is shown. 

response  to a rb i t ra ry  inputs .  Many more  hours  and  some ingenui ty  were re- 
qu i red  for the construct ion o f  a model .  In  its original version,  pools A and  B 
were  not reset  to zero a f te r  each impulse .  More  expe r imen t s  using two test 
stimuli (Friesen, 1975) were requ i red  before  the need  for  this added  assumpt ion  
was established. In  contrast  to the model -bui ld ing  a p p r o a c h ,  a reasonably accu- 
rate  character izat ion o f  t ransmission at the cell 6-cell 3 synapse follows immedi -  
ately f rom the results o f  one  5.5-h Poisson train expe r imen t .  So even in the 
highly nonl inear  example  o f  the lobster  cardiac gangl ion synapse,  the Poisson 
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FIGURE 10. Model third kernel. Each line in the figure indicales the value of 
ha (rl, r2, 0) for a fixed value oft2.  Between successive lines, r2 changes by 32 ms. 
Values of the third kernel were estimated from 5.5 h of simulated Friesen model 
output  using only the PSP peaks. The figure uses hidden line suppression and 
perspective. Notice the reduced amount  of statistical noise compared with Fig. 3. 
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F I G U R E  l l .  Scatter diagram comparison of Friesen model PSPs and PSPs pre- 
dicted from model kernels up to third order. Both model and kernel predictions 
use the same Poisson impulse train input.  Each of the 2,000 points in the figure 
indicates kernel-predicted and Friesen model-predicted amplitudes for corre- 
sponding PSPs. If  the kernels up to third order characterized the Friesen model 
with perfect accuracy, then all points would lie along the diagonal line. Note the 
improvement  in fit compared to Fig. 5. 
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train analysis is simpler and more  efficient than model  making. 
Compared  with o ther  system analysis approaches ,  the Poisson train me thod  

shares the same advantages as the Wiener  method  for cont inuous- input  systems. 
These  are summarized below and discussed at greater  length by Marmarelis and 
Naka (1973a, 1974). 

(a) T h e  exper imenta l  parad igm is simple to p rog ram and deliver.  
(b) Since the mean rate o f  input  impulses is constant,  the state o f  adaptat ion o f  

the system is control led.  
(c) Noise at the ou tpu t  uncorre la ted  with input  is averaged out  dur ing  kernel  

computa t ion .  
(d) T h e  ent i re  system analysis and synthesis p rocedure  is known and  does not  

depend  on the part icular  system unde r  study. Once the Poisson train response is 
r ecorded ,  the system is character ized by a set o f  input -ou tput  cross correlations 
(kernels) which allow predict ion of  ou tpu t  in response to arbi t rary inputs.  

(e) T h e  analysis is objective, giving an overall fit to the noise response o f  the 

T A B L E  I 

SUMMARY OF MSE VALUES 
Experimental responses Friescn model responses 

% % 

First kernel prediction 19 20 
Second kernel prediction 9.5 10 
Thi rd  kernel prediction 9.5 6.5 
Friesen model 4 - 

Calculated mean square errors  as a percentage of  total output  power. The  
experimental  synapse, experimental  kernels, Friesen model, and model kernels 
were each presented with an identical 3,000 impulse Poisson train. When Friesen 
model output  was compared  with experimental  output ,  the fo rmer  was scaled 
so as to minimize the MSE. 

system, ra ther  than a fit d e p e n d e n t  upon  a specific class o f  inputs such as 
sinusoids or steps. 

T h e  four th  and fifth advantages of  the white-noise approach  deserve  special 
emphasis.  T h e  ability to predict  input  f rom ou tpu t  for arbi t rary inputs is a built- 
in fea ture  o f  the analysis technique.  In contrast ,  th ree  in ter re la ted  problems 
must be overcome before  a conventional  model  can claim to do the same. 

Normally,  a model  is initially designed to account for  the responses a system 
gives to a restricted set o f  simple inputs (such as condit ioning volleys followed by 
test impulses). Usually, the model will next need to be generalized before  it can 
even be tested with inputs o ther  than those used for its initial construct ion.  
(Friesen's curves for  Ft + and F- cannot  be used directly for  arbi t rary impulse 
patterns.  It was necessary to postulate the various t ransmit ter  pools and then  to 
add the assumption about  zeroing pools A and B after  each impulse.) Th i rd ,  a 
prospective model  must  be t inkered with and its parameters  adjusted until it 
gives accurate predictions to all sorts o f  inputs including r a n d o m  inputs.  Models 
in general  suffer  f rom the chronic malady that one  set o f  parameters  will be 
optimal for  a given class o f  inputs but  a d i f fe ren t  set o f  parameters  works much 
bet ter  with o ther  inputs.  T h e  global, min imum MSE fit p roduced  by a Poisson 
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train analysis depends  only on one pa rame te r ,  the mean impulse  rate.  Perhaps  
models  should be tested with white noise and  their  pa rame te r s  adjusted to mee t  
the same m i n i m u m  MSE cri ter ion.  

I f  a model  can be devised that  accurately characterizes a system, it will then 
have at least two impor t an t  advantages  over  a white-noise identification.  

(a) I f  a l imited set o f  test inputs  can be used for  the construct ion of  a model  
that  generalizes to all o ther  inputs ,  then some simplifying p rope r ty  o f  the system 
will have been uncovered.  As an example ,  Friesen was able to characterize the 
lobster cardiac ganglion synapse by apply ing  constant  f requency-condi t ioning 
volleys followed by test impulses.  T h e  simplifying p rope r ty  of  the system that  
allowed his model  based on these results to general ize to the Poisson input  case 
was the fact that  the facilitatory effects o f  each condi t ioning impulse  on the test 
PSP added  linearly. 

(b) I t  is easier to suggest  physiological mechanisms co r r e spond ing  to the 
variables and  pa rame te r s  o f  a custom-buil t  model  than  to a set o f  kernels .  This  is 
part ly because an accurate  model  must  exploit  some simplifying p rope r ty  o f  the 
system, as expla ined  in (a) above.  

Ano the r  reason (for b) is simply that physiologists are more  practiced in 
deal ing with convent ional  as opposed  to white-noise models.  In the usual ap- 
p roach  to model ing ,  expe r imen t s  are des igned to p roduce  a set o f  curves,  each 
describing the effect  o f  one  variable on ano the r  while others  are held fixed. T h e  
resul t ing curves are then  fit by exponent ia ls  which are in te rp re ted  as the build- 
up  and  decay of  various quantit ies according to first- or  second-o rde r  kinetics. 

T o  make  similar kinds o f  in te rpre ta t ions  based on a set o f  kernels ,  it would be 
helpful  to have a table o f  nonl inear  devices and  their  respective kernels .  Once a 
system's kernels were known, a search th rough  such a table would suggest 
possible mechanisms.  Ano the r ,  more  or less opposi te  app roach  is to use the 
kernels as a substitute for  the actual system and to c o m p u t e r  s imulate  conven- 
tional exper iments .  This  allows construct ion of  a more  convent ional  model  
without  the difficulties o f  p e r f o r m i n g  each e x p e r i m e n t  on a living p repara t ion .  
As a test o f  this app roach ,  and  to answer question (d) in the In t roduc t ion ,  an 
a t tempt  was m a d e  to dupl icate  the results o f  Friesen's  condi t ioning volley-test 
st imulus exper imen t s  (Fig. 6) by using measu red  kernels in place o f  the living 
synapse.  Since model  kernels  are quite similar to expe r imen ta l  kernels  and  are 
much  less noisy, this test was p e r f o r m e d  with model  ra ther  than  expe r imen ta l  
kernels .  Al though the resul t ing curves (not shown) did somewhat  resemble  those 
in Fig. 6, the l inear d e p e n d e n c e  o fF (N ,  t) on N did not  hold. Some discrepancy is 
not surprising in view of  the fact that Friesen's condit ioning volley-test stimulus 
pa rad igm is rarely imitated by a Poisson process and,  as men t ioned  earlier 
(Materials and  Methods),  the e r ro r  o f  a kernel  response  to a specific pa t tern  
depends  on the f requency  o f  occur rence  o f  that  pa t te rn  in the white-noise input .  

Since the observat ion that  F(N, t) varies linearly with N (Fig. 6) was crucial to 
the deve lopment  of  his model ,  Friesen could not have constructed his model  
f rom three  kernels es t imated f r o m  5 h of  Poisson st imulation o f  the synapse.  
Given e n o u g h  data  to calculate a four th  kernel ,  pe rhaps  Fig. 6 could be ade- 
quately repl icated with kernels .  
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In  the case o f  the lobster  cardiac ganglion synapse,  there  is no need  to develop 
a mechanist ic  mode l  f r o m  kernels  since the Friesen model  a l ready exists. How- 
ever ,  in answer  to the last quest ion in the In t roduc t ion ,  the white-noise analysis 
still leads to insights about  mechan i sm when model  and  actual response  to white- 
noise stimuli are c o m p a r e d .  As men t ioned  earl ier ,  the Friesen mode l  p roved  to 
be quite accurate  when  tested with Poisson trains,  but  there  were a few consistent 
e r rors .  An examina t ion  o f  the input  impulse  pat terns  that  p recede  e r roneous  
mode l  predict ions might  suggest  ways in which the model  could be improved .  
For  example ,  one  possible simplification,  one  would hope  an i m p r o v e m e n t ,  
el iminates pool A entirely (Fig. 7). By assuming  instead that  pool B is steadily 
filled f rom some inexhaust ible  supply,  and  that  the rate o f  filling is i nc remen ted  
transiently af ter  each presynaptic  impulse,  it is possible to account for  F-(t) 
without  assuming a separa te  pool A (Krausz,  1976). 

Once  the Poisson train kernels  o f  a modi f ied  version o f  the Friesen model  
agree  with exper imenta l ly  d e t e r m i n e d  kernels ,  consistent e r ro r s  in the model  
will d i sappea r  and  o u r  knowledge  o f  the t ransmission proper t ies  o f  the  synapse 
will be ref ined.  By provid ing  a s tandard  of  p e r f o r m a n c e  for  models ,  white-noise 
analysis assists the search for  under ly ing  mechanisms.  

S U M M A R Y  A N D  C O N C L U S I O N S  

Both a living synapse in the lobster cardiac gangl ion and  a mathemat ica l  model  
o f  nonl inear  t ransmission at the synapse were  tested with Poisson trains o f  
impulses.  Exper imenta l  results d e m o n s t r a t e d  that  the t ransmission proper t ies  o f  
the synapse can be characterized with reasonable accuracy by using kernels up  
to th i rd  o rde r .  

A compar i son  o f  expe r imen ta l  and  model  responses  to Poisson st imulat ion 
d e m o n s t r a t e d  that  the model  is general ly quite accurate ,  even t hough  the model  
was cons t ruc ted  by testing the synapse  with a r a the r  restr icted set o f  inputs .  

T h e r e  were some consistent  d i f ferences  between model  predict ions and  actual 
synaptic ou tpu t .  These  d i f ferences  were reflected,  at least in par t ,  by a slight 
d i f fe rence  between expe r imen ta l  and  model  second kernels.  In  conclusion,  the 
Poisson white-noise analysis technique is a useful and  objective way to evaluate 
the p e r f o r m a n c e  o f  a c u s t o m - m a d e  model  and ,  in addi t ion,  provides  an arbi- 
trarily accurate  character izat ion o f  a system's p roper t ies  even in compl ica ted 
cases where  o ther  mode l ing  approaches  are inadequate .  
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